
DESIGNING EFFICIENT MEMORY SCHEDULERS

FOR FUTURE SYSTEMS

by

Niladrish Chatterjee

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

December 2013

Copyright c© Niladrish Chatterjee 2013

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Niladrish Chatterjee

has been approved by the following supervisory committee members:

Rajeev Balasubramonian , Chair 30-Sept-2013

Date Approved

Alan Davis , Member 30-Sept-2013

Date Approved

Erik Brunvand , Member 30-Sept-2013

Date Approved

Nuwan Jayasena , Member 30-Sept-2013

Date Approved

Naveen Muralimanohar , Member 20-Oct-2013

Date Approved

and by Alan Davis , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

The internet-based information infrastructure that has powered the growth of

modern personal/mobile computing is composed of powerful, warehouse-scale com-

puters or datacenters. These heavily subscribed datacenters perform data-processing

jobs under intense quality of service guarantees. Further, high-performance compute

platforms are being used to model and analyze increasingly complex scientific prob-

lems and natural phenomena. To ensure that the high-performance needs of these

machines are met, it is necessary to increase the efficiency of the memory system that

supplies data to the processing cores. Many of the microarchitectural innovations

that were designed to scale the memory wall (e.g., out-of-order instruction execution,

on-chip caches) are being rendered less effective due to several emerging trends (e.g.,

increased emphasis on energy consumption, limited access locality). This motivates

the optimization of the main memory system itself. The key to an efficient main

memory system is the memory controller. In particular, the scheduling algorithm in

the memory controller greatly influences its performance. This dissertation explores

this hypothesis in several contexts. It develops tools to better understand memory

scheduling and develops scheduling innovations for CPUs and GPUs. We propose

novel memory scheduling techniques that are strongly aware of the access patterns

of the clients as well as the microarchitecture of the memory device. Based on these,

we present (i) a Dynamic Random Access Memory (DRAM) chip microarchitecture

optimized for reducing write-induced slowdown, (ii) a memory scheduling algorithm

that exploits these features, (iii) several memory scheduling algorithms to reduce the

memory-related stall experienced by irregular General Purpose Graphics Processing

Unit (GPGPU) applications, and (iv) the Utah Simulated Memory Module (USIMM),

a detailed, validated simulator for DRAM main memory that we use for analyzing

and proposing scheduler algorithms.

To My Parents, Wife, and the Taxpayers Who Subsidized My University Education

CONTENTS

ABSTRACT . iii

LIST OF TABLES . ix

ACKNOWLEDGEMENTS . x

CHAPTERS

1. INTRODUCTION . 1

1.1 Emerging Trends . 1
1.1.1 Energy Constraints Forcing Simpler Cores 1
1.1.2 Performance Demands of the Future . 2
1.1.3 DRAM Core Speeds . 3
1.1.4 Emerging Application Trends . 3

1.2 Dissertation Overview . 3
1.2.1 Thesis Statement . 5
1.2.2 Write-Aware Main Memory . 5
1.2.3 Warp-Aware Main Memory . 6
1.2.4 Utah Simulated Memory Module . 7

2. BACKGROUND . 8

2.1 Memory System Basics . 8
2.1.1 DRAM System Organization . 8
2.1.2 Memory Controller . 10

2.1.2.1 Address Translation . 11
2.1.2.2 Memory Scheduling . 11
2.1.2.3 Error Management . 11

2.1.3 Main Memory Scheduling . 12
2.1.3.1 Memory Access Protocol . 12
2.1.3.2 Transaction Scheduling . 13
2.1.3.3 Write Scheduling . 14
2.1.3.4 Command Scheduler . 14

2.2 Graphics Processing Unit Basics . 15
2.3 Scheduling Background . 16

2.3.1 First Read First-Come-First-Served (FR-FCFS) 16
2.3.2 Stall-Time Fair Memory-Scheduling (STFM) 16
2.3.3 Parallelism-Aware Batch Scheduling (PARBS) 16
2.3.4 Adaptive per-Thread Least-Attained-Service

Memory Scheduling (ATLAS) . 17
2.3.5 Thread-Cluster Memory Scheduling (TCM) 17

2.3.6 Scheduling with Processor-Side
Load Criticality Information . 17

2.3.7 Staged Memory Scheduling (SMS) . 18

3. A DRAM SCHEDULER OPTIMIZED FOR WRITES 19

3.1 Impact of DRAM Writes on Reads . 19
3.2 Background and Motivation . 21

3.2.1 Main Memory Background . 21
3.2.2 Simulation Methodology . 22
3.2.3 Motivational Results . 25

3.3 Staged Reads . 26
3.3.1 Proposed Memory Access Pipeline . 26

3.3.1.1 Baseline Scheduling . 26
3.3.1.2 Optimization Opportunity . 27
3.3.1.3 Timing with Staged Reads . 28

3.3.2 Staged Read Implementation . 28
3.3.2.1 Area Overhead . 30
3.3.2.2 Effect on Regular Reads . 31
3.3.2.3 New Memory Commands . 31
3.3.2.4 Implementability . 31
3.3.2.5 Targeting Niche Markets . 32

3.3.3 Exploiting Staged Reads—Memory Scheduler 32
3.4 Evaluation . 33

3.4.1 Results . 33
3.4.2 Sensitivity Analysis . 39

3.4.2.1 Write Queue Parameters . 39
3.4.2.2 More Banks . 42

3.4.3 Projecting for Future Main Memory Trends 43
3.4.3.1 Higher Write Traffic . 43
3.4.3.2 Phase Change Memory (PCM) . 44
3.4.3.3 Number of Channels . 45

3.5 Conclusions . 45

4. A DRAM SCHEDULER OPTIMIZED FOR GPUS 47

4.1 Introduction . 47
4.2 Background . 49

4.2.1 GPU Cores . 49
4.2.2 Memory System . 50
4.2.3 Baseline Memory Controller Organization 51

4.2.3.1 Address Mapping . 51
4.2.3.2 Baseline Scheduling Policy . 52

4.3 Warp-Aware Memory Schedulers . 53
4.3.1 Warp-Aware Memory Controller Organization 54
4.3.2 Warp-Aware FCFS (WAFCFS) . 54
4.3.3 Bank-Aware Shortest Job First (BASJF) 56

4.3.3.1 Scoring System . 56
4.3.3.2 BASJF Transaction Scheduling Policy 57

4.3.4 Scheduling for Multiple Memory Controllers 58

vi

4.3.5 Improving the Performance of BASJF+AB 59
4.3.5.1 Estimating MERB . 60

4.3.6 Warp-Aware Write Draining (WAWD) . 61
4.3.7 Hardware Overhead . 62
4.3.8 Summary of Proposed Schemes . 63

4.4 Methodology . 64
4.5 Evaluation . 65

4.5.1 Impact on Type-1 Applications . 65
4.5.1.1 WAFCFS: . 66
4.5.1.2 BASJF: . 67
4.5.1.3 BASJF+AB: . 68
4.5.1.4 MERB: . 69
4.5.1.5 WAWD: . 70

4.5.2 Impact on Type-2 Applications . 71
4.5.3 Comparison with Single-Bank Warp-Aware Scheduling 72

4.6 Related Work . 74
4.6.1 Memory Scheduling . 74
4.6.2 GPU Memory Scheduling . 74
4.6.3 PAR-BS: . 74
4.6.4 ATLAS: . 75
4.6.5 Memory Divergence Mitigation in GPUs 75

4.7 Conclusions . 75

5. USIMM: A SIMULATION FRAMEWORK FOR MAINMEMORY 77

5.1 Simulator Design . 77
5.1.1 High-Level Overview . 77
5.1.2 Code Files . 78
5.1.3 Inputs . 78
5.1.4 Simulation Cycle. 78
5.1.5 Commit . 79
5.1.6 Checking for Readiness . 79
5.1.7 Scheduling . 79
5.1.8 Instruction Completion Times . 80
5.1.9 Advancing the Trace and Trace Format 80
5.1.10 Fetch Constraints and Write Drains . 80
5.1.11 Refresh Handling . 81
5.1.12 Implicit Scheduling Constraints . 81
5.1.13 Address Mapping . 82
5.1.14 Example Schedulers . 82

5.1.14.1 FCFS, scheduler-fcfs.c . 82
5.1.14.2 Credit-Fair, scheduler-creditfair.c . 83
5.1.14.3 Power-Down, scheduler-pwrdn.c . 83
5.1.14.4 Close-Page, scheduler-close.c . 83
5.1.14.5 First-Ready-Round-Robin, scheduler-frrr.c 83
5.1.14.6 MLP-aware, scheduler-mlp.c . 84

5.2 DRAM Timing Model . 84
5.2.1 Memory Commands. 84
5.2.2 Timing Parameters . 85

vii

5.3 DRAM Power Model . 88
5.3.1 Memory Organizations . 88
5.3.2 Power Equations . 88
5.3.3 System Power Model . 91

5.4 Using USIMM . 91
5.5 Validation Against Micron DDR3 Verilog Models 92
5.6 Alternative Software Architecture . 95
5.7 Integrating USIMM with a Full-System Simulator 96

6. CONCLUSION AND FUTURE WORK . 101

6.1 Contributions . 101
6.2 Future Work . 104

6.2.1 Scheduling for Heterogeneous Platforms 104
6.2.2 Scheduling for HMCs . 104
6.2.3 Scheduling for Mobile Devices . 105

REFERENCES . 106

viii

LIST OF TABLES

3.1 Simulator parameters. 23

3.2 Timing parameters. 24

4.1 Simulation Parameters. 64

4.2 Workloads . 66

5.1 DRAM timing parameters for default memory system configuration. . . 86

5.2 Command timing restrictions . 87

5.3 Different memory configurations in our power model. 89

5.4 Voltage and current parameters of modeled chips. 90

5.5 System configurations used for the JWAC MSC. 93

5.6 USIMM workloads . 94

5.7 Fudge values . 99

ACKNOWLEDGEMENTS

A PhD is the culmination of frantic efforts over a long period of time. At times

during these five years, things looked great; ideas were forming in dreams and in the

shower, experiments were producing good results, bugs were fixing themselves, and

papers were waltzing into conferences. But interspersed with these rosy times, there

were times when, to quote Al Davis, the PhD experience felt like “setting your hair

on fire for five years.” Times like these are what make up the real PhD experience. I

am extremely thankful for having people around me who reminded me, during these

times, that there is a world outside my cubicle in the Utah Arch lab. My wife Anusua

and my parents managed to find the right balance of sweet cajoling and brisk rebuke

to set me straight whenever I tried to emulate the proverbial headless chicken during

these five years. There is simply no way in which I could have made progress without

their willingness to bear with my erratic behavior with unshakeable good demeanor.

