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Abstract

Static analyses compute properties of programs that are true
in all executions, and compilers use these properties to jus-
tify optimizations such as dead code elimination. Each static
analysis in a compiler should be as precise as possible while
remaining sound and being sufficiently fast. Unsound static
analyses typically lead to miscompilations, whereas impreci-
sions typically lead to missed optimizations. Neither kind of
bug is easy to track down.

Our research uses formal methods to help compiler devel-
opers create better static analyses. Our contribution is the
design and evaluation of several algorithms for computing
sound and maximally precise static analysis results using an
SMT solver. These methods are too slow to use at compile
time, but they can be used offline to find soundness and pre-
cision errors in a production compiler such as LLVM. We
found no new soundness bugs in LLVM, but we can discover
previously-fixed soundness errors that we re-introduced into
the code base. We identified many imprecisions in LLVM’s
static analyses, some of which have been fixed as a result of
our work.

CCS Concepts -« Software and its engineering — Com-
pilers; Formal software verification; Automated static
analysis; « Theory of computation — Design and analy-
sis of algorithms.
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1 Introduction

Static analysis is one of the basic technologies that enables
compilers to generate optimized executables for code in high-
level languages. For example, an integer overflow check can
be removed when the operation provably does not overflow,
and an array bounds check can be removed when the access
is provably in-bounds. In each case, the necessary proof is
implied by the results of a static analysis.

Production-quality optimizing compilers have typically
had significant engineering effort put into their static anal-
yses. For example, LLVM currently has about 80,000 lines
of C++ in its lib/Analysis directory, which contains much,
but not all, of its static analysis code. GCC does not have
an analogous directory structure that makes it easy to find
static analyses, but for example its integer range analysis
alone (tree-vrp.c) is 6,929 lines of C. This code is tricky to get
right and, so far, developers are implementing static analyses
without any help from formal-methods-based tools.

We have developed algorithms that use an SMT solver
to compute sound and maximally precise results for several
important dataflow analyses used by LLVM:

e Known bits: a forward analysis attempting to prove
that individual bits of a value are always either zero
or one

e Demanded bits: a backward analysis attempting to
prove that individual bits of a value are “not demanded”:
their value is irrelevant

e Integer ranges: a forward analysis attempting to prove
that an integer-typed value lies within a sub-range,
such as [5..10]

e A collection of forward analyses determining Boolean
properties of a value, such as whether it is provably
non-zero or a power of two

Since 2010, 55 soundness bugs in LLVM’s forward bit-level
analyses have been fixed. Similarly, three soundness bugs
have been fixed in its demanded bits analysis, and 23 sound-
ness errors have been fixed in its integer range analysis. On
the other side, static analyses that are insufficiently precise
can impede optimization; in one case, increasing the preci-
sion of a static analysis in LLVM improved the performance
of a Python benchmark by 4.6% [14]. The goal of our work
is to develop formal-methods-based algorithms that can be
used to find both imprecisions and unsoundnesses in static
analyses implemented in production-quality compilers.
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Our algorithms work on concrete code fragments, which
we gather by compiling real applications. For each such frag-
ment, we compute a sound and maximally precise dataflow
fact and then compare this against dataflow information com-
puted by LLVM. The interesting outcomes are where LLVM’s
result is “more precise” than ours (indicating a soundness
error in LLVM) or LLVM’s result is less precise than ours (in-
dicating an imprecision in LLVM that may be worth trying to
fix). We have reported several precision errors to the LLVM
developers, and some of these have been fixed. We did not
find any soundness errors in the latest version of LLVM, but
we have verified that our method can find previously-fixed
bugs. Finally, we have created a version of LLVM that uses
our dataflow results instead of its own. This compiler is very
slow, but it demonstrates the value of increased precision
by sometimes creating binaries that are faster than those
produced by the default version of LLVM.

2 Background

Our work builds on existing results in dataflow analysis,
and our implementation builds on the Souper superopti-
mizer [22].

2.1 Dataflow Analysis

Dataflow analysis is a body of techniques for computing
facts that are true in all executions of the program being
analyzed. A dataflow analysis should remain sound, but is
allowed to be imprecise, for example by over-approximating
the set of memory locations that a pointer might refer to.
Approximation is necessary in order to sidestep decidability
problems.

Programs are made of concrete operations such as addition
that operate on concrete values. Dataflow analyses employ
abstract operations that operate on abstract values; each ab-
stract value represents a set of concrete values. For example,
the integer range [6..10] represents the set {6,7,8,9,10}. A
concretization function y maps an abstract value to the set of
concrete values it represents, and an abstraction function a
maps any set of concrete values to the most precise abstract
value whose concretization is a superset of the given set.
For any abstract value e, it should always be the case that
a(y(e)) = e. However, it is not the case that, for an arbitrary
set of concrete values S, y(a(S)) = S. For example, in the
abstract domain of integer ranges, y(a({5,8})) = {5, 6,7, 8}.
Abstract values form a lattice or semilattice, with the lat-
tice order corresponding to the subset relation among the
concretization sets of the values in the lattice.

Let f be an abstract operation, such as addition over in-
teger ranges. Iff([é..lO], [1..2]) = [7..12], then in this case
f is returning the most precise possible result. It is always
possible to create a sound and maximally precise abstract
operation by concretizing its arguments, applying the cor-
responding concrete operation to the cross product of the
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concretization sets, and then applying the abstraction func-
tion to the set containing the resulting concrete values. Ob-
viously this implementation is too slow to use in practice
unless concretization sets are small. The challenge in creat-
ing good abstract operations is to make them sound and as
precise as possible, while making them fast enough so that
static analyses built upon them do not slow down the overall
compilation too much. Addition for integer ranges is an easy
case: the lower bound of the output interval is just the sum
of the lower bounds of the input intervals, etc. Other cases
are much more difficult.

2.2 Static Analysis in LLVM

LLVM’s intermediate representation (IR) is a good substrate
for many static analyses. First, rules that are tricky and im-
plicit at the programming-language level, such as type con-
versions and ordering of side-effects in expressions, are made
explicit. Second, the SSA [9] form makes it easy and efficient
(in the absence of pointers, at least) to follow the flow of data
through a function. Third, since LLVM contains competent
implementations of a variety of IR-level optimizations such
as constant propagation, dead code elimination, function
inlining, arithmetic simplifications, and global value num-
bering, many small obstacles to static analysis are optimized
away before they need to be dealt with.

Known Bits This analysis determines which bits of a value
are zero or one in all executions. Known bits are used in
the preconditions of peephole optimizations. For example, a
signed division-by-constant can be implemented more effi-
ciently if the dividend provably has a zero in its high-order
bit. These precondition checks are ubiquitous in LLVM’s in-
struction combiner, a 35,000 line collection of peephole-like
optimizations.

Let f be a function composed of LLVM instructions, W
be the width in bits of f’s output, and K be the result of
the known bits analysis for the output of f. Let f(x); and
K; represent the values of f and the analysis result at bit
position i. Each bit of the analysis result is known to be zero,
known to be one, or else unknown. The known bits analysis
is sound if:

Vie0o..W-1,Vx:K;=0 = f(x);=0A
Ki=1 = f(x)i=1
The known bits analysis is maximally precise if it always
concludes that a bit is known when it is sound to do so:
Vie0o.. W-1, (Vx: f(x);=0) = K;=0A
Vx: f(x);i=1) = K; =1

Number of Sign Bits The number of sign bits is the num-
ber of high-order bits that provably all hold the same value.
Every value trivially has at least one sign bit, and values
can accrue additional sign bits by, for example, being sign
extended or arithmetically right shifted. The number of sign
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bits analysis can be used to reduce the number of bits allo-
cated to a variable. This analysis’s criteria for soundness and
maximal precision are analogous to those for known bits, so
we omit them.

Single-bit Analyses LLVM provides a number of analyses
that provide a single bit of information; these are:

e Value is provably non-zero

e Value is provably negative

e Value is provably non-negative

e Value is provably a power of two

Their criteria for soundness and maximal precision are anal-
ogous to those for known bits.

Integer Range Analysis Integer ranges are used to opti-
mize away comparisons, for example [0, 100) < [200, 205)
can be simplified to “true” LLVM’s Correlated Value Prop-
agation pass attempts to optimize every comparison in a
program in this fashion.

Lazy Value Info (LVI) is LLVM’s version of the classic
integer range analysis; it computes a constant range that has
one of four forms:

e Empty set: concretization set is empty

o Full set: concretization set is all values of the integer
type

e Regular range [a, b) with a <, b: concretization set
contains all values > aand < b

o Wrapped range: [a, b) with a >, b: concretization set
contains all values either > aor < b

Here the >, and <, operators indicate unsigned integer
comparison. So, for example, the concretization set of the
wrapped range [11, 10) would include every value except 10.
Constant ranges where a = b are invalid unlessa = b = 0
or a = b = UINT_MAX, which respectively represent the
empty and full sets.

This analysis is sound if the concretization set of the analy-
sis result R is a superset of the union of the results of applying
the concrete operation to all possible inputs:

y® 2| Jf@
Ya

Unfortunately, the corresponding comparison in the ab-
stract domain—ensuring that the analysis result is high enough
in the lattice—does not work because this abstract domain
does not actually form a lattice. To see this, notice that the
abstraction function is not forced to return a unique best re-
sult, but rather must decide between a regular and wrapped
constant range. We sidestep this problem by dictating that an
integer range is maximally precise if it always returns a re-
sult whose concretization set is as small as possible. Gange et
al. [13] presented a nuanced discussion of using non-lattice
abstract domains for static analysis.

Demanded Bits So far, the analyses from LLVM that we
have considered are forward analyses: they track data flow
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facts through the program in the same direction that data
flows during execution. The demanded bits analysis is a back-
wards program analysis that pushes facts in the opposite
direction; it looks for bits whose value does not matter. For
example, if a 32-bit value is truncated to 8 bits (and has no
other uses in the program), then the demanded bits analysis
can return false for its top 24 bits, indicating that they are
not demanded.

A demanded bits analysis for f is sound if every not-
demanded bit of the input can be set to either zero or one
without changing the result of the computation:

Vieo..W-1,D;,=0 =
Vx : (f(x) = f(setBit;(x))) A (f(x) = f(clearBit;(x)))

Here D is the result of the demanded bits analysis and setBit; ()
and clearBit;() are functions that respectively force bit i of
their inputs to one and zero.

This analysis is maximally precise if, for every demanded
bit, there exists an input value causing f to return a different
result than it produces when that bit of input is forced to
either zero or one:

Vie0o..W-1,D;=1 =
Jx : (f(x) # f(setBit;(x))) V (f(x) # f(clearBit;(x)))

When some bits are not demanded, it is sometimes the
case that a computation can be replaced by a simpler one that
only produces the desired result for the demanded bits. When
no bits are demanded, a value is dead and the instructions
producing it can be removed (assuming their values have no
other uses).

2.3 Reasoning about LLVM using Souper

Souper [22] is an open-source superoptimizer: it runs as
an LLVM middle-end optimization pass, extracting LLVM
IR into its own IR. In its default mode of use, it employs
synthesis to compute more efficient versions of the extracted
code and—when synthesis succeeds—applies the discovered
optimizations to the code being compiled.

For this work, we reused some parts of Souper as infras-
tructure for computing precise dataflow facts. To do this,
the main thing we needed from Souper was its ability to
extract LLVM IR into an internal representation that we can
use to build customized queries for SMT solvers, in order to
implement the algorithms described in the next section. Each
extracted piece of code, which we call a “Souper expression,”
represents an arbitrary-sized directed acyclic graph of LLVM
instructions. These can come from multiple basic blocks,
taking phi nodes into consideration, and adding path condi-
tions corresponding to branches in the LLVM code. Souper’s
main limitations are that it cannot see through memory ref-
erences, function calls, or multiple loop iterations. Most of
the other parts of Souper remain unused by our work, with
the exception of its ability to synthesize an integer constant



CGO 20, February 22-26, 2020, San Diego, CA, USA

meeting a specification—we use that as part of the integer
range computation described in Section 3.3.3.

3 Testing Dataflow Analyses for
Soundness and Precision

This section describes our work, which must solve several
sub-problems:

e Finding representative LLVM IR on which to test the
compiler’s dataflow analyses (Section 3.1)

e Ensuring that LLVM’s static analyses and our algo-
rithms for computing dataflow results both see the
same code, so that their results are directly compara-
ble (Section 3.2)

e Computing precise dataflow results using an SMT
solver (Section 3.3)

The high-level structure of our method is shown in Figure 1.

3.1 Finding Test Inputs

We require concrete code fragments to use as bases for com-
parison between LLVM’s dataflow implementations and ours.
We got these by compiling all of the C and C++ benchmarks
in SPEC CPU 2017! with Souper plugged into LLVM as a
middle-end optimization pass, and with Souper’s synthesis
disabled. This has the effect of loading a large number of
Souper expressions into a cache that we subsequently used
as a source of test inputs.

After compiling SPEC CPU 2017, we ended up with 269,113
unique Souper expressions. 71.6% of these were encountered
more than once during compilation, 11.4% more than 10
times, and 1.6% more than 100 times.

3.2 Enabling Comparable Results

A problem we had to solve is that we cannot easily control
what LLVM is willing to do to get precise dataflow results,
making it hard to put LLVM’s analyses and ours on an even
playing field. As an example, LLVM’s integer range analysis
is sometimes interprocedural, because some passes will mark
function calls with “range metadata” gathered from callees.
This kind of feature puts us in the awkward position of
potentially having to either modify LLVM or else emulate
all of LLVM’s precision-increasing mechanisms in order to
get comparable results. We developed a different solution:
instead of running LLVM’s static analyses on its original
IR, we convert Souper’s IR back into LLVM IR and then
analyze that. This is accomplished using the souper211lvm
tool shown in Figure 1. This strategy ensures that LLVM’s
analyses and ours are computing dataflow facts over exactly
the same code.

Uhttps://www.spec.org/cpu2017/
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3.3 Algorithms for Maximally Precise Dataflow
Analyses

Like other synthesis problems, computing precise dataflow
results using an SMT solver is a search problem that in prac-
tice requires multiple solver calls to arrive at the best answer.
Our algorithms achieve maximal precision and perform rea-
sonably well by exploiting the structure of the abstract do-
mains that we target. In some cases these algorithms are
trivial. For example, all of the single-bit analyses described
in Section 2 can be computed in a maximally precise fashion
using a single solver call which simply checks whether the
property implied by the fact holds or not. Another analysis,
the one computing the number of sign bits, is nearly as easy,
since there are only n — 1 non-trivial possibilities for an n-
bit value. We simply try all alternatives, one after the other,
starting with the most precise result (n sign bits). In contrast,
an exhaustive search strategy is intractable for:

e demanded bits: 2" alternatives

e known bits: 3" alternatives

e integer ranges: 4”7 — 2" + 2 alternatives
The rest of this section is about how to compute these dataflow
facts more efficiently and without giving up maximal preci-
sion. Our arguments for maximal precision are all contingent
on the SMT solver returning a definite answer (SAT or UN-
SAT) for every query, as opposed to timing out. It is easy to
construct an adversarial example (involving 64-bit divisions,
for example) that cannot be analyzed in practice, using our
methods, because it results in SMT queries that cannot be
solved in a reasonable amount of time by a state-of-the-art
solver.

Algorithm 1 maximally precise known bits

1: procedure comPUTEKNOWNBITS(F)

2 fori« 0...Width(F)—1do

3 if askSolver(F = F.clearBit(i)) then

4 Result; < 0

5: else if askSolver(F = F.setBit(i)) then
6 Result; « 1

7 else

8 Result; < Unknown

9 return Result

3.3.1 Known Bits

Algorithm 1 computes known bits efficiently and maximally
precisely. The algorithm is not difficult: it simply guesses
that each bit is always zero and then always one. In this
pseudocode (and also in the pseudocode for the next two
algorithms) we elide error-checking code; it should be as-
sumed that the algorithm terminates with a sound (but likely
imprecise) result whenever the solver runs out of time or
memory. The input, F, in this algorithm is a function com-
puted by some Souper expression. So then, “getInputs(F)”
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Equal precision

Figure 1. Overview of our method for finding imprecisions or unsoundnesses in LLVM’s dataflow analyses. libSouperPass.so
is dynamically loaded into LLVM to allow Souper to run as an optimization pass. souper2llvm is a utility we created that

translates Souper IR into LLVM IR.

returns the inputs to the Souper expression F, “F.setBit(input,
i)” pins bit 1 of one of the inputs to F, etc.

It is a little trickier to prove that bit-by-bit search, which
requires only 2n solver queries, is maximally precise. The ar-
gument is based on separability: a property held by a dataflow
analysis if the aggregate dataflow function can be viewed as
a product of simpler functions on individual data items [15].
If known bits is separable at the bit level, then our bit-by-
bit algorithm must always return the most precise result.
The abstract domain for known bits forms a join semilat-

AN

T <T,0> <0, T> <1, T> <T,1>
0 1 <0,0> <1,0> <0,1> <1,1>

(a) For one bit (b) For two bits

Figure 2. The known bits abstract domain

tice [23]; every subset of its elements has a join, but not a
meet. (Throughout this discussion, we’ll refer to join semi-
lattices as lattices when this does not seem to risk ambiguity.)
The lattice for one bit contains three abstract values as shown
in Figure 2(a), where elements 0 and 1 are more precise than
the top element T and the join of elements 0 and 1 is T:

0CT, 1CT, oUl=T

The lattice for two bits, as shown in Figure 2(b), is created by
taking a cross-product of two one-bit lattices. The elements
of the cross-product lattice, L1 X L, are tuples of the form:
<X1, X3> such that every X; € L; lattice.

To prove separability of known bits analysis, we need to
prove the following three properties as defined by Khedker
et al. [15].
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Property 3.3.1. For all elements in a lattice, the dataflow
property is independent, and thus can be ordered element-
wise.

VX, Ye LXCY=<X;CY,XoCY,, ..., X, CY,>

Property 3.3.2. For each element X in a cross-product lat-
tice, where X is a tuple of component elements, there exists
a set of functions f in a bigger set of transfer functions §
for a dataflow framework, that when applied over aggregate
element X is equivalent to a tuple of smaller abstract func-
tions that are applied on component elements of X. In short,
the separable function space can be factored into a product
of the functions’ spaces for individual data items.

Vfi:L;i > L;,1 <i < n,suchthatVf e, f(X) = <fi(X1),
fZ(XZ)a KD fn(Xn)>-

Both of these properties are clearly held by a lattice like
known bits that is created by concatenating items corre-
sponding to individual bits: there is no interaction across
bits in this abstract domain.

Property 3.3.3. The height of each L; is bounded by a con-
stant.

The height of the known bits lattice is one larger than the
number of bits being analyzed.

Separability establishes that a transfer function applied to
an element of a cross-product lattice gives the same solution
as the single-bit transfer functions applied individually. This
indicates that both approaches compute the same fixed point.
Thus, our bit-by-bit algorithm is maximally precise. (Our
reasoning here is empirically supported by the fact that over
a large number of expressions harvested from LLVM IR,
our known bits result was never less precise than the one
computed by LLVM.)

3.3.2 Demanded Bits

Algorithm 2 attempts to prove each bit is non-demanded
by forcing its value to zero and then using the solver to
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Algorithm 2 maximally precise demanded bits

1: procedure COMPUTEDEMANDEDBITS(F)

2 InputList «— getInputs(F)

3 for each input in InputList do

4 for i« 0...Width(input) — 1 do

5: if askSolver(F.setBit(input, i) = F) A

6 askSolver(F.clearBit(input, i) = F) then
7 Result.input; « 0

8 else

9 Result.input; « 1

10: return Result

check if the resulting Souper expression is equivalent to the
original expression. If so, we force its value to one and do
another equivalence check. If both checks succeed, we have
proved that the bit’s value does not affect the computation,
and therefore that bit is not demanded. The demanded bits
abstract domain is separable following a similar argument
to the one we used for known bits, and so this algorithm is
also maximally precise.

3.3.3 Integer Ranges

Algorithm 3 maximally precise integer ranges

1: procedure sYNTHESIZEBASE(F, Cy)

2 return constantSynthesis(

3 if X + Cyp < UINT_MAX then  » Regular range
4: Fe [X,X +Cy)

5: else > Wrapped range
6 F € [X, UINT_MAX) U [0, X + Co — UINT_MAX)
7: )

8: procedure cOMPUTEINTEGERRANGE(F)

9: L1

10: R « UINT_MAX

11: while L < Rdo > Binary Search

12: M«L+R-L)/2

13: temp «— synthesizeBase(F, M)
14: if temp.success then

15: X1 < temp

16: Ci<M

17: Re—M-1

18: else

19: L~M+1

20: return [X;, X; + C;)

To find the most precise integer range, we are searching for
arange [X, X +C) that excludes more integer values than any
other dataflow result. In other words, [X, X + C) is a sound
dataflow fact but no sound result exists for any [X3, X3 + C;)
where C, < C. Unfortunately, the integer range abstract
domain is not made of conveniently separable smaller parts,
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and so finding the most precise result is a more difficult
problem that the ones we have faced so far.

The smallest feasible value of C can be found using bi-
nary search. Since we are not aware of a direct method for
efficiently finding an X corresponding to each choice of C,
we find X using synthesis. The synthesizeBase() function
in Algorithm 3 attempts to find an X that, combined with a
choice of C, results in a sound integer range. It uses a CEGIS-
style loop to synthesize the constant, using generalization by
substitution [12] to rule out classes of choices of X that do
not work in each iteration of this loop. This function guides
the binary search for the smallest C that is implemented in
computelntegerRange().

The proof of maximal precision for Algorithm 3 follows
from the fact that—assuming synthesis succeeds—it always
finds an integer range excluding the most possible values
from the concretization set.

4 Results
4.1 Precision Comparison

We compared the precision of our algorithms against LLVM’s
dataflow analyses for every Souper expression encountered
while compiling the C and C++ programs in version 1.0.1 of
the SPEC CPU 2017 benchmark suite: 269, 113 in all. Each
Souper expression has a single output (where forward anal-
ysis results end up), but may have many inputs (where the
backwards dataflow information ends up). Hence, the to-
tal number of comparisons for demanded bits is over 2.1
million variables. The average Souper expression in our ex-
periments contains 98 instructions (Souper instructions are
mostly isomorphic to LLVM instructions). The largest ex-
pression is 3, 665 Souper instructions. Our implementation
is based on the latest version of Souper as of May 28, 2019?
and LLVM 8.0. SMT queries were answered using Z3 [11];
individual solver queries were timed out after 30 seconds.
We also timed out any dataflow computation for a Souper
expression that required more than five minutes of total ex-
ecution time. Because the evaluation was time-consuming,
we ran it across several machines of generally comparable
(per core) power: a six-core Intel i7, a 32-core Threadripper 2,
and a machine with two 28-core Xeon processors.

Table 1 summarizes the results of our precision experi-
ment. In many cases, LLVM’s analyses and ours have the
same precision. This reflects the fact that LLVM’s static anal-
yses are quite good: their precision has been gradually im-
proved and tweaked over a number of years. In a substantial
minority of cases, our result is more precise than LLVM’s.
Each such example indicates an opportunity to improve the
precision of an analysis in LLVM; we present some exam-
ples in the next section. We found no new soundness bugs
in LLVM 8.0; this kind of bug would be signaled by LLVM

2Commit hash: f80c7990ef83d0eec529deabbbbd53a08929¢b04
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Table 1. Comparing the precision of LLVM’s dataflow analyses and our dataflow algorithms. The “resource exhaustion”
category includes cases where the solver timed out, where the solver used too much RAM, and where Souper’s constant

synthesis procedure fails.

Dataflow analysis Same precision Souper is more LLVM is more Resource Avg. CPU time

precise precise exhaustion  per expression
Known bits 227,728 (84.6%) 17,722 (6.6%) 0 23,663 (8.8%) 9.0s
Sign bits 227,709 (84.6%) 20,920 (7.8%) 0 20,484 (7.6%) 3.2s
Non-zero 234,833 (87.3%) 13,594 (5.1%) 0 20,686 (7.7%) 2.9s
Negative 248,172 (92.2%) 1,364 (0.5%) 0 19,577 (7.3%) 2.8s
Non-negative 234,699 (87.2%) 13,749 (5.1%) 0 20,665 (7.7%) 3.3s
Power of two 247,209 (91.8%) 1,278 (0.5%) 0 20,615 (7.7%) 3.1s
Integer range 131,081 (48.7%) 22,300 (8.3%) 0 115,575 (42.9%) 16.0s
Demanded bits 741,940 (35.0%) 179,485 (8.4%) 0 1,195,368 (56.5%) 26.6s

computing a dataflow result that is “more precise” than our
maximally precise result.

The right-most column of Table 1 confirms that our pre-
cise dataflow implementations are too slow to use inside a
compiler. They are suitable only as an offline test oracle. Ad-
ditionally, we ran into many timeout issues while computing
integer ranges and demanded bits: both of these algorithms
failed to compute a result around half of the time. We spent
some time investigating these failures and it appears that
the queries being posed are simply difficult for Z3 to handle.

4.2 Examples of LLVM Imprecisions

This section shows some examples where LLVM’s dataflow
analyses return imprecise results. All of these code fragments
originated in SPEC CPU 2017, but in some cases we have
reduced bitwidths to make the examples easier to understand.
For each example, we present a fragment of LLVM-like code,
followed by the maximally precise dataflow result and also
LLVM’s dataflow result.

4.2.1 Known Bits

Here, the value 32, represented as an 8-bit integer, is shifted
left by a variable amount %x:

% = shl i8 32, %x

XXX00000
XXXXXXXX

Precise %0:
LLVM %0 :

Our known bits algorithm recognizes that any trailing
zeroes in the original number cannot be eliminated by a left-
shift operation, but LLVM returns a completely unknown
result (indicated by the “x” in each bit position).

Here a four-bit value %x is zero-extended to eight bits and
then right-shifted by a variable amount %y:

%0
%1

zext i4 %x to i8
1shr i8 %0, %y

0000xXXX
XXXXXXXX

Precise %1:
LLVM %1 :
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Our algorithm recognizes that high zeros cannot be de-
stroyed by a logical right shift, whereas LLVM’s analysis
returns an all-unknown result.

Here, LLVM misses a known bit at the low end of a word:

%0 = and i8 1, %x

%1 = add i8 %x, %0
Precise %1: XXXXXXX0
LLVM %11 XXXXXXXX

Its transfer function for adding known bits fails to recog-
nize that the low bits of %x and %0 are either both cleared or
both set, forcing the low bit of their sum %1 to be cleared.

When a multiplication by 10 is not allowed to overflow
(the nsw qualifier makes signed overflow undefined) its re-
sult must be evenly divisible by 10, allowing an analysis to
determine that all bits in the resulting value are zero:

%0
%1

mul nsw i8 10, %x
= srem i8 %0, 10

00000000
XXXXXXXX

Precise %1:
LLVM %1 :

LLVM’s known bits computation takes advantage of inte-
ger range information, if available, but misses the fact that
adding one to an integer in the range 0..4 cannot affect any
bit beyond the third:

%X
%0

range [0,5)
add i8 1, %x

Precise %0: 00000xxx
LLVM %0: 0000XXXX

4.3 Power of Two Analysis

This section shows three LLVM fragments whose result is
a power of two, but where LLVM’s power-of-two dataflow
analysis fails to derive that fact.

A value that is constrained to be either one or two is clearly
a power of two:
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%X =

The idiom x & —x is a commonly-used way to rapidly
isolate the right-most set bit in a word. LLVM’s power of
two analysis recognizes this idiom, but does not connect it
with range information specifying that the value cannot be
zZero:

%X

range [1,3)

range [1,0)
%0 = sub i64 0, %x
%1 = and i64 %x, %0

Here a value that LLVM can easily prove to be a power
of two, %1, is truncated; LLVM conservatively drops the
power-of-two fact on the assumption that the one bit may be
chopped off, failing to recognize that the constrained shift
amount makes that impossible:

%0 = and i32 7, %x
%1 = shl i32 1, %0
%2 = trunc i32 %1 to i8

4.4 Demanded Bits

Recall that demanded bits is a backwards analysis; in these
examples dataflow facts will be presented for the inputs,
not the result, of an LLVM fragment. If the demanded bits
analysis returns zero, then the value in that bit position
provably does not matter.

We found many variations on this theme, where some bits
of a value feeding a comparison were not demanded:

%0 = icmp slt i8 %x, @

Precise demanded bits for %x: 10000000
LLVM demanded bits for %x: 11111111

We also found many variations of this theme, where some
bits of a value feeding an unsigned division were not de-
manded:

%0 = udiv 116 %x, 1000

1111111111111000
111111111111111

Precise demanded bits for %x:
LLVM demanded bits for %X :

4.5 Integer Range Analysis

Recall LLVM’s integer range representation from Section 2.2,
which is closed with respect to the lower bound and open
with respect to the upper bound, and which supports wrapped
ranges.

The select instruction is LLVM’s ternary conditional
expression, analogous to the ?: construct in C and C++. The
expression below returns one if %x is zero, and returns %x
otherwise. Thus, the value zero is excluded from the result
set:
%0 =
%1 =

icmp eq i32 9, %x
select i1 %0, i32 1, %x

Precise range for %1: [1,0)
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%1: full set

In this example, it is clear that any value in the range 1..6
will be unchanged by anding with 0xFFFFFFFF, but LLVM
pessimizes the resulting integer range slightly anyway:

%x = range [1,7)
%0 = and 132 4294967295, %x

LLVM range for

Precise range for %0: [1,7)
LLVM range for %0: [0,7)

The signed remainder of a 32-bit integer with eight is
always in the range —7..7. LLVM’s result —8..7 is pessimistic:

%0 = srem i32 %x, 8

Precise range for %0: [-7,8)
LLVM range for %0: [-8,8)

The unsigned division operator is also analyzed impre-
cisely:
%0 = udiv i64 128, %X
Precise range for %0: [0,129)
LLVM range for %0: full set

4.6 Impact of Maximal Precision on Code
Generation

One might ask: What effect would increasing the precision
of LLVM’s dataflow analyses have on the quality of its gener-
ated code? To investigate this question, we created a version
of LLVM 8.0 that has maximally precise forward bit-level
dataflow analyses by invoking our algorithms. (We did not
modify LLVM to call our demanded bits or integer range
implementations.)

We compiled several smallish applications—gzip, bzip2,
SQLite,3 and Stockﬁsh4—using LLVM 8.0 and also our modi-
fied LLVM 8.0, and compared their performance. We used
the compiler flags that each application intended to use for
the release (or default, if there was only one) build mode.
We used “-O3” to compile gzip, bzip2, SQLite, and “-O3 -fno-
exceptions -msse -msse3 -mpopcnt” to compile Stockfish.
Compilation time ranged from about an hour for bzip2 to
more than 70 hours for SQLite. (We would have liked to test
SPEC CPU 2017 in this fashion, but compile times for its
larger applications such as GCC were exceedingly long.)

To test the performance of gzip and bzip2, we compressed
the 2.9 GB ISO image for SPEC CPU 2017, and decompressed
the resulting compressed file. To test Stockfish (a chess en-
gine) we ran a single-threaded benchmark computing the
next move in 42 chess games that are part of its test suite,
using a depth of 26 and hash table size 1024. To test SQLite
(an embedded database) we ran a workload suggested in its
documentation: we create a SQL database with 2,500,000

Shttps://www.sqlite.org/index. html
4https://stockfishchess.org/
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insertions using a transaction and then run 100 selects on
it.?

We measured performance on two machines with diverse
microarchitectures: an AMD Threadripper 2990WX and an
Intel Core i7-5820K. Both machines were idle except for a
single core running our benchmarks. We ran each test five
times and report the average execution time.

Table 2 summarizes the results of our experiment. The
most interesting data point is the speedup of the compres-
sion side of bzip2. We looked at the differences between the
baseline and precise versions of this program. At the level
of LLVM IR, there were only a few minor differences, indi-
cating that for this program, the middle-end optimizers did
not benefit much from increased dataflow analysis precision.
However, the executables were different in hundreds of lo-
cations because the SelectionDAG pass in the x86-64 LLVM
backend makes heavy use of known bits information. The
baseline and precise versions of bzip2 both executed roughly
the same number of instructions during compression, but
the instructions per cycle was considerably higher for the
precise version.

4.7 Finding Soundness Errors

Since we did not find any new soundness errors in the
dataflow analyses from LLVM 8.0 that we looked at, we
wanted to make sure that our method can in fact detect
soundness bugs. To do this, we looked for soundness bugs
that had been previously fixed in LLVM, and selected three
of them that had reasonably isolated patches, allowing us to
port them forward to LLVM 8.0. We then used the regres-
sion tests attached to the three patches fixing these bugs to
ensure that our artificially broken LLVM properly exhibits
each soundness bug.

Soundness Bug 1 An LLVM patch [2] introduced many
dataflow improvements including an unsound one which
leads LLVM to believe that a value is provably non-zero if it
is the sum of two provably non-negative values. Of course
that is wrong: both non-negative values may be zero. This
bug was first fixed partially and then completely in a pair of
commits [3, 4].

When we ran the Souper expressions harvested from SPEC
CPU 2017 through our precision checking tool, it detected
this soundness bug by producing this output:

%0:132 = add 0:132, 0:132
infer %0

non-zero from our tool: false
non-zero from llvm: true
llvm is stronger
For this trivial example, the buggy LLVM infers that the
sum is non-zero. “llvm is stronger” means that LLVM was

Shttps://www.sqlite.org/speed.html
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able to compute a stronger dataflow result than the one our
algorithm computed, which is maximally precise. This is
how our tool points out a soundness bug.

Soundness Bug 2 A miscompilation bug [18] in LLVM had
a dataflow unsoundness bug as its root cause. The bug was
fixed in patch [10]. The problem is in analysis of the signed
remainder operation where the divisor is constant. This code
was also triggered using one of the Souper expressions har-
vested by compiling SPEC:

%0:132 = var

%1:132 = srem %0, 3:132

infer %1

known sign bits from our tool: 30
known sign bits from 1llvm: 31
1llvm is stronger

Here, LLVM incorrectly believes that the signed remainder
of an arbitrary 32-bit value and 3 has 31 sign bits, which is
one more than it actually has.

Soundness Bug 3 This wrong code bug [21] was again in
the code handling the signed remainder operation, but this
time in the “known zero” analysis. It was fixed in a patch [5].
The example that triggered this bug was originally in 64 bits,
but to improve readability we present an 8-bit version of it
here:

%0:18 = var

%1:18 = srem 4:i8, %0

infer %1

known bits from our tool: 00000x0x

known bits from llvm: 00000x00
1lvm is stronger

This bug was not triggered by any Souper expression
found when compiling SPEC CPU 2017. However, we did
trigger it using a collection of Souper expressions harvested
by compiling a number of programs randomly generated by
Csmith [24] and Yarpgen [1]. Given these facts, it is perhaps
unsurprising that the miscompilation error in LLVM that
this bug caused had been originally discovered by Csmith.

4.8 Concrete Improvements to LLVM

Some time ago (prior to the LLVM 5.0 release) we performed
an early solver-based study of just the known bits analysis
in LLVM, and worked with LLVM developers to get some of
the worst imprecisions fixed. Some of the patches discussed
below were written by us, others were written by LLVM
developers.

(1) Evaluating x A (x — 1) results in a value that always has
the bottom bit cleared. The patch added to LLVM handles a
slightly generalized pattern x A (x —y) where y must be odd.
(Note: In this expression, (A) is used for bitwise conjunction
operation, and (V) is used for bitwise disjunction operation.)
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Table 2. Evaluation of the impact of maximally precise dataflow facts on generated code. The baseline compiler is LLVM 8.0
and the precise compiler is LLVM 8.0 modified to use our dataflow algorithms instead of its own.

Benchmark AMD machine Intel machine
Baseline Precise Speedup Baseline Precise Speedup
bzip2 compress time 333.61s  260.40s  +21.94%  384.12s 353.00s +8.10%
bzip2 decompress time 148.82s  150.94s -1.42% 163.81s  164.02s -0.13%
gzip compress time 75.41s  75.33s +0.11% 82.22s  84.57s -2.85%
gzip decompress time 14.09s  14.25s -1.13% 14.20s  14.32s -0.84%
Stockfish total time 257.28s  254.68s +1.01%  273.99s 272.54s +0.53%
SQLite 37.78s  36.78s +2.65% 40.01s  39.88s +0.32%

(2) The LLVM byte-swap intrinsic function, used to change
the endianness of a value, was not previously handled by
the known bits analysis. This is fixed now.

(3) The additive inverse of a zero-extended value, 0 — zext(x),
is always negative.

(4) The result of the Hamming weight intrinsic in LLVM
(@11vm.ctpop) had room for improvement.

(5) Tests for equality and inequality can sometimes be re-
solved at compile time if, for example, x = y is being eval-
uated and at some bit position, x is known to have a zero
and y is known to have a one.

Manually identifying imprecisions in dataflow analyses
is difficult. Given some code to compile, we can identify
imprecisions automatically. In this section we showed that
five such issues in LLVM have already been fixed based on
the results of our work.

5 Related Work

Our work fits into the broader context of compiler testing
techniques, about which much has been written [17]. Com-
pilers are large, diverse programs and some of their parts
can benefit from specific testing. In this section we focus on
methods for testing static analyses.

Bugariu et al. [6] test numerical abstract domains by cre-
ating a collection of representative abstract values, applying
a sequence of abstract transfer functions, and then testing
the results using a collection of properties that check for un-
soundness, imprecision, or failure to converge. They found
bugs in libraries such as Apron. This work has the same
goals as our work, but uses a very different test oracle: theirs
is based on high-level properties and ours is based on com-
puting sound and precise results using algorithms that call
out to an SMT solver.

Randomized differential testing has been used to find
soundness and precision issues in static analyzers. Cuoq et
al. [8] instrumented an analyzer with assertions to compare
the inferred values with the values obtained from concrete
execution. Klinger et al. [16] used differential testing to eval-
uate both the soundness and precision of program analyzers.
Their work tested six different program analyzers and found
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defects in four of them. Klinger et al’s goals are the same
as ours, but we avoided differential testing for two reasons.
First, there do not exist any other implementations of most
of the static analyses for LLVM IR that we target. Second,
our solver-based techniques are maximally precise, avoiding
the limitation that differential testing cannot, in general, find
imprecisions in the most precise tool being tested.

Midtgaard and Meller [20] used ideas from QuickCheck [7]
to test properties of static analyses using a domain-specific
language to specify properties to be tested.

Madsen et al. [19] verify the correctness and safety of ab-
stract domains implemented in static analysis tools. Their
technique uses SMT solvers and is specifically designed for
Flix, a functional and logic programming language designed
for implementing static analyses. This technique allows a
user to define a lattice and transfer functions in a functional
language that is intended to be verified. For this to work,
they extended Flix to support annotations and laws to specify
properties of abstract domains to be tested. They verify ab-
stract domains using an SMT solver and also support testing
based on QuickCheck [7, 20].

6 Conclusion

Dataflow analyses are a key enabling technology for opti-
mizing compilers. In this paper, we presented a collection of
novel solver-based algorithms for computing maximally pre-
cise data flow analysis results. These results made it possible
to test dataflow implementations in LLVM for soundness
and precision. We found numerous imprecisions, some of
which have been fixed as a result of our work.

A Artifact Appendix
A.1 Abstract

This artifact provides the source code that implements our
work on testing precision and soundness of LLVM’s dataflow
analyses. Our work builds on the open source superoptimizer,
Souper [22] and evaluates LLVM 8.0. The benchmarks used
in our experiments are open-source, except the SPEC CPU
2017 benchmark that has restricted access and cannot be
distributed publicly. We provide a Dockerfile in our artifact
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to automatically build the Docker image, which takes care of
installing all required dependencies, benchmark suite, and
Souper for the experimental evaluation.

A.2 Artifact Checklist

e Algorithm: SMT solver-based algorithms to compute pre-
cise dataflow facts

Program: Souper: an open-source superoptimizer for LLVM

IR [22], Z3 solver, re2c, Redis, benchmarks: Gzip, Bzip2,

Stockfish, SQLite, SPEC CPU 2017 ISO image v1.0.1.

Compilation: Modern compiler toolchain: GCC-7.4 and

above or Clang-7.0 and above.

¢ Run-time environment: Experiments are evaluated on
Linux Ubuntu 18.04 for x86-64.

e Hardware: Commodity x86-64 machines.

Experiments: Build the Docker image, run the image, and

follow the instructions to run the scripts to validate the

results.

Output: Scripts are provided to process the raw data (in

textual format) generated by experiments. We have also

provided instructions for expected results and analysis of

the final output.

e How much disk space required (approximately)?: 20 GB
disk space.

e How much time is needed to prepare workflow?: Build-
ing the docker image takes about an hour.

e How much time is needed to complete experiments?:

It takes approximately an hour to complete all experiments

except precision testing of the SPEC CPU 2017 benchmark,

which may take up to 100 hours to test eight dataflow facts.

Publicly available?: Yes.

e Code licenses (if publicly available)?: Apache License

2.0, University of Illinois/NCSA Open Source License.

A3
A.3.1 Distribution

Description

The artifact is publicly available and can be downloaded from
URL: https://doi.org/10.1145/3373122. We provide scripts that
take care of building the prerequisites, our tool, and running
the experiments.

A.3.2 Hardware Dependencies

We recommend testing on a modern Linux machine, with a
modern compiler toolchain like GCC/Clang. We used Ubuntu
18.04 with GCC 7.4 for our work.

A.3.3 Software Dependencies

Our work is implemented in C++, and the scripts are written
in Perl, Python, and Bash. Our tool uses LLVM+Clang 8.0
compiler, Z3 solver, Redis database to cache the results, open-
source benchmarks (bzip2, gzip, SQLite, Stockfish) for eval-
uation. The script Dockerfile in the artifact’s archive takes
care of building all required software dependencies in the
Docker image.

91

CGO 20, February 22-26, 2020, San Diego, CA, USA

A.4 Installation

Install the Docker engine by following the instructions from
the URL: https://docs.docker.com/install/linux/docker-ce/
ubuntu/.

Download our artifact from the archive and untar it.

$ tar -xf souper-cgo20-artifact.tar.gz
$ cd souper-cgo20-artifact

Now, you can build and run the Docker image.

$ ./build_docker.sh

$ sudo docker run -it jubitaneja/artifact-cgo \
/bin/bash

$ export PS1="(docker) $PS1"

The entire setup of our tool in docker is at this path:

(docker) $ cd /usr/src/artifact-cgo

A.5 Experiment Workflow

The artifact provides the scripts to reproduce the results
presented in Section 4.

Precision Testing of SPEC CPU Benchmark: We do
not share the SPEC ISO image because of its restricted li-
cense agreement, and instead, provide the Redis database
file (dump.rdb.7z) of input Souper expressions collected from
building SPEC CPU benchmark using Souper.

The SPEC.md file in the archive provides detailed instruc-
tions on how to setup a Redis server for testing each dataflow
fact and reproduce the results, as shown in Table 1 and details
in Section 4.1.

Precision Testing of Individual Dataflow Facts: The
script test_precision.sh compares the dataflow facts computed
by our precise algorithms with the LLVM compiler. It tests
each example discussed in Section 4.2 to Section 4.5. You can
run the script in the docker setup.

(docker) $ cd /usr/src/artifact-cgo/precision/test
(docker) $ ./test_precision.sh

Performance Evaluation: The script test_performance.sh
measures the impact of the precision of dataflow analysis for
applications: Bzip2, Gzip, Stockfish, and SQLite. The script
reproduces the results, as presented in Table 2 and discussed
in Section 4.6. You can run the script:

(docker) $ cd /usr/src/artifact-cgo/performance/test
(docker) $ ./test_performance.sh

Soundness Testing: The script test_sound.sh tests three
soundness bugs discussed in Section 4.7. You can run the
script in the docker setup.

(docker) $ cd /usr/src/artifact-cgo/soundness/test
(docker) $ ./test_sound.sh
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A.6 Evaluation and Expected Results

The scripts mentioned in the previous section generate the
output on the standard console or redirect it to the files. You
can compare the results to the data presented in Section 4.

We evaluate the performance of compression applications
by compressing and decompressing the SPEC CPU bench-
mark ISO image, a 2.9 GB file, in Section 4.6. However, we
cannot share the proprietary source and thus modified the
setting of an experiment for the artifact. In the artifact, we
provide a randomly generated 1 GB file using dd utility for
the evaluation of Bzip2 and Gzip.

The detailed analysis of each result and the expected out-
put is discussed in README.md file in the archive in “Section
3: Analysis of the Results”.

A.7 Experiment Customization

You can easily customize test inputs written in the Souper
IR, and try different options to compute the dataflow facts
from maximally precise algorithms and compare it with the
facts computed by the LLVM compiler. The list of options to
compute dataflow information from the maximally precise
algorithms that we have implemented in Souper is:

Known bits: -infer-known-bits

Sign bits: -infer-sign-bits

Negative DFA: -infer-neg

Non-negative DFA: -infer-non-neg

Non-zero DFA: -infer-non-zero

Power of two DFA: -infer-power-two

Range DFA: -infer-range -souper-range-max-precise -souper-
range-max-tries=300

e Demanded bits: -infer-demanded-bits

A sample command line to compute known bits for an
input file, input.opt written in Souper IR is:

$ souper-check -infer-known-bits \
-z3-path=/path/to/z3 input.opt

On the other side, while computing dataflow facts from the
LLVM compiler using Souper, which calls LLVM’s dataflow
functions, the different options are:

Known bits: -print-known-at-return

Sign bits: -print-sign-bits-at-return

Negative DFA: -print-neg-at-return

Non-negative DFA: -print-nonneg-at-return
Non-zero DFA: -print-non-zero-at-return

Power of two DFA: -print-power-two-at-return
Range DFA: -print-range-at-return

Demanded bits: -print-demanded-bits-from-harvester

A sample command line to compute known bits from the
LLVM compiler for an input file, input.opt written in Souper
IR is:

$ souper2llvm input.opt | llvm-as | souper \
-print-known-at-return
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‘souper2llvm’ is a utility to translate an input in Souper
IR to the LLVM IR. ‘llvm-as’ is the LLVM’s assembler to
generate the LLVM bitcode.

The details of customizing the experiments are discussed
in “Section 4: Experiment Customization” in README.md
file in the archive.
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