
A Case for Near Data Security∗

Akhila Gundu, Ali Shafiee Ardestani, Manjunath Shevgoor, Rajeev Balasubramonian
University of Utah

Abstract

Security is a vital requirement in many high-end systems, es-
pecially those that make up modern cloud infrastructures. Cloud
systems are vulnerable to many attacks, including those by un-
trusted cloud operators that have access to physical hardware.
Memory authentication confirms that an attacker is not modifying
the values being returned by the memory system. But it imposes
a severe memory bandwidth overhead that limits its adoptionin
highly cost-constrained cloud systems. The ideas proposedin
this position paper attempt to lower these overheads and make
memory authentication more palatable for cloud systems.

While near data processing has been explored to improve ap-
plication performance and power efficiency, it has not been lever-
aged to improve auxiliary operations for security. This paper ar-
gues that logic for memory authentication should be placed on
the memory module itself so it has access to significantly higher
bandwidth. To preserve security guarantees, the near data pro-
cessor and its link to the main host processor have to be made
secure. We describe this design and estimate the first-orderpo-
tential for benefit.

1. Introduction
While cloud services are attractive for their low cost, theypose
several vulnerabilities. In particular, cloud servers arevulnera-
ble to physical attacks where an untrusted cloud operator may
modify the hardware to gather customer data. It is expected that
sensitive applications will encrypt all data emerging fromthe pro-
cessor e.g., with a framework similar to Intel’s SGX [8], to reduce
vulnerability to such physical attacks. But this is not enough to
keep data safe. In a passive attack, an untrusted cloud operator
may snoop on the memory bus and gather information based on
the address trace (which is not encrypted on a commodity DDR
system) [9]. In an active attack, the cloud operator could attach
a custom DIMM that returns spurious data to either cause dis-
ruptions or launch a replay attack [3]. In fact, the latter attack
is easier to accomplish and more hazardous. To overcome such
an active attack, the concept of memory authentication was in-
troduced [3]. Memory authentication provides a guarantee to the
user that the value returned by a memory read request is exactly
the last value that was written to that address. In spite of several
recent innovations [5, 18, 14, 13, 15, 4, 2, 6, 11, 12], state-of-the-
art memory authentication continues to pose a high bandwidth
overhead of 6X. This is especially problematic for the multi-core
memory-intensive workloads that are so popular in the big-data
era.

This paper exploits near data processing (NDP), or more
specifically, near data security, to shield the processor from this
high bandwidth overhead. No prior work (to the best of our
knowledge) has attempted to use NDP to target a security fea-
ture. This is an especially compelling application of NDP since

∗This work was supported in parts by NSF grants CNS-1302663 and CNS-
1423583, and by IBM Research.

high bandwidth is a primary advantage of NDP, and security fea-
tures like memory authentication are especially hungry formem-
ory bandwidth. We introduce the concept of a Secure-DIMM that
has a secure processor on it that can perform memory authentica-
tion at much higher speeds than a baseline processor. This is
possible because the internal bandwidth on the DIMM is signifi-
cantly higher than the bandwidth into a modern processor. Once
the secure processor on the DIMM has a verified response for
the data request, it communicates this result via a secure channel
back to the processor. The secure channel leverages well-known
approaches for hardware/software authentication and secure com-
munication.

While the proposed solution can substantially reduce band-
width requirements and hence queuing delays, it introducesan
additional delay for encryption and decryption over the secure
channel. It also results in more expensive hardware becausea
specialized DIMM is required. The approach can also easily be
adapted for use in a 3D-stacked memory device.

2. Background
2.1. Physical Attacks
Attacks can be categorized as Passive and Active attacks [3]. In a
passive attack, an adversary silently observes critical information
as it moves on the bus. Data that is transferred over the bus can
be protected by encryption. In an active attack, an adversary has
physical access to the computing system and can modify the data
being exchanged. This is typically done by replacing a genuine
DIMM with a malicious custom DIMM [3]. Active attacks can
be of different types. Asplicing or relocationattack is where
the adversary can replace a memory block with a block at a dif-
ferent address. ASpoofingactive attack involves an adversary
exchanging an existing memory block with a malicious one. A
Replayattack is the third frequent active attack that replaces a
memory block located at a given address with the memory block
that existed at that location at an earlier point in time.

2.2. Integrity Trees for Memory Authentication
Researchers have proposed authentication primitives likecrypto-
graphic hash functions [3, 14] and Message Authentication Code
(MAC) functions that can be used to authenticate data. These
functions are applied to every memory block and their nonces
(random numbers, created on every write of a block, used as anin-
put to prevent replay attacks). The resulting hashes can be stored
on the secure processor. This creates excessive storage overheads
on the secure processor. Tree-based structures called Integrity
trees were proposed to eliminate this storage overhead [11, 6, 2].
The tree splits the memory space into M equal size blocks which
form the leaf nodes of an integrity tree. The remaining tree levels
are created by recursively applying a hash over the childrenof
that node. This recursive application of the authentication primi-
tive yields a single root node that is stored on the secure tamper-
resistant processor [16]. The root reflects the current state of the
entire memory. The memory blocks and intermediate tree nodes
are stored in the main memory. The number of checks required
to verify the integrity of a leaf node depends on the number of

1



memory blocks. The number of checks corresponds to the num-
ber of tree levels given bylogA(M) [3] where A is the arity of
the tree and M is the number of memory blocks.

2.3. Tree Authentication

Figure 1: Merkle tree authentication

For each memory block M (i.e., leaf node), a branch [3] exists
which starts at the leaf M and ends at the root of the tree. To verify
the authenticity of the memory block M, we verify the authentic-
ity of every node on this branch. This is best explained with the
example in Figure1 that shows an integrity tree with 16 memory
blocks with an arity of 2. To authenticate a memory block, say
N22, the nodes along N22’s branch must be fetched along with
N22. To re-compute the root node, the branch nodes’ siblings
must be fetched too. Thus, for authenticating N22, the nodesto
be fetched from the untrusted memory are the nodes in blue –
N22 and N21, N10 and N9, N4 and N3, N1 and N2. The hash is
applied to N21 and N22 to confirm the value of N10. Next, the
hash is applied to N9 and N10 to confirm the value of N4, and so
on. Finally, the hash is applied to N1 and N2 to confirm the value
of the root node on the processor. If the adversary has modified
any subset of blocks fetched from memory, at least one of these
checks will fail.

2.4. Tree Update
A legitimate change to a memory block will require the tree
branch of that block to be updated to reflect the new changed
value of the block. Authentication [3] of that memory block has
to be done first. Then, the new branch values are computed on-
chip and finally stored off-chip.

2.5. Bonsai Merkle Tree
Rogers et al. [12] make the following observation. Assume that
a data block and an associated counter value are being encrypted
together and being stored. When data is read and decrypted, the
processor sees data and the counter value. If the counter value is
correct, the data value is correct as well (with a very high prob-
ability). So a separateBonsaiMerkle tree is constructed out of
the counters for every block. This tree is read to confirm that
the counter obtained through decryption matches the counter ob-
tained through the Bonsai Merkle tree (BMT). The BMT is sig-
nificantly smaller because it is based on smaller counter values
and not on the entire data value. The BMT can also be organized
with high arity to reduce the number of nodes. All the children of

a node can also be stored as a single block in memory to further
reduce the number of data fetches. For example, the Merkle tree
for a 16 GB data set would require fetching 56 blocks, but with
a BMT over 8-bit counter values and arity of 64, we would only
have to fetch 6 blocks.

3. Designing a Secure-DIMM
Just as secure computation requires a specialized processor, mem-
ory authentication in our proposal requires a specialized memory
system. The host secure processor would have a specialized (but
simple) memory controller that issues a high-level requestto the
external memory system. A read request issues the address and
a pending transaction ID (since the response time is not known).
A write request issues the address and the data in encrypted form.
The host processor and DIMMs are either connected with point-
to-point channels or shared channels with appropriate arbitration
mechanisms.

Each Secure-DIMM has a buffer chip (similar to the ones seen
on LR-DIMMs [1]) that receives all signals on the channel. The
buffer chip is the key innovation in our proposal. It is a se-
cure logic block that implements memory controller functionality
(dealing with timing parameters and the states of memory banks),
memory authentication functionality (verifying the contents of a
BMT), and the basic primitives expected in a secure processor
(authenticating itself and its code, and establishing a secure com-
munication link).

The buffer chip is connected to several DRAM chips on the
Secure-DIMM with a dense on-DIMM interconnect. Note that
a DIMM with four ranks has four times as much internal band-
width as its external bandwidth. By adding more interconnect
layers on the Secure-DIMM, it can provide even higher intra-
DIMM bandwidth between its DRAM chips and its buffer chip.
These intra-DIMM interconnects can also run at frequencies
much higher than typical DDR memory channels.

A cache line request is handled entirely by one Secure-DIMM.
Each Secure-DIMM organizes its data as a BMT, similar to that
of prior work [12]. Once the buffer chip receives a read request
from the main host processor, it generates all the necessaryread
requests for memory authentication and places them in its mem-
ory controller. The memory controller issues these requests to
the ranks on the Secure-DIMM using a standard DDR protocol.
Once data is received, the necessary checks are performed. Note
that the buffer chip now stores the root node of the BMT. Af-
ter the received data value has been authenticated, it needsto be
returned back to the main host processor. To avoid arbitration
overheads, each Secure-DIMM takes turns in round-robin order
to return a pending request back to the processor.

Since the secure host processor has off-loaded memory authen-
tication to the buffer chip, it has to verify that it is indeedreceiv-
ing responses from a buffer chip that it trusts. We walk through
the required steps below. At a high level, note that these steps are
similar to what the cloud user must do to initiate her application
on the cloud’s secure processor [15, 17].

First, the secure buffer chip needs to establish its own pri-
vate/public key combination. This is either done by the manu-
facturer or at run time by the user with the help of a PUF cir-
cuit [15, 17, 4]. This private/public key may be used by the secure
host processor and the secure buffer chip to periodically establish
session keys for communication. The secure buffer chip usesits

2



private session key to encrypt the following tuple:
< data response, pending transaction id, ECC, code hash>.
The code hashis tracked by the secure buffer chip in a special
register. The buffer chip is only capable of executing a single ker-
nel and a single application. Every time either of these is changed,
the hardware computes a hash of the kernel and the application
codes and stores it in the special register. It is computationally in-
tractable for an attacker to place her own code on the buffer chip
such that it hashes to the same value as the code being provided
by the cloud user. When the host processor receives the encrypted
tuple, it uses the buffer chip’s public session key to decrypt the
tuple. It confirms that it has received a valid pending transaction
ID, ECC, and code hash. It then proceeds with the data value it
has received. Note again that the private/public key encryption of
data on the link guarantees that the cloud user is communicating
with a valid buffer chip, while the code hash guarantees thatthe
buffer chip is executing trusted code. The pending transaction
ID can also include a hash of the address to thwart any possible
replay attacks by a fake DIMM on the same channel.

4. Expected Benefit
Consider a baseline secure processor that, like many high-end
processors today, has four DDR3 channels, where each channel
can support three LR-DIMMs at a frequency of 533 MHz [7].
We assume that each LR-DIMM implements its own BMT; this
allows the secure processor to work on 12 different memory ac-
cesses at the same time. Alternatively, all 12 LR-DIMMs may
collectively form a single BMT to leverage more channels for
a single memory authentication. Either way, the net bandwidth
available to the secure processor is 533 MHz× 4 channels× 64
bits × 1/D, where D is the bandwidth overhead of memory au-
thentication. If we assume that each LR-DIMM has a capacity of
16 GB and implements its own BMT, the value of D is 6.

In the Secure-DIMM, the internal bandwidth is estimated as
follows. We conservatively assume that only a single 64-bit
data channel connects the buffer chip to the DRAM chips on
the Secure-DIMM. We assume that the channel on the Secure-
DIMM can operate at a frequency of 800 MHz. The net internal
bandwidth on all 12 Secure-DIMMs is therefore 800 MHz× 1 in-
ternal channel× 64 bits× 12× 1/D. This bandwidth is 4.5× the
bandwidth available to the host processor. Therefore, assuming a
large number of threads and a bandwidth-constrained system, the
Secure-DIMMs can perform memory authentication 4.5× faster,
i.e., the overhead of memory authentication is reduced from6×
to 2.1×. The bandwidth into the host processor is also under-
utilized by a similar amount because data responses includethe
code hash and transaction id.

The proposed approach does introduce additional delays on
every read because of the encryption/decryption required for the
secure link. This delay is expected to be about 45 ns [10]. The
cost of the system also goes up because of our use of a special-
ized DIMM; for reference, an LR-DIMM that has comparable
design complexity has a cost-per-bit that is 48% higher thanthat
of commodity DIMMs. Note that even though we now have a
secure host processor and a secure buffer chip, we are not dou-
bling our processor real estate. The secure buffer chip doesnot
include a full-fledged processor and cache; also, we are moving
memory controller and BMT functionalities from the host to the
buffer chip, not replicating them.

5. Conclusions
The paper argues that near data security has the potential toshel-
ter the processor from the high bandwidth requirements of fea-
tures like memory authentication. The near data processor will
need logic to perform memory controller duties, perform BMT
authentication operations, and authenticate itself and the code it
runs. A first-order analysis on an example server configuration
points at a 4.5× reduction in memory authentication bandwidth
overheads. This motivates a more detailed analysis of the pro-
posed approach.

References
[1] “Load-Reduced DIMMs,” http://www.micron.com/products/dram-

modules/lrdimm.
[2] R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sassatelli, and

P. Guillemin, “TEC-Tree: A Low-Cost, Parallelizable Tree for Efficient
Defense Against Memory Replay Attacks,” inProceedings of Crypto-
graphic Hardware and Embedded Systems, 2007.

[3] R. Elbaz, D. C. C. Gebotys, R. Lee, N. Potlapally, and L. Torres, “Hard-
ware Mechanisms for Memory Authentication: A Survey of Existing Tech-
niques and Engines,” inTransactions on Computational Science IV, 2009.

[4] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches
and Merkle Trees for Efficient Memory Authentication,” inProceedings of
Ninth International Symposium on High Performance Computer Architec-
ture, 2003.

[5] B. Gassend, G. E. Suh, D. E. Clarke, M. van Dijk, and S. Devadas, “Caches
and Hash Trees for Efficient Memory Integrity Verification,”in Proceed-
ings of the Ninth International Symposium on High-Performance Com-
puter Architecture (HPCA’03), Anaheim, California, USA, February 8-12,
2003, 2003.

[6] E. Hall and C. S. Jutla, “Parallelizable AuthenticationTrees,” inSAC’05
Proceedings of the 12th international conference on Selected Areas in
Cryptography, 2006.

[7] HP, “Configuring and using DDR3 memory in HP ProLiant Gen8Servers.”
[8] Intel, “Intel Software Guard Extensions Programming Reference,”

software.intel.com/sites/default/files/329298-001.pdf , 2013.
[9] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access Pattern Disclosure on

Searchable Encryption: Ramification, Attack, and Mitigation,” in Proceed-
ings of NDSS, 2012.

[10] T. Kgil, L. Falk, and T. Mudge, “ChipLock: Support for Secure Microar-
chitectures,”SIGARCH Comput. Archit. News, 2005.

[11] R. C. Merkle, “Protocols for Public Key Cryptosystems,” Security and Pri-
vacy, IEEE Symposium on, 1980.

[12] B. Rogers, S. Chhabra, Y. Sohilin, and M. Prvulovic, “Using Address In-
dependent Seed Encryption and Bonsai Merkle Trees to Make Secure Pro-
cessors OS- and Performance-Friendly,” inProceedings of MICRO, 2007.

[13] W. Shi, H. hsin S. Lee, M. Ghosh, C. Lu, and A. Boldyreva, “High Ef-
ficiency Counter Mode Security Architecture via Predictionand Precom-
putation,” in Proceedings of 32nd Intl. Symp. on Computer Architecture,
2005.

[14] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas, “Efficient
Memory Integrity Verification and Encryption for Secure Processors,” in
Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003.

[15] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS:
Architecture for Tamper-evident and Tamper-resistant Processing,” inPro-
ceedings of the 17th Annual International Conference on Supercomputing,
2003.

[16] G. E. Suh and S. Devadas, “Design and Implementation of the AEGIS
Single-Chip Secure Processor using Physical Random Functions,” in Pro-
ceedings of ISCA, 2005.

[17] G. E. Suh, C. W. O’Donnell, and S. Devadas, “AEGIS: A Single-chip Se-
cure Processor, PhD Thesis, Massachusetts Institute of Technology,” 2005.

[18] C. Yan, B. Rogers, D. Englender, Y. Solihin, and M. Prvulovic, “Improv-
ing Cost, Performance, and Security of Memory Encryption and Authenti-
cation,” inProceedings of ISCA, 2006.

3

software.intel.com/sites/default/files/329298-001.pdf

	Introduction
	Background
	Physical Attacks
	Integrity Trees for Memory Authentication
	Tree Authentication
	Tree Update
	Bonsai Merkle Tree

	Designing a Secure-DIMM
	Expected Benefit
	Conclusions