Having a good PhD advisor might be the single-biggest factor in determining the

quality and success of a graduate career. I had the best. Rajeev’s technical acumen is

known very well in academic circles. But more importantly, his quick sense of humor,

calmness, balance in life, and innate humility have had the biggest effects on me, and

I hope to emulate these aspects of his personality throughout my career as well.

My committee members have also had a big impact on the quality and scope of my

work. I am thankful for the advice I received from Al and Erik that comes from their

years of experience in dealing with complex problems and problematic grad students.

Nuwan gave me the chance to intern for AMD Research, where I learned a great

deal from him and made friends I would not have made otherwise. I would also like

to take this opportunity to thank Mike O’Connor and Gabriel Loh at AMD, whose

technical insight helped me to formulate a lot of the ideas in this thesis. Naveen was

a senior PhD student in the Utah Arch lab when I joined, a mentor to me during

my internship at HP Labs under Norm Jouppi, and finally became my committee

member. He has provided invaluable advice on my research, on my course selection,

on my job search, and on restaurants in the Bay Area.

My labmates from the Utah Arch labaratory are an “interesting” bunch, to put it

mildly. Kshitij, Manu, Ani, Dave, Seth, Manju, Ali, Danny, and Aasheesh have been

collaborators at work and partners in crime—catch me sometime to hear about some

of the literally insane experiences we have shared together. My friends in Salt Lake

City, Arijit, Protonu, Saurav, Meghana, Piyush, and Avishek increased my quality of

life immensely and made it possible to enjoy the incredible landscape of this scenic

state. My good friend Syamantak Das was the first to motivate me to get into a

graduate program and a great pillar of support over instant-messenger.

Finally I would like to thank Karen and Ann at the School of Computing for their

advice and help in keeping me in line with the plethora of official rules that dictate

the lives of all international students.

xi

CHAPTER 1

INTRODUCTION

1.1 Emerging Trends

Current trends indicate that the computing industry will bifurcate primarily along

the following lines. The first kind of computers will be the relatively simple mobile

devices that act as information consumption terminals. The other kind will be

deployed in large server farms, also called warehouse-scale computers. The mobile

devices are severely constrained by their form-factors and battery-life, and are thus

reliant on a web-based information distribution infrastructure for their operation.

The intensive computing required to provide these mobile devices with data will

be carried out in powerful computers in large datacenters. On the other hand,

scientific and high-performance computing tasks will be carried out on increasingly

powerful machines which support a high degree of parallelism. One of the major

challenges in architecting such powerful systems is the efficient delivery of data to the

compute cores. The main memory system has always been a system bottleneck.

In particular, the memory latency wall has been a well-recognized issue. Many

important innovations in processor microarchitecture, e.g., out-of-order speculative

processing, symmetric multithreading, and branch-prediction, have tried to leverage

instruction-level-parallelism to mitigate the latency wall. On the other hand, multi-

core processors and graphics processing units have looked to leverage thread-level

parallelism to hide memory-induced delays. However, several emerging trends are

threatening to reduce the efficiency of these established techniques, and, consequently,

motivating the optimization of the main memory system itself.

1.1.1 Energy Constraints Forcing Simpler Cores

A large datacenter housing several thousands of servers can consume up to 30 MW

of power [1] and the combined energy consumption of datacenters accounts for about

2

2% of the total energy production in the United States [2]. Processors are the highest

consumers of energy in such systems. The large reorder buffers and other associated

mechanisms that enable out-of-order processing have often been singled out for high

power consumption. This has led to the use of simpler processor cores in servers, such

as Intel’s Atom [3] and more commonly, low-power Advanced RISC Machines (ARM)

cores [4]. Many of these simpler cores offer limited to no support for out-of-order

processing. Since the processors cannot effectively hide the Dynamic Random Accem

Memory (DRAM) latency, performance-optimized main memory becomes a necessity.

1.1.2 Performance Demands of the Future

The performance demand from servers is always on the rise. The most exciting

commercial applications of today are in the field of “big data.” This model of

computation typically requires the mining of useful insight and information from

many thousands of petabytes of data. Thousands of threads mining this data can

be run concurrently on the hardware thanks to the increasing on-chip core counts.

Also, general purpose GPUs (GPGPUs) are being employed increasingly in high-

performance-computing platforms to model complex natural phenomena and also

in commercial compute systems as data-parallel accelerators. The high degree of

thread-parallelism exerts tremendous pressure on the memory bandwidth. DRAM

vendors have responded to this challenge by increasing the DRAM pin frequency.

In spite of this, the aggregate available bandwidth is limited by the pin count on

the processor socket. Compared to the 16X growth that is expected to take place

in transistor count (and probably on-chip core count) over a period of 8 years, pin

counts are estimated to grow by only 1.47X in the same period, according to the

ITRS road-map [5]. With several cores competing for the restricted number of pins,

it is more important than ever to increase the bandwidth utilization and reduce the

high queuing delay encountered by memory requests. The bandwidth utilization

is a function of the DRAM bank utilization which motivates intelligent memory

controllers.

3

1.1.3 DRAM Core Speeds

The DRAM pin bandwidth (i.e., DRAM interface frequency) has increased sig-

nificantly over different DRAM generations; the same cannot be said about the

DRAM core latencies. Fig. 1.1 demonstrates how two of the most important timing

parameters that determine DRAM latency have reduced only slightly over the years.

As a consequence, while the latency for transmitting a set of bits over the DRAM

interface to the processor has reduced (owing to the increasing data-rates shown on

the x-axis of Fig. 1.1), the latency of accessing the DRAM core has not scaled. In

high-traffic scenarios, this increases contention for the DRAM banks (see Chapter 2),

leading to higher overall latency.

1.1.4 Emerging Application Trends

Applications of the future demand high performance and higher reliability. Mod-

ern GPUs allow developers to express the parallelism in their applications through

programming paradigms like CUDA [6] and OpenCL [7]. While GPUs are well-suited

for handling regular, structured code, it is still a large challenge to efficiently support

irregular applications [8]. The GPU core and memory architecture are organized

with expectations of regular compute and access patterns and can lead to significant

performance penalties for irregular applications.

On the other hand, datacenters running business-critical applications require re-

liable memory systems. This has led to the deployment of chipkill-correct memory

systems [9] where the memory system is able to tolerate the failure of a complete

DRAM chip. A direct consequence of the chipkill feature is an increase in the

write-traffic to the memory system. Most DRAM systems are designed to primarily

accelerate reads (as writes are not on the critical path), but inefficient handling of

writes can cause large slowdowns.

1.2 Dissertation Overview

It is clear from the preceding discussion that the memory latency wall continues

to be a major concern. In this dissertation, we look at optimizations to the memory

system that can satisfy the performance demands of future workloads. To accomplish

this, we focus on the memory controller, which constitutes the “smarts” of the main

4

Figure 1.1. DRAM Trends

memory system and is also the most malleable part of the memory system where

changes can be instituted with minimum cost impacts. The impact of memory

scheduling algorithms on overall system throughput and power consumption have

been demonstrated by previous studies [10], [11], [12], [13], [14], [15]. However, very

few studies have looked at the impact of write scheduling on DRAM reads [16], [17].

We find that writes can be a significant bottleneck in current workloads and certainly

in future systems that employ more stringent error checking and in systems that

deploy nonvolatile memory chips. We design a memory architecture to mitigate this

bottleneck. Similarly, memory scheduling techniques for GPU architectures have

focused on improving the memory throughput with little consideration of the impact

of DRAM latency on GPU performance. We show that in Single Instruction Multiple

Thread (SIMT) cores, the memory system needs to be aware of the source of requests

during the scheduling stage and invent mechanisms that provide high performance.

Finally, we develop a detailed memory simulator that helps accelerate similar studies

by the community at large. Our analysis with this simulator helps shed insight on

memory scheduling bottlenecks.

5

1.2.1 Thesis Statement

Main memory performance is a key determinant of system throughput. The

most malleable part of the memory system is the memory controller. The key to

architecting efficient memory for the future lies in the design of intelligent memory

scheduling algorithms that are aware of memory access patterns and the intricacies

of DRAM chip microarchitecture as well as the architectural bottlenecks in the client

cores. This thesis is aimed at developing scheduling strategies and tools to address

these issues.

1.2.2 Write-Aware Main Memory

DRAM bandwidth is a precious system resource, and one of the factors that can

prevent efficient utilization of the DRAM bandwidth is the draining of writes. Given

that reads are on the critical path for CPU progress, reads are prioritized over DRAM

writes by the memory scheduler, but writes have to be drained from the write queue

buffers eventually and the write-drain process delays pending reads. In fact, a single

channel in the main memory system offers almost no parallelism between reads and

writes. This is because a single off-chip memory bus is shared by reads and writes,

and the direction of the bus has to be explicitly turned around when switching from

writes to reads. This is an expensive operation, and its cost is amortized by carrying

out a burst of writes or reads every time the bus direction is switched. As a result,

no reads can be processed while a memory channel is busy servicing writes even if

the reads and writes are being serviced from different banks of the DRAM device.

To alleviate this performance loss, we propose a novel mechanism to boost read-write

parallelism and perform useful components of read operations even when the memory

system is busy performing writes. If some of the banks are busy servicing writes, we

start issuing reads to the other idle banks. The results of these reads are stored in

a few registers near the memory chip’s I/O pads. These results are quickly returned

immediately following the bus turnaround. This reduces the queuing delay of the

reads waiting for the write-queue drain to complete and also frees up banks faster for

future reads. This process is referred to as a Staged Read because it decouples a single

column-read operation into two stages, with the first step being performed in parallel

with writes. This technique works well when there is bank imbalance in the write

6

stream and there are pending reads on the banks that do not have many pending

writes. To exploit this, we designed a write scheduling algorithm that artificially

introduces bank imbalance and allows useful read operations to be performed during

the write-drain. With a marginal chip area overhead (0.25%), we can gain a DRAM

access latency improvement of 17% using staged-reads.

1.2.3 Warp-Aware Main Memory

Graphics Processing Units (GPUs) use the SIMT model of computation where a

group of threads execute the same instruction on different data elements. A group of

threads running in lockstep in such a setup is called a warp (or a wavefront)—with

every thread in the warp executing the same instruction. A load instruction in such

a SIMT system can generate many different memory requests and the warp becomes

ready to run (referred to hereafter as runnable) only when all of the outstanding

memory requests are returned to the compute unit. The compute units are simple

and typically lack the ability to hide the latencies of pending memory requests through

techniques commonly found in out-of-order, speculative, superscalar processors. To

negotiate long memory access times, a GPU’s compute unit uses thread level par-

allelism instead of instruction level parallelism as a CPU would. Thus, when a

warp waits for its memory requests to return from the memory system, the thread

scheduler in the GPU picks a different warp that is ready to run. The memory

requests issued by a warp will typically encounter different memory latencies. In

fact, modern memory controllers schedule incoming requests out-of-order to maximize

memory system throughput, which can stall some requests from a warp for a long time,

thereby hampering the progress of the warp. This introduces the problem of memory

latency divergence where a warp is stalled until the last memory request from a vector

load instruction is returned to the compute unit. Several studies have highlighted how

memory divergence can be a significant performance bottleneck in GPUs [18], [19]. We

observe that the effective DRAM latency for a warp is often lengthened at the main

memory because one or more requests of that warp are returned with longer latencies

than the rest. We propose DRAM scheduling strategies that attempt to reduce

the intrawarp memory latency divergence by eliminating interwarp interference. We

first propose schemes that reduce intrawarp latency divergence in a single controller

7

through a DRAM bank-aware shortest-job-first policy (BASJF, Section 4.3.3). We

then augment it to be implicitly multicontroller aware (BASJF-AB, Section 4.3.4)

by introducing an age bias in the scheduling scheme. We then further optimize

the scheduler to regain the lost bandwidth utilization by carefully orchestrating

the scheduling of row-miss requests (MERB, Section 4.3.5.1). We then couple this

scheduler with a write-drain mechanism that reduces write-induced stall times for

warps (WAWD, Section 4.3.6). The combined techniques reduce the adverse effects

of memory divergence, reduce intrawarp latency variation, and thus improve perfor-

mance by 8.6% on average.

1.2.4 Utah Simulated Memory Module

The Utah Simulated Memory Module (USIMM) was developed as the simulation

framework for the 3rd Journal of Instruction Level Parallelism’ Computer Architec-

ture Competition: the Memory Scheduling Championship [20]. The tool has the

potential to accelerate memory system research by the community. The dissertation

discusses the design of the tool, analyzes its accuracy, and identifies important areas

of focus for memory system research.

CHAPTER 2

BACKGROUND

In this section, we briefly look at the architecture of a modern memory system, the

general features of modern memory schedulers, and the DRAM access characteristics

of a graphics processing unit. This helps provide a background for the subsequent

discussions where we investigate memory scheduling techniques that are aware of the

internal characteristics of memory devices as well as the different access patterns

generated by the clients of the memory system.

2.1 Memory System Basics

2.1.1 DRAM System Organization

A typical, modern main memory system [21] employs JEDEC-style Dual Data

Rate (DDR) SDRAM [22],[23]. Modern processors [24], [25] often integrate a plurality

of memory controllers on the processor dies. Each memory controller is tasked with

managing one or two (independent if two channels) off-chip main memory channels.

Each channel is comprised of a 64-bit data bus and a 17-bit address and command bus.

Multiple Dual Inline Memory Modules (DIMMs) are hosted on each channel. Each

DIMM comprises multiple ranks, each rank being a collection of DRAM devices which

work in unison to return data in response to a memory read request. A rank thus

consists of the smallest number of chips that need to be activated to complete a read or

write operation. Fig. 2.1 shows an example DIMM with 16 total DRAM chips forming

two ranks. Ranks on the same channel share the data and command/address buses,

but different ranks can work in parallel to service different requests. A schematic

of the memory system that highlights its main constituent parts and subdivisions is

shown in Fig. 2.1.

DRAM chips are often characterized by their output pin width. An xN DRAM

chip has N output pins, and N bits of data go in/out of the chip on each clock-tick.

9

Array

1/8th f th… 1/8th of the

row buffer

One word ofOne word of

data output

Rank

DRAM

chip or

deviceBank

DIMM

O hi

Memory bus or channel

On chip

Memory

Controller

Figure 2.1. An example DDRx SDRAM architecture shown with one DIMM, two
ranks, and eight x4 DRAM chips per rank.

In DDR chips, each pin transmits one bit at each edge of the clock signal. For a

64-bit data bus and x8 chips, a rank would require 8 DRAM chips (Fig. 2.1 only

shows 8 x8 chips per rank to simplify the figure). Each DRAM chip is attached

to a subset of the channel’s data pins. When a rank is selected, all DRAM chips

in the rank receive address and command signals from the memory controller on

the corresponding shared buses. The rank selection is done by asserting chip-select

signals, all chips on a rank being connected to the same chip-select signal.

Each rank is partitioned into multiple banks, typically numbering four to sixteen.

Each bank can concurrently be processing a different memory request, although data

transfers from/to the different banks have to be serialized over the shared data bus.

Each bank is spread across the DRAM chips that constitute the rank. The same bank

in each chip is involved in the transfer of a single cache-line request from the memory

controller. Each cache-line is thus striped across the different DRAM chips on a rank

and this allows the whole channel bandwidth to be utilized for the data transfer. In

the example shown in Fig. 2.1, each DRAM chip contributes 1/8th of the data, i.e.,

10

8 bytes for a 64 byte cache-line. With a data bus width of 64 bits and a cache-line

size of 64 bytes, the data transfer requires 8 bursts on the channel.

Each DRAM bank can be logically thought of as comprising of a 2D array of 1T-1C

DRAM cells. Physically, however, each array is split into several subarrays [26], [27]

for managing the latency and current-draw. To access a set of bits, corresponding

to a cache-line from the bank, the appropriate row of DRAM devices has to be first

activated. This results in the data from the cells being read into a set of sense-

amplifiers. These sense-amplifiers comprise the row-buffer of the DRAM bank. To

service a cache-line request, a set of columns are then selected from the row-buffer

and the bits are routed to the DRAM pins over a data bus that is shared by the

different banks of the DRAM device. A row-buffer can retain the bits from the most

recently accessed row, and the row is then considered “open.” If subsequent accesses

are to cache-lines in that open row, then the access is termed a row-buffer hit. If

the requested data are not present in the bank’s row buffer (a row buffer miss), the

currently open row (if one exists) has to first be closed before opening the new row.

Row-buffer hits consume less energy and take less time to complete, thus, memory

architects often take special care to exploit such row-buffer locality.

As an example system, consider a main memory system of 4 GB capacity, or-

ganized on one channel serving a system that has a 64-byte cache-line size. If the

system is comprised of 2Gb, x8 DRAM devices, then each rank will contain 8 DRAM

devices, and there will be 2 such ranks on the channel. Each device has 8 banks, thus

each bank is 256Mb in capacity and is split into 8 arrays. The cells in each bank

will be organized in 65 536 rows and 1024 columns/row in each array. A row access

thus brings down 1024 bits per array into the row-buffer of each chip—and the total

row-buffer size across the 8 devices in the rank is thus 8 KB. This is often referred to

as the page size of the DRAM system. Each cache-line access will require 64 bytes to

be returned from these 8192 bytes.

2.1.2 Memory Controller

The memory-controller constitutes the “smarts” of the memory system and has

the following main functions.

11

2.1.2.1 Address Translation

The physical address of a cache-line is converted into channel, rank, bank, row,

and column addresses. Intelligent address translation can impact the performance

and energy of the memory system. For example, parallelism is boosted by allowing

consecutive cache-lines to be fetched from different channels, ranks, and/or banks. On

the other hand, to exploit spatial locality and obtain higher row-hit rates, consecutive

cache-lines may be placed in the same row of the same bank. Common address map-

ping techniques try to strike a balance between these approaches by mapping a group

of consecutive cache-lines to the same row, and consecutive such groups are interleaved

across channels, ranks, and banks. Several papers have investigated the impact of

address mapping and proposed techniques for higher performance [28], [29], [30].

2.1.2.2 Memory Scheduling

This is arguably the most important function of the memory controller. The

order in which memory requests are scheduled for service has a large impact on the

performance and power consumption of the system. The memory controller has to

balance several system-level considerations (e.g., thread priorities and read-write in-

tensity) with the timing constraints associated with the DRAM devices while making

scheduling decisions. We talk about this aspect in more detail in Section 2.1.3.

2.1.2.3 Error Management

The memory controller is also responsible for typically providing SECDED (Single

Error Correct Double Error Detect) error protection to data being read from the

DRAM. For this, a 9th DRAM chip on a rank (consisting of eight x8 DRAM chips)

is used to store parity information. The parity is read with the data and the memory

controller does the necessary computation to detect and correct errors. In addition,

in some critical scenarios, the DRAM systems are said to be chipkill-correct; that is,

they can recover from the failure of a single DRAM chip on the rank in the worst

case. The techniques for mitigating such errors are more involved [27] and require

careful data placement and some computation from the memory controllers.

12

2.1.3 Main Memory Scheduling

The memory-controller’s most important function is memory scheduling and a

significant portion of the chip area is devoted towards the scheduling functionalities.

Before we discuss the different memory scheduling techniques in some detail, it is

beneficial to look at the basic DRAM access protocol (i.e. the sequence of DRAM

commands that need to be issued to retrieve or write data to the DRAM devices.)

2.1.3.1 Memory Access Protocol

The ranks of memory devices are connected to the on-chip memory-controller

via a 64-bit data bus and a narrower bus that transports commands and addresses

to the ranks from the memory-controller. To read data from the DRAM system,

the controller issues a column-read (COL RD) command along with the appropriate

bank and column addresses on the command/address bus. After a delay, the DRAM

responds with the data on the data bus. If the data are not present in the open

row-buffer of the bank, the controller needs to issue a precharge(PRE) command to

set the bank’s bitlines to an intermediate voltage value. This prepares the bank to

receive an activate (ACT) command that brings a new row into the row-buffer. Writes

are performed in the same way as reads, with the COL WR command preparing the

row-buffer to accept data from the data bus, which is then overdriven into the DRAM

arrays. Each of these commands can be issued only after certain timing constraints

are met, and the memory-controller is responsible for meeting these constraints before

issuing each command [21]. For example, in response to the ACT command, the data

are sensed and stored in the row-buffer and thereafter it is restored back in the DRAM

arrays (DRAM-cell reads are destructive in nature). A COL RD command can be

issued only at the end of the sensing period, and thus the minimum gap between an

ACT command and a COL RD command to the same bank is the row-to-column-

delay, tRCD. Similarly, a PRE command can be issued only after the completion of the

restoration of the row to the arrays, and the minimum gap between the ACT and PRE

command is given by the tRAS timing constraint. In addition, if there are multiple

COL RD commands to the same row that can effectively hide the tRAS delay, care has

to be taken that the last COL RD is separated from the subsequent PRE command

by at least the read-to-precharge time or tRTP timing constraint. These three are

13

just a subset of the timing constraints that the memory controller needs to be aware

of. A command can be issued when multiple of these, possibly overlapping, timing

constraints are met. A full discussion of these constraints is beyond the scope of

this thesis, but the DRAM datasheets [31], [32] from manufacturers provide complete

descriptions of the timing restrictions. In Chapter 5, we provide a more detailed

account of the timing constraints and how they are modeled in our simulator.

2.1.3.2 Transaction Scheduling

Broadly, the scheduling task of the memory-controller can be split into transaction

scheduling and command scheduling. The transaction scheduler picks a pending

read or write command from the transaction queues, splits it into a series of DRAM

commands (i.e. PRE + ACT + COL RD for a row-miss and COL RD for a row-hit),

and enqueues the commands in the appropriate bank-level command queues. The

transaction scheduler can pick requests out-of-order. Many studies have shown the

importance of memory scheduling in determining the performance and power of the

overall system [10], [12], [14], [33], [34]. Modern memory controllers process the

incoming memory read requests out-of-order to extract high performance from the

DRAM system. The most common optimization is the prioritization of row-hit

requests through the First-Ready First-Come-First-Served (FR-FCFS) scheduling

policy. Under this policy, the memory controller first schedules all row-hit requests

(i.e., the requests that require only a COL RD command to complete) before ser-

vicing row-miss requests. This yields lower DRAM latencies, higher data-bandwidth

utilization, and lower power dissipation—leading to the popularity of this scheduling

policy. This scheduling policy can be combined with either an open-row or closed-row

page-management policy. In the open-row policy, the last accessed row is kept open in

the row-buffer even when the DRAM request queue is empty in anticipation of row-hit

requests that might arrive in the near future. This works well in applications with

high spatial locality. The closed-row policy, however, precharges the bank as soon as

the last request that hits in the row-buffer has been serviced. This removes the cost

of a precharge from the critical path of a row-miss request and has been proposed for

systems where many unrelated threads constantly conflict at the memory controller.

Over the past few years, interest in memory scheduler design has seen many different

14

scheduling algorithms being proposed. A significant majority of these deal with

obtaining fairness and high performance when different threads in the system have

different memory access characteristics [10], [11], [15], while some others have focused

on allowing different memory controllers to coordinate their scheduling decisions

for higher throughput [13]. Section 2.3 documents the major different scheduling

strategies that have been used in processors or proposed in literature.

2.1.3.3 Write Scheduling

Besides scheduling read requests, the memory controller also has to handle incom-

ing write requests to the DRAM. Most modern CPUs employ a write-back policy in

their Last Level Caches (LLC). Consequently, writes to DRAM are the result of the

eviction of dirty cache-lines from the LLC, and as such, they are not on the critical

path for program execution. The writes are typically buffered in a write queue and

are serviced when there are not performance-critical DRAM reads to service or when

the write-queue nears full occupancy. When writes are being done to a bank, a

different bank may service a read. However, every switch from a write to a read on

the data bus of a chip requires a bus-turnaround penalty (tWTR) which reduces the

bus utilization efficiency. To amortize the cost of this turnaround, writes are drained

in batches. Writes are buffered until the write-queue reaches a high water mark, and

the writes are drained till the queue occupancy is lowered to a low water mark. The

bus is then turned around and reads are serviced [16], [35].

2.1.3.4 Command Scheduler

The part of the memory-controller that deals with issuing the DRAM commands

(e.g., ACT, PRE, COL RD, COL WR) does so by ensuring the different timing

constraints are met. The command scheduler scans the bank-level command-queues

and picks a command that can be sent out on the address/command channel that

cycle. The command scheduler typically will not reorder requests in a queue, but it

interleaves requests from different ranks and banks to ensure high parallelism. The

command scheduler is also responsible for scheduling periodic refresh commands. The

refresh commands are needed for maintaining the data in the volatile memory cells.

15

The device specifies the maximum time that a cell can retain data (typically 64ms)

and as a result, all the cells need to be refreshed before this time elapses.

2.2 Graphics Processing Unit Basics

Graphics Processing Units (GPUs) have emerged as an efficient alternative to

traditional scalar processors for a large class of data parallel workloads. High-level

programming models such as NVIDIA’s CUDA [6] and OpenCL [7] allow the program-

mer to define the behavior of a single scalar thread, which is then replicated to run

many threads on Single Instruction Multiple Data (SIMD) execution units (also called

compute units). A group of threads running in lockstep in such a setup is called a warp

(or a wavefront), with every thread in the warp executing the same instruction. A load

instruction in such a SIMT (Single Instruction Multiple Thread) system can generate

many different memory requests, and the warp becomes ready to run (referred to

hereafter as runnable) only when all of the outstanding memory requests are returned

to the compute unit. The compute units are simple and typically lack the ability to

hide the latencies of pending memory requests through techniques commonly found in

out-of-order, speculative, and/or superscalar processors. To negotiate long memory

access times, a GPU’s compute unit uses thread level parallelism instead of instruction

level parallelism as a CPU would. Thus, when a warp waits for its memory requests

to return from the memory system, the thread scheduler in the GPU picks a different

warp which is ready to run.

The DRAM system in GPUs is designed for very high bandwidth. The DRAM

channel is run at a frequency of 3GHz, the DRAM chips (GDDR5) are heavily

banked and allow multiple memory requests to proceed in parallel. To maximize

throughput, the memory scheduler aggressively reorders requests to achieve very

high row-hit rates. With traditional graphics workloads displaying significant spatial

locality, such a technique is particularly well-suited for high-performance. However,

many applications with irregular access patterns are now being re-architected to take

advantage of the massive parallelism in GPUs, and their memory access behavior

is not always suited for the high-throughput scheduling policies employed in GPUs.

For example, in the recent past, a number of algorithms that use graphs as the

primary data structure have been ported to OpenCL/CUDA [36], [37]. In addition,

16

server workloads such as memcached [8] have also been implemented for execution

on GPUs. These workloads often demonstrate lower locality than conventional GPU

compute workloads and as a result are not handled very efficiently by the memory

system.

2.3 Scheduling Background

In this section, we briefly review the state-of-the-art in memory scheduling.

2.3.1 First Read First-Come-First-Served (FR-FCFS)

Proposed by Rixner et al. [12], this is the most popular memory scheduling

algorithm that has been explored in detail in academia and also implemented in

almost all commercial memory schedulers today. The basic idea of this scheduler is

to allow requests that require less time to be serviced, by virtue of being a row-hit, to

preempt older row-miss requests. Evidently, this has higher performance and better

energy characteristics than a first-come first-served (FCFS) policy.

2.3.2 Stall-Time Fair Memory-Scheduling (STFM)

Proposed by Mutlu et al., STFM [10] introduces the concept of a fair memory

system, one in which the memory-related slowdown experienced by each thread due to

interference from other threads is minimized, without hurting the overall performance.

The scheduler determines the memory stall-time for a thread when it runs alone

(T alone) and when it runs in conjunction with other threads (T shared). The

scheduler calculates the memory slowdown of every thread. When the ratio of the

maximum and minimum slowdown of threads in the system breaches a threshold, the

scheduler prioritizes the threads with high slowdowns. Otherwise it uses FR-FCFS

for regular scheduling.

2.3.3 Parallelism-Aware Batch Scheduling (PARBS)

Proposed by Moscibroda et al. [34], this scheme tries to maintain the fairness and

quality-of-service notions introduced in STFM and, in addition, aims at improving

the system throughput. The scheduler first forms batches of requests by grouping

consecutive outstanding requests in the memory request buffers and services all re-

quests in a batch before moving over to the next batch. By grouping requests into

17

batches, the scheme avoids starvation of threads at a very fine granularity and ensures

steady and fair progress across all threads. Within a batch, row-hits are prioritized

over row-misses and threads with few requests or those that display high-bank-level

parallelism are prioritized over others to minimize the service time of a batch.

2.3.4 Adaptive per-Thread Least-Attained-Service

Memory Scheduling (ATLAS)

Proposed by Kim et al. [13], ATLAS is a scheme that allows multiple memory-

controllers to coordinate their scheduling decisions to improve throughput. Execution

time is split into long epochs. During each epoch, the memory-controllers keep track of

the level of service received by each thread from the memory system. At the beginning

of the next epoch, this information is accumulated at a central coordinator, which

increases the priorities of the threads that received the least service in the previous

epoch. This information is propagated to the memory-controllers and thereafter, the

selected threads are prioritized.

2.3.5 Thread-Cluster Memory Scheduling (TCM)

Proposed by Kim et al. [14], TCM argues that techniques such as STFM, PAR-BS,

and ATLAS are unable to provide adequate fairness and high throughput because they

use the same policy for all threads. In contrast, TCM uses the memory behavior of the

thread to decide its priority. First, it prioritizes requests from non-memory-intensive

threads over memory-intensive ones during memory scheduling. After making the

observation that unfairness in memory scheduling techniques stems from interference

among memory-intensive threads, TCM periodically shuffles the priority order among

such threads to increase fairness. However, not all threads get to enjoy all priority lev-

els; instead, threads with higher bank-level parallelism are prioritized over streaming

threads that have high row-buffer locality.

2.3.6 Scheduling with Processor-Side

Load Criticality Information

In this scheme proposed by Ghose et al. [38], a load that has a large number

of consumer instructions and/or has a history of reaching the head of the reorder-

buffer (ROB) long before the data for the load arrives at the processor are deemed

18

high priority. This information is propagated to the memory controller to aid the

memory-controller in prioritizing such critical loads. The same study was performed

by Prieto et al. [39] where the authors reported maximum improvement for a scheme

that uses the position of the load in the ROB as a metric for criticality.

2.3.7 Staged Memory Scheduling (SMS)

As a consequence of the integration of GPUs and CPUs on a chip, memory

controllers in modern systems have to manage the memory traffic from both the CPU

and GPU. CPUs are typically latency-sensitive and GPUs are bandwidth limited. To

enable the memory controller to balance the different needs of these clients, the SMS

scheme was proposed by Ausavarungnirun et al. [15]. SMS uses the same principles as

PAR-BS and TCM. First batches of row-hit requests are formed from each client. A

batch scheduler prioritizes batches of requests based on the shortest-job-first policy.

Thus, requests from the CPU are prioritized by default while those from the GPU

are generally deprioritized.

CHAPTER 3

A DRAM SCHEDULER OPTIMIZED FOR

WRITES

3.1 Impact of DRAM Writes on Reads

Main memory latencies have always been a major performance bottleneck for

high-end systems. This bottleneck is expected to grow in the future as more cores

on a chip must be fed with data. Already, many studies [10], [40] have shown

the large contribution of queuing delays to overall memory latency. A number of

studies have focused on memory scheduling and have tried to optimize throughput

and fairness [10], [14], [34], [40], [41]. However, only a few optimizations have targeted

writes; for example, the Eager Writeback optimization [17] tries to scatter writes so

that write activity does not coincide with read activity, and the Virtual Write Queue

optimization [16] combines memory scheduling and cache replacement policies to

create a long burst of writes with high row buffer hit rates.

Generally, read operations are given higher priority than writes. When the mem-

ory system is servicing reads, the DIMMs drive the off-chip data bus and data are

propagated from the DIMMs to the processor. Since writes are not on the critical path

for program execution, they are buffered at the processor’s memory controller. When

the write buffer is nearly full (reaches a high water mark), writes have to be drained.

The data bus is turned around so that the processor is now the data bus driver and

data are propagated from the processor to the DIMMs. This bus turnaround delay

(tWTR) has been of the order of 7.5 ns for multiple DDR generations [16], [21], [42].

Frequent bus turnarounds add turnaround latency and cause bus underutilization,

which eventually impacts queuing delay. Therefore, to amortize the cost of bus

turnaround, a number of writes are drained in a single batch until a low water mark is

reached. During this time, reads have no option but to wait at the memory controller;

the unidirectional nature of the bus prevents reads from opportunistically reading data

20

out of idle banks. Thus, modern main memory systems offer nearly zero read-write

parallelism within a single channel.

In this chapter, we look at an optimization that allows reads to perform oppor-

tunistic prefetches while writes are being serviced. This is not a form of speculation;

the read operation is simply being decoupled into two stages and the stage that does

not require the data bus is being performed in tandem with writes. We refer to

this optimization as a Staged Read. The two stages are coupled via registers near the

memory chip’s I/O pads that store the prefetched cache line. This not only minimizes

the latency for the more critical second stage (the second stage does not incur delay for

memory chip global wire traversal) but is also less disruptive to memory chip design.

Prior work [43] has identified the I/O pad area as being most amenable to change,

and that area already accommodates some registers that help with scheduling.

With the proposed optimization, while writes are being serviced at a few banks,

other banks can perform the first stage of read operations. As many prefetches can

be performed as the prefetch registers provided at the I/O pads. After the bus is

turned around to service reads, these prefetched results are quickly returned in the

subsequent cycles without any idling. The Staged Read optimization is most effective

when only a few banks are busy performing writes. We therefore modify the write

scheduling algorithm to force bank imbalance and create opportunities for Staged

Reads. This ensures that the memory system is doing useful read work even when it

is busy handling writes.

Such read-write parallelism becomes even more important in future write-constrained

systems when (i) writes are more frequent in chipkill systems [27], [44], (ii) writes take

longer (because of new NVM cells [45], [46]), and (iii) turnaround delays are more

significant [16]. Our results show an average improvement of 7% in throughput for

our baseline modern system (along with an average DRAM access latency reduction

of 17%) and this improvement can grow to 12% in future systems. Applications

that are write-intensive (about half of the simulated benchmarks suite) show an 11%

improvement in throughput with our innovation.

21

3.2 Background and Motivation

3.2.1 Main Memory Background

The main memory system is composed of multiple channels (buses), each having

one or more DIMMs. For most of this study, we will assume that the DIMMs contain

multiple DRAM chips, although the proposed design will apply for other memory

technologies as well. When servicing a cache line request, a number of DRAM chips in

a rank work in unison. Each rank is itself partitioned into multiple banks, each capable

of servicing requests in parallel. Ranks and banks enable memory-level parallelism,

although each data transfer is eventually serialized on the memory bus. The most

recently accessed row of a bank can be retained in a row buffer, which is simply a

row of sense-amps associated with each array. The row is then considered “open.” If

subsequent accesses deal with cache lines in an open row (a row buffer hit), they can

be serviced sooner and more efficiently.

A memory chip is organized into many banks; each bank is organized into many

arrays. The I/O pads for a chip are placed centrally on a memory chip [43]. From

here, requests and data are propagated via tree-like interconnects to individual arrays

involved in an access. To maximize density, the arrays have a very regular layout

and are sized to be large. When a read request is issued, the bitlines for the

corresponding row must be first PRECHARGED (if they have not already been

previously precharged). An ACTIVATE command is then issued to read the contents

of a row into the row buffer. There is significant overfetch in this stage: to service a

single 64 byte cache line request, about 8 KB of data are read into a row buffer. It is

prohibitively expensive to ship this overfetched data on global wires, so the row buffer

is associated with the arrays themselves. Finally, a column-select or CAS command

is issued that selects a particular cache line from the row buffer and communicates

it via global wires to the I/O pads. In the subsequent cycles, the cache line is

transmitted to the processor over the off-chip memory bus. Each of these three major

components (PRECHARGE, ACTIVATE, CAS) take up roughly equal amounts of

time, approximately 13 ns each in modern DDR3 systems [47], and the data transfer

takes about 10 ns.

The memory scheduler has to consider resource availability and several timing

constraints when issuing commands. Generally, the memory scheduler prioritizes

22

reads over writes, accesses to open rows, and older requests over younger ones. DRAM

writes are generated as a result of write-back operations from the LLC. Since writes

are not on the processor’s critical path, the memory-controller is not required to

complete the write operation immediately and buffers the data in a write queue. One

of the many timing constraints is the write turnaround delay (tWTR) that is incurred

every time the bus changes direction when switching from a write to a read. Writes

and reads are generally issued in bursts to amortize this delay overhead. Writes are

buffered until the write queue reaches a high water mark (or there are no pending

reads); the bus is then turned around and writes are drained until a low water mark

is reached.

3.2.2 Simulation Methodology

We use the Wind River Simics [48] simulation platform for our study. Table 3.1

details the salient features of the simulated processor and memory hierarchy. We

model an out-of-order processor using Simics’ ooo-micro-arch module and use a

heavily modified trans-staller module for the DRAM/PCM simulator. The DRAM

simulator closely follows the model described by Gries in [47] and shares features with

the DRAMSim framework [49].

In this work, we model a modest multicore (16 core) system with two channels

to limit simulation time. The memory controller models a First-Ready-First-Come-

First-Served (FR-FCFS) scheduling policy and models the timing parameters de-

scribed in Table 3.2. The interplay of these timing parameters is crucial for evaluating

DRAM bank management as maintaining the restrictions imposed by the parameters

will significantly impact bank usage [21]. The parameters tRAS, tRRD, and tFAW

are essential because they impose restrictions on how frequently accesses can be made

to the same bank (or same rank) if the accesses are not row hits. In our simulator,

our bank usage model adheres to these constraints.

The DRAM device model and timing parameters were derived from [21], [47].

We model multiple ranks per memory channel, each rank has several banks (each

with its own row-buffer). The data and address bus models are accurately designed

to simulate contention and bus turnaround delays. The DRAM pipeline model is

equipped to handle both reads and writes. In the baseline model, writes are enqueued

23

in the write queue on arrival and the write queue gets drained by a specific amount

upon reaching a high water mark. The simulator’s command scheduling mechanism

can overlap commands to different banks (and ranks) to take maximum advantage of

the bank level parallelism in the access stream.

DRAM address mapping parameters for our platform (i.e., number of rows /

columns / banks) were adopted from the Micron data sheet [47] and the open row

address mapping policy from [21] is used in the baseline. We use this address mapping

scheme because this results in the best performing baseline on average when compared

to other commonly used address interleaving schemes [21], [49].

Our techniques are evaluated with full system simulation of a wide array of

memory-intensive benchmarks. We use multithreaded workloads (each core running

1 thread) from the PARSEC [50] (canneal, fluidanimate), OpenMP NAS Parallel

Table 3.1. Simulator parameters.

Processor

ISA UltraSPARC III ISA
CMP size and Core Freq. 16-core, 3.2 GHz

Re-Order-Buffer 64 entry
Fetch, Dispatch, Maximum

Execute, and Retire 4 per cycle

Cache Hierarchy

L1 I-cache 32KB/2-way, private, 1-cycle
L1 D-cache 32KB/2-way, private, 1-cycle
L2 Cache 4MB/64B/8-way, shared, 10-cycle

Coherence Protocol Snooping MESI

DRAM Parameters

DRAM MT41J128M8 DDR3-800 [47],
Device Parameters 8 banks/device

16384 rows/bank, x8 part
2 64-bit Channels

DRAM 1 DIMM/Channel
Configuration (unbuffered, non-ECC)

2 Ranks/DIMM, 8 devices/Rank
Row-Buffer Size 8KB per bank

Active row-buffers per DIMM 8
Total DRAM Capacity 4 GB
DRAM Bus Frequency 1600MHz
DRAM Read Queue 48 entries per channel

DRAM Write Queue Size 48 entries per channel
High/Low Watermarks 32/16

24

Benchmark [51] (cg, is, ep, lu, mg, sp), and SPECJVM [52] (lu.large, sor.large,

sparse.large, derby) suites along with the STREAM [53] benchmark. We also run

multiprogrammed workloads from the SPEC CPU 2006 suite (bzip2, dealII, gromacs,

gobmk, hmmer, leslie3d, libquantum, omnetpp, perlbench, soplex, xalancbmk). We

selected applications from these benchmark suites that exhibited last level cache

MPKI greater than 2 and could work with a total 4 GB of main memory. Each of

these single threaded workloads are run on a single core, so essentially each workload is

comprised of 16 copies of the benchmark running on 16 cores. We also run a workload

designated as specmix which consists of the following single threaded SPEC CPU 2006

applications: bzip2, bwaves, milc, leslie3d, soplex, sjeng, libquantum, and gobmk. We

chose to model cache space per core (4 MB for 16 cores) and memory channels per

core (2 channels for 16 cores) that are slightly lower than those in modern systems.

This allows us to create the memory pressure per channel that may be representative

of a future many-core processor without incurring the high simulation times of such

a many-core processor.

For multithreaded applications, we start simulations at the beginning of the

parallel-region/region-of-interest of the application, whereas for the multiprogrammed

SPEC benchmarks, we fast forward the simulation by 2 billion instructions on each

core before taking measurements. We run the simulations for a total of 1 million

DRAM read accesses after warming up each core for 5 million cycles. One million

DRAM read accesses correspond to roughly 270 million program instructions on

average. For comparing the effectiveness of the proposed schemes, we use the total

system throughput defined as (IPC i
shared

/IPC i
alone

) where IPC i
shared

is the IPC of

Table 3.2. Timing parameters.

Parameter DRAM / PCM Parameter DRAM / PCM
tRCD 13.5ns / 55ns tCAS 13.5ns
tRP 13.5ns tWR 13.5ns / 125ns
tRAS 36ns / 55ns tRRD 7.5ns
tRTRS 2 Bus Cycles tFAW 40ns
tWTR 7.5ns tCWD 6.5ns

25

program i in a multi-core setting. IPC i
alone is the IPC of program i on a stand-alone

single-core system with the same memory system.

3.2.3 Motivational Results

We start by characterizing the impact of writes on overall performance. Fig. 3.1

shows normalized IPC results for a few different memory system models. The leftmost

bar represents the baseline model with write queue high/low water marks of 32/16.

The rightmost bar RDONLY represents a model where writes take up zero latency

and impose zero constraints on other operations. This represents an upper bound

on performance that is clearly unattainable but shows that write handling impacts

system performance by 36% on average for our memory-intensive programs. The

bar in the middle represents an oracular scheme that is more realistic and closer to

the spirit of the Staged Read optimization. It assumes that while writes are being

serviced, all pending reads can be somehow prefetched (regardless of bank conflicts),

and these prefetched values can be returned in successive cycles following the bus

turnaround. This bar is referred to as Ideal in the rest of the chapter and shows room

for a 13% average improvement.

Figure 3.1. Room For Performance Improvement

26

Fig. 3.2 shows the break-up of the DRAM access latencies of the baseline and

the Ideal cases. On the left of the graph, the two bars show the average latencies

encountered by reads that have to wait for the write-queue to drain. By finishing

the bank access of the reads in parallel with the writes, the Ideal configuration can

substantially lower the queuing delay, showing that ramping up the read-pipeline

after the write-to-read turnaround is inefficient in the baseline. The impact of this

speed-up is noticed in the reduced overall queuing delay for all reads in the system,

as shown in the two rightmost bars in Fig. 3.2.

3.3 Staged Reads

3.3.1 Proposed Memory Access Pipeline

3.3.1.1 Baseline Scheduling

We assume a baseline scheduling process that is already heavily optimized. When

the write queue is draining, we first schedule row buffer hits when possible and

prioritize older writes otherwise while maximizing bank-level parallelism. For most

of the write drain process, reads are not issued. As we near the end of the write drain

process, as banks are released after their last write, we start issuing PRECHARGE,

Figure 3.2. DRAM Latency Breakdown

27

ACTIVATE, and CAS for the upcoming reads. These are scheduled such that the

data are ready for transfer on the bus immediately after the bus is turned around.

The pipeline is shown in Fig. 3.3(a). Note how the operations for READ-5 begin

before the bus is turned around (shown in red by tWTR) and the data transfer for

READ-5 happens immediately after the tWTR phase.

3.3.1.2 Optimization Opportunity

The key to the Staged Read optimization is that there are bus idle slots soon after

the bus starts servicing reads (right after data transfer 7 in Fig. 3.3(a)) and bank

idleness when servicing writes (Bank 2 in Fig. 3.3(a)). Bus idleness when servicing

reads happens when the reads conflict for the same banks (Reads 6, 9, and 11 all

conflict for Bank 2). These idle bus slots could have been filled if some of the reads for

Bank 2 could have been prefetched during Bank 2’s idle time during the write phase.

The baseline scheduling policy can already start issuing up to one read per bank

before the bus turnaround happens (for example, Reads 5, 6, and 7 in Fig. 3.3(a)).

Thus, each bank already does some limited prefetch, whereby the bank access latency

of some reads are hidden, with the prefetched lines remaining in the bank’s row buffer.

The Staged Read optimization is intended to provide prefetch beyond this single read

per bank.

(a) (b)

Figure 3.3. Timing for reads and writes in (a) Baseline, and (b) Staged-Reads.

28

3.3.1.3 Timing with Staged Reads

Fig. 3.3(b) shows how Reads 6, 9, and 11 for Bank 2 (and all other reads except for

Bank 1 reads) are moved further to the left. As soon as a bank is done servicing writes,

it starts to service reads. If the read finishes before the bus is turned around, the

resulting cache line is saved in a Staged Read register near the I/O pads (shown by the

SR box in Fig. 3.3(b)). After the bus is turned around, data blocks are either returned

via the normal process (i.e., from the sense amplifier row-buffer through a traditional

column-read command) or from Staged Read registers. As seen in Fig. 3.3(b), the bus

is kept busy for a number of cycles following the turnaround. Many studies, including

ours, show that bank conflicts are the source of bus idle cycles and consequently long

queuing delays. Hence, such prefetch operations have a favorable impact on the

latency of many subsequent reads.

3.3.2 Staged Read Implementation

As our results show later, most programs do well with 16/32 Staged Read registers.

Assuming 64 byte cache lines spread across a rank of eight chips, this corresponds to

a storage overhead of only 128/256 bytes per DRAM chip. This is much more efficient

than prior proposals that have advocated the use of row buffer caches within DRAM

chips [54], [55]. The proposed optimization is much less invasive than row buffer

caches for several reasons. First, row buffer cache entries retain entire rows, each

about 8 KB in size (this is the rank or DIMM level row-buffer with each constituent

chip in a rank contributing 1KB). Second, if row buffer caches are placed centrally

near the I/O pads, an enormous amount of overfetch energy and latency is incurred

in moving the entire row to the central row buffer cache. If row buffer caches are

distributed among arrays, the area and layout of highly optimized arrays is impacted.

DRAM chips employ a limited number of metal layers and it is a challenge to introduce

a latch or SRAM structure for the row buffer cache directly adjacent to the arrays

themselves. Third, row buffer caches are speculative; entries are retained in the hope

that future accesses will reuse data in these entries. The Staged Read optimization

does not suffer from any of these problems. The registers only store the specific cache

line that will be requested in the near future. As shown in Fig. 3.4, the registers

can be located centrally near the I/O pads and be shared by all banks. This is

29

feasible because their overall capacity is small and no additional data (compared to

the baseline) are being shipped across global wires to the I/O pads. Thus, the prefetch

does not impact overfetch energy on a DRAM chip and the only energy penalty is

the cost of reading data in and out of Staged Read registers. The proposal also

does not impact the layout of the dense array structures, which represent the bulk

of the memory chip area footprint. The I/O pad area of a DRAM chip occupies a

central strip on the DRAM chip. It contains an I/O gating structure that is shared

by all banks and by reads and writes. In order to promote read-write parallelism with

Staged Reads, the Staged Read registers must be placed directly before the on-chip

global wires for data reaching the I/O gating structure. It is well known that changes

to a DRAM chip must be extremely cost sensitive. Vogelsang [43] points out that

changes to a DRAM chip are most costly when instituted in the bitline sense-amplifier

stripe, followed by in the local wordline driver stripe, then in the column logic, and

finally in the row logic and center stripe. We are therefore limiting our modifications

to the least invasive portion of the DRAM chip.

Figure 3.4. Floorplan of DRAM Chip

30

3.3.2.1 Area Overhead

At a 32 nm process, a 256 byte register file (corresponding to 32 Staged Read

registers) requires 1000 square microns [56]. Most of the overhead can be attributed

to a new channel that must be implemented between each bank and the Staged Read

register pool, as shown in Fig. 3.5. DDR3 has a burst length of eight, meaning

that each bank within an x8 device will be sending 64 bits of data to the I/O pads.

As DRAM core frequency is less than off-chip DDR bus frequency, to sustain high

bandwidth, all the 64 bits are sent from a bank to the I/O pads in parallel. These

data are then serialized and sent 8 bits at a time through the DDR bus. For a wire

pitch of 2.5F (where F is the feature size), a channel with 64 wires will have a pitch

of 5.1 microns. Even after considering the overhead of eight such channels, for eight

banks connected to the Staged Read register through a mux, the net area overhead is

approximately less than 0.25% in a 50 square mm DRAM device. Note that DRAM

layout is heavily optimized for area, and the actual overhead can deviate slightly from

the above based on how transistors are laid and wire pitches are employed for buses

and Staged Read registers.

Figure 3.5. Organization of Staged Read Registers

31

3.3.2.2 Effect on Regular Reads

With our proposed implementation, after a row is activated and brought into the

row-buffer and a cache-line is read from it, it has to choose one of two paths, i.e.,

either the regular bus to the I/O pins or the bus that feeds into the Staged Read

registers. As shown in Fig. 3.5, this is accomplished by a simple demultiplexer to

choose between one of the two paths, which introduces a 1FO4 gate delay to every

read (regular and staged). However, this is less than 1% of the DRAM read latency

and hence has negligible impact on the performance of nonstaged reads.

3.3.2.3 New Memory Commands

The results in a Staged Read register must be accessed with a new low latency

instruction. In addition to the conventional CAS instruction, we now have CAS-SR

and SR-Read instructions. For Staged Reads, the CAS-SR brings a specified cache

line to a specified Staged Read register. The SR-Read moves the contents of the

specified Staged Read register to the processor. Assuming a common pool of Staged

Read registers that are shared by all banks, both new instructions must specify a

few bits to identify the Staged Read register being handled. The memory controller

must track in-progress reads and their corresponding Staged Read registers. The

address/command bus is never oversubscribed because each cmd/address transfer is

a single cycle operation compared to a 4 cycle data burst, and we observe that the

address bus has an average utilization of 15% in the baseline. In the baseline, a CAS

command is accompanied by a single address transfer (column address). For Staged

Reads, this is replaced by a CAS-SR command and two address transfers (column

address and destination SR register-identifier) and a SR-Read command accompanied

by a source SR register-identifier at the end of the WQ drain. The increased activity

on the address/command bus while performing Staged Reads pushes the utilization

up to 24%.

3.3.2.4 Implementability

A sign that such a proposal is implementable is the fact that some high-performance

DRAM chips have introduced buffering at the I/O pads [21], [57]. Since the I/O

gating structure is shared by reads and writes and since reads can begin only after

32

the last write has moved past the I/O gating structure, Rambus Direct RDRAM

devices introduced a write buffer at the I/O pads so that the incoming data could be

quickly buffered and the I/O gating structure can be relinquished sooner for use by

reads [21]. Our optimization is similar in structure, but the logical behavior is very

different. In Rambus devices, the buffering is happening for writes on their way in

so they can get out of the way of important reads. In our Staged Read optimization,

buffering is happening for reads on their way out so they can get out of the way of

an on-going write burst.

3.3.2.5 Targeting Niche Markets

Given that commodity DRAM chips are highly cost-constrained, there is a pos-

sibility that such innovations, in spite of their minimal cost impact, may be rejected

for the high-volume commodity market. However, there are several DRAM memory

products that are produced for niche markets where either performance or energy

is given a higher priority than cost. Such memory products may either be used

in a supercomputer or datacenter setting or in the mobile market. Samsung’s LP-

DRAM [58], [59] is an example of a low-power chip and Micron’s RLDRAM [60] is an

example of a high-performance memory chip. It is expected that the marketplace for

such niche DRAM products might grow as the memory hierarchy starts to incorpo-

rate multiple memory technologies (DRAM, eDRAM, PCM, STT-RAM, Memristors,

etc.). In such hybrid memory hierarchies, the focus on cost may shift to the PCM

subsystem, while the DRAM subsystem may be expected to provide low latency with

innovations such as Staged Reads. Recent papers [61], [62], [63] also advocate the

use of a 3D stack of memory chips and a logic die. The interface die can be used

for many auxiliary activities such as scheduling, refresh, wear leveling, interface with

photonics, row buffer caching, etc. If such a design approach becomes popular, Staged

Read registers could be placed on the logic die, thus further minimizing their impact

on commodity DRAM chip layouts.

3.3.3 Exploiting Staged Reads—Memory Scheduler

From the description in Section 3.3.2, we see that for Staged Reads to be beneficial,

there have to be enough opportunities for the controller to schedule Staged Reads to

33

idle banks. The opportunity is high if there are some banks that are not targeted by

the current write stream and those same banks are targeted by the current pending

reads. While we see in Section 4.5 that such opportunities already exist in varying

amounts for different benchmarks, we devise a memory scheduler policy that actively

creates such bank imbalance. This best ensures that useful read work is performed

during every write drain phase.

The write scheduler first orders all banks based on the simple metric:pending writes

minus pending reads. Banks are picked in order from this list to construct a set of

writes that, once drained, will help the write queue reach its low water mark. Thus,

we are draining writes to banks that have many pending writes; banks that have

many pending reads are being kept idle. With the above scheduling policy, referred

to as the Write Imbalance (WIMB) scheduler, during every write drain phase, a

bank will roughly alternate between primarily handling writes or primarily handling

Staged Read operations. For example, in a 4-bank system, in one write drain phase,

a number of writes may be sent to banks 0 and 1, while banks 2 and 3 are busy

handling Staged Reads. In the next write drain phase, banks 2 and 3 are favored for

write drains (because their pending write queue has grown), while banks 0 and 1 may

handle Staged Reads.

3.4 Evaluation

3.4.1 Results

In this section, we analyze the performance impact of our innovation and also

present a sensitivity analysis of Staged Reads. We present results for the following

different configurations.

• Baseline : These experiments model the baseline DRAM pipeline and memory

controller described in Section 3.2.2 (Table 3.1). The memory controller has

a 48-element write queue (for each channel), which is drained once it reaches

a high water mark of 32, until the occupancy drops to 16. In the baseline

model, there is no provision for Staged Reads, which means that following a

column-read command, the data are read out from the sense amplifiers and

sent out over the I/O pins.

34

• SR X : These configurations refer to systems that consist of DRAM chips and

controllers that are, at a maximum, equipped to handle X Staged Read requests

per rank. The timing specifications for Staged Reads are as described in Section

4.3. We consider the following values of X: 16, 32, and infinite.

• SR 32+WIMB : This refers to the configuration where the memory con-

troller’s write-scheduling policy is modified to direct writes at a small subset of

banks in a rank. This exposes more free banks that can be used by the Staged

Read mechanism.

• Ideal : As described earlier in Section 3.2.3, we also show a bar for the Ideal

case as a reference. The Ideal case assumes that all pending reads can be

prefetched into an infinite set of Staged Read registers while they wait for a

write drain cycle to finish.

The key difference between SR Inf and Ideal is that SR Inf continues to faithfully

model bank conflicts and other timing constraints. Therefore, some pending reads in

SR Inf may not have the opportunity to issue their prefetch before the write drain is

complete.

Fig. 3.6 shows the impact of Staged Reads on average DRAM latency. Fig. 3.7

shows the impact on normalized weighted throughput. The benchmarks are or-

dered from left to right based on the throughput improvement caused by the SR 32

configuration. Some applications, such as ep, dealII, and lu.large, do not exhibit

much improvement with Staged Reads, even with an infinite register pool, whereas

applications such as stream, leslie3d, and fluidanimate show marked improvements.

The sensitivity of applications to our innovation is dependent on whether during a

write drain cycle, there are enough reads that can be parallelized using Staged Reads

and whether these reads would have introduced data bus bubbles in the baseline

because of bank conflicts. To help understand the performance characteristics of the

different configurations, we plot the average number of reads stalled during write

queue drain cycles and the number of Staged Reads completed with 32 Staged Read

registers in Fig. 3.8. In Fig. 3.9, we plot the average number of banks that are engaged

by writes during write queue drains.

35

The best indicator for Ideal performance is the number of pending reads during

each write induced stall period. The performance of the Ideal configuration is high

in all cases where there are a large number of pending reads (the first series in

Fig. 3.8). In a practical setting, however, it might not be possible for the Staged

read mechanism to drain all these pending reads. There might not be enough

bank imbalance between reads and writes for the Staged Reads to schedule read

prefetches. Thus, an application like sor.large shows marked improvement with Ideal

configuration (Fig. 3.7), because it has a high number of pending reads (Fig. 3.8). In

reality, these reads can not be drained by Staged Reads as the writes in sor.large also

touch a large number of banks (Fig. 3.9), thereby reducing the opportunity to carry

out Staged Reads.

Applications that have a high read bandwidth demand would naturally see many

reads queuing up during write drain cycles - but the MPKI alone can not explain

the response of an application to Staged Reads. The improvements obtained are

influenced by bank imbalance between writes and reads. For the best performing

applications with the SR 32 scheme, such as stream, leslie3d, and fluidanimate, there

are relatively larger number of queued reads during each write-queue drain cycle

(Fig. 3.8). A large fraction of these can be drained by Staged Reads, because few

banks are touched by the writes during write queue drains in these applications

(Fig. 3.9), leaving other banks ready to service Staged Reads. Applications that

have a favorable combination of a large number of pending reads and a small number

Figure 3.6. DRAM Latency Impact of Staged Reads

36

of banks touched by writes benefit the most from regular Staged Reads with the

baseline scheduler. On the other hand, applications such as lu.large and perlbench

have very few outstanding reads during write drains, while applications like omnetpp

and is have the writes spread evenly over a large number of banks, leading to lower

benefits.

Increasing the number of Staged Read registers improves the latency for some

benchmarks (Fig. 3.7). For example, by going from SR 16 to SR 32, the average la-

tency of accesses drops by approximately 8% for applications like stream and leslie3d.

For most other applications, 16 registers are enough to handle all pending reads, an

observation verified by Fig. 3.8. For the benchmarks we evaluated, SR 32 performs

as well as SR Inf on all occasions except for stream, leslie3d, and fluidanimate, where

during some drain cycles, more than 32 SR registers can be useful, but this is not a

common occurrence.

On average, the best performing scheme is the SR 32+WIMB configuration that

yields a 7% improvement in throughput. By actively creating idle periods for some

banks that have a lot of pending reads, this configuration offers a good opportunity

for these reads to be completed using Staged Reads. As seen in Fig. 3.9, the average

number of banks touched by writes decreases due to the biased write-scheduling policy

for almost all cases. For applications like gromacs, derby, and omnetpp, the bank

imbalance is increased favorably, and this is reflected in the additional benefit obtained

Figure 3.7. Performance Impact of Staged Reads

37

Figure 3.8. Average Number of Reads Stalled By Write Drains and Number of
Staged Reads Completed Per Rank

by SR 32+WIMB over regular SR 32; more Staged Reads are completed for these

applications (Fig. 3.8) with the novel write-scheduling policy. Applications like cg and

mg that already touched a small number of banks do not derive any additional benefits

over SR 32 with the modified write-scheduling policy. There are also applications such

as gobmk and lu where the improvement with SR 32 and a regular write-scheduling

policy is greater than the SR 32+WIMB policy. This can be explained by the fact

that in these benchmarks, the explicitly reduced bank footprint of writes leads to a

lengthening of the average write-queue drain cycle, which diminishes the benefits of

Staged Reads. However, in none of the cases do we see any performance degradation

compared to the baseline.

The gap between the Ideal configuration and SR Inf in Fig. 3.7 cannot be bridged

by parallelizing reads and writes. This results from reads waiting on the same

banks as targeted by the writes—a problem that can not be alleviated with regular

Staged Reads, but which is abstracted away in the Ideal configuration. By using

the SR 32+WIMB configuration, this is ameliorated to a certain extent for most

applications.

38

Overall, we witness a 17% reduction in average DRAM latency across the bench-

mark suite resulting in a 6.2% improvement in overall system throughput with 32

Staged-Read registers; this grows to 7% with the modified write-scheduling policy.

Half of the simulated benchmarks yield an improvement higher than 3%, and for

these write-intensive benchmarks, the average throughput improvement is 11% with

SR 32.

Figs. 3.10 and 3.11 shed further light into the DRAM latency impact of Staged

Reads. Fig. 3.10 shows the DRAM latency breakdown for DRAM read requests. We

see that read requests waiting for a write queue drain to finish have very long queuing

delays in the baseline which are brought down substantially by using Staged Reads

(Fig. 3.10) leading to lowering of overall DRAM latency. However, even after a read

goes through the Staged-Read phase, it has to wait in the Staged-Read register for

some amount of time before it can be sent out over the bus, which we refer to as

the staged-wait latency. Recall that when a read request goes into the staged-read

register, it has already finished its bank activity and the next request to the bank

can start immediately. By reducing the bank-wait for pending read requests, the bus

utilization after the write-queue drain is increased.

Figure 3.9. Average number of banks touched by writes per drain cycle per rank

39

Fig. 3.11 shows the bus utilization in the period following the write queue drain

until all the reads that had arrived before the end of the write-queue drain are

completed. With Staged Reads, the utilization in this period increases by as much

as 35% for STREAM and about 22% on average. Applications that demonstrate the

maximum bus utilization in this period with Staged Reads also derive the maximum

benefit. We do not show the bus utilization in this window achieved by the Ideal

configuration because it is 100% for all applications by design.

3.4.2 Sensitivity Analysis

To estimate the extent of the influence of our choice of DRAM parameters on

the performance of Staged Reads, we tested the following factors that can potentially

impact the efficacy of Staged Reads: write queue high and low water marks and a

higher number of banks.

3.4.2.1 Write Queue Parameters

The choice of the high and low water marks for the write queue will determine the

duration and frequency of write drain cycles. This in turn determines for how long

Figure 3.10. DRAM Latency Breakdown For All Read Requests

40

(and how many) reads are stalled due to the write queue drain and also how frequently

this disruption occurs, respectively. It also determines if enough bank imbalance is

observed, both during and after the write drain.

We ran simulations with various values of the write queue drain parameters. With

large values of the high water mark, draining of writes can be delayed—potentially

reducing the adverse impacts of writes. In such a case, it is also important to drain the

write queue by a large amount each time because otherwise the gap between write-

queue drains will not be reduced. We present results for two different configurations

with high water marks of 16 and 128 and low water marks of 8 and 64, respectively.

However, it is important to note that a baseline system (not capable of Staged

Reads) which employs high/low water marks of 32/16 performs better on average

compared to the 16/8 and 128/64 configurations. We find that by frequently initiating

write-queue drains (i.e., a smaller high water mark) bandwidth hungry applications

get penalized so that the IPC drops by about 2% on average. Again, by using a

large value for the high water mark, we risk stalling some critical reads at the head

of the out-of-order core’s reorder buffer for a long duration. Thus, with a high value

for the high water mark, some applications perform better than the baseline (i.e.,

Figure 3.11. Bus Utilization Immediately After WQ Drain

41

high/low water mark 32/16) and some applications perform worse, leading to a 1.4%

performance degradation on average. Therefore, for the workloads we simulated, the

best performing write queue configuration is the one used for the baseline.

We see that in both the 16/8 and 128/64 cases, Staged Reads can offer performance

improvements as shown in Fig. 3.12 and Fig. 3.13. The results show the same trends

as before, but the improvements are slightly lower (just under 5% on average) with

SR 32 (which has no scheduler induced write-imbalance). With low water marks,

there are just not enough pending reads that can be expedited with Staged Reads.

In fact, even with the write-scheduler creating write-imbalance, there is no extra

improvement due to the dearth of writes. On the other hand, with high water marks,

there is less write imbalance with a regular scheduler, which can be alleviated by

SR 32+WIMB as it has a much larger pool of writes to choose from. This leads to

the SR 32+WIMB creating more oppurtunities for Staged Reads—finally yielding a

7.2% improvement over the baseline.

Figure 3.12. Staged Reads with High Water Mark = 16, Low Water Mark = 8

42

3.4.2.2 More Banks

The efficacy of Staged Reads increases if the reads pending on a write-drain cycle

are directed at banks that do not have many writes going to them. With a larger

number of banks, the possibility of the memory controller being able to find more

opportunities for scheduling Staged Reads increases. On the other hand, if more

banks exist, the baseline suffers from fewer bank conflicts for reads and fewer data

bus bubbles following the write drain. So there are competing trends at play with

more banks. We carry out simulations where the same 4GB capacity as the baseline

system is split into twice the number of banks (i.e., 16 banks/rank). We observe

that a regular DRAM system (without Staged Reads) with more banks performs

better than the baseline by about 3.1%. Applying our SR 32 configuration on this

improved system yields an average improvement of about 4.3%. Due to increased bank

parallelism, the performance benefits with SR 32+WIMB are comparable to regular

staged reads. Thus, as a performance optimization for next generation memories, it

is more effective to add Staged Read registers than to double the number of banks.

Figure 3.13. Staged Reads with High Water Mark = 128, Low Water Mark = 64

43

3.4.3 Projecting for Future Main Memory Trends

In this section, we evaluate if the Staged Read optimization will be more com-

pelling in future memory systems. We examine a number of processor configurations

that might represent these future trends: memory systems with reliability support,

nonvolatile memories, and fewer channels per core.

3.4.3.1 Higher Write Traffic

With errors in DRAM becoming a major source of concern [44], [64], DIMMs

equipped with error protection measures are being employed in datacenters. In one

possible chipkill implementation (to overcome the failure of one DRAM chip on a

rank), each DIMM can have a separate chip that stores either parity information per

byte or an Erorr Correcting Code (ECC) word per 64-bit word. On each read, the

information in the extra chip can help with error detection and possibly correction.

If the information is not enough to correct the error (as may happen with multibit

errors), a second-tier protocol is invoked. In RAID-like fashion, parity is also main-

tained across DIMMs. If a DIMM flags an uncorrectable error, information from

all DIMMs is used to reconstruct the lost data. Such RAID-like schemes have been

implemented in real systems [65] and will likely be used more often in the future as

error rates increase near the limits of scaling. As is seen in any RAID-5 system, every

write to a cache line now requires us to read two cache lines and write two cache lines.

This causes a significant increase in write traffic.

We simulate a RAID-5 like system where a fifth DIMM stores the parity informa-

tion for the other 4 DIMMs. The baseline system in such a scenario encounters

double the write traffic as seen in a non-ECC scenario. This, coupled with the

increased number of reads makes Staged Reads more compelling. We see that the

throughput increases by an average of 9% (Fig. 3.14) by using 32 Staged-Read

registers. Compared to a unreliable baseline, we see a shorter gap between write-queue

drain cycles which improves the benefits of Staged Reads. Using SR 32+WIMB, the

average throughput does not increase beyond what is provided by SR 32, since a

data write and its corresponding ECC code write have to be completed together, the

write-scheduler is not able to reorder the writes to expose any additional staged read

opportunities.

44

3.4.3.2 Phase Change Memory (PCM)

Recent work [46], [66], [67] advocates the use of PCM as a viable main memory

replacement. Similarly, other nonvolatile memory (NVM) technologies with read and

write latencies longer than those of DRAM are also being considered [68]. We assume

that the PCM main memory is preceded by a 16 MB L3 eDRAM cache (L3 average

latency of 200 cycles). PCM chip timing parameters are summarized in Table 3.2;

the PCM read and write latencies are approximately 2X and 4X higher than the

corresponding DRAM latencies due to the high values of the row-activation (tRCD)

and write-recovery (tWR) timing parameters.

The higher read and write latencies make the Staged Read optimization more

compelling. We observe an average 26% reduction in memory latency because of a

sharp drop in queuing delay. This translates to an average 12% throughput improve-

ment (Fig. 3.15), with the Stream benchmark showing a 58% improvement. On the

other hand, SR 32+WIMB does not offer as much advantage as regular SR 32—the

performance improvement is 9.5% on average. The performance drop (compared to

SR 32) is due to the high penalty of lengthening the write-queue drain cycle-time

Figure 3.14. Staged Reads with RAID-5 like Chipkill Protection

45

in PCM. By restricting bank-parallelism within writes, SR 32+WIMB ends up with

bank conflicts on the targeted banks.

3.4.3.3 Number of Channels

With a greater number of channels, the pressure of pending reads on each channel

would reduce and the benefits of Staged Reads would also diminish. With a quad-

channel configuration, for our workload suite, the benefits of SR 32 is 3.3% and that

of SR 32+WIMB is about 3.0%. However, the ITRS [69] projects an increase in the

number of cores, but no increase in the number of off-chip pins. Hence, we expect

that the number of channels per core will actually decrease in the future. If we instead

assume that 16 cores share a single channel, the improvement with SR 32 jumps up

to 8.4% because of the greater role played by queuing delays, while introducing write

imbalance improves throughput by 9.2%.

3.5 Conclusions

We show that write handling in modern DRAM main memory systems can ac-

count for a large portion of overall execution time. This bottleneck will grow in

future memory systems, especially with more cores, chipkill support, or nonvolatile

Figure 3.15. Staged Reads with PCM Main Memory

46

main memories. This requires that mechanisms be developed to boost read-write

parallelism. We show that the Staged Read optimization is effective at breaking

up a traditional read into two stages, one of which can be safely overlapped with

writes. We show average improvements of 7% in throughput for modern memory

systems (accompanying a 17% reduction in DRAM access latency) and up to 12% for

future systems. The proposed implementation has been designed to cater to the cost

sensitivity of DRAM chips. We introduce less than a kilobyte of buffering near the

I/O pads, similar to structures that have been employed for other functionalities in

some prior high performance DRAM chips. We therefore believe that the Staged Read

optimization is worth considering for DRAM chips designed for the high-performance

segment.

CHAPTER 4

A DRAM SCHEDULER OPTIMIZED FOR

GPUS

4.1 Introduction

Graphics Processing Units (GPUs) have emerged as an efficient alternative to

traditional scalar processors for a large class of data parallel workloads. High-level

programming models such as NVIDIA’s CUDA [6] and OpenCL [7] allow the program-

mer to define the behavior of a single scalar thread, which is then replicated to run

many threads on Single Instruction Multiple Data (SIMD) execution units (also called

compute units or CUs). The viability of executing highly-threaded parallel workloads

on general-purpose GPUs (GPGPUs) has led to the development of GPU implemen-

tations of algorithms that are considered “irregular” for GPUs [8], [36], [70], [71].

A study of these applications on GPU hardware demonstrates significant memory-

access irregularity (MAI) [37]. The memory-access patterns are data dependent and

consequently have less locality, thereby differing from the streaming access patterns

typical of graphics and many compute workloads.

The GPU architecture is most efficient for executing graphics and compute work-

loads with regular patterns. The SIMD cores in a GPU can run many threads in

parallel. A group of threads running in lockstep in such a setup is termed a warp

(or a wavefront) with every thread in the warp executing the same instruction.

A load instruction in such a SIMT (Single Instruction Multiple Thread) system

can generate many different memory requests and the warp becomes ready to run

(becomes “runnable”) only when all of the outstanding memory requests are returned

to the compute unit. The compute units are simple and typically do not employ the

latency-hiding techniques commonly used in out-of-order, speculative, superscalar

processors. GPUs use thread-level parallelism to tolerate memory access delays.

Thus, when a warp waits for its memory requests to return from the memory system,

48

the thread scheduler in the GPU picks a different warp that is ready to run. A

GPU thus must maintain a large pool of warps (each with its own register file state)

to mitigate the delays encountered by a warp stalled on a load. However, previous

studies [72], [73] have shown that in spite of having a large number of thread contexts

to choose from, the GPU’s execution units often sit idle as all the warps are stalled

on memory access. For instance, recent NVIDIA GPUs support at most 48 to 64

warps within a compute unit [74], while main memory latencies have been measured

to exceed 400 cycles [75]. Thus, it is clear thread-level parallelism cannot always hide

the memory latency completely.

The memory requests issued by a warp will also typically encounter different

memory latencies. A subset of the requests might register hits in the different cache

levels and the rest will be serviced by the DRAM. While the latencies of accessing

data in the different levels of caches is obviously different, different requests to the

DRAM will also encounter different latencies owing to the load on the DRAM channel,

the complexities of the DRAM pipeline, and the memory scheduling algorithm. In

fact, modern memory controllers schedule incoming requests out-of-order to maximize

memory system throughput, which can stall a subset of the requests from a warp

while memory requests for other warps (and other GPU functions) are serviced. This

introduces the problem of memory latency divergence where a warp is stalled until the

last memory request from a vector load instruction is returned to the compute unit.

Several studies have highlighted how memory latency divergence can be a significant

performance bottleneck in GPUs [18], [19].

In this chapter, we look at techniques to reduce the negative impact of memory

latency divergence in GPUs by making the memory system hardware warp-aware. We

propose main memory scheduling schemes that try to reduce the average memory-stall

time for a warp (i.e., the time it takes for all requests of a warp to finish). We

observe that the effective DRAM latency for a warp is often lengthened at the main

memory because one or more requests of that warp are returned with longer latencies

than the rest. We propose a DRAM scheduling strategy that attempts to reduce

the intrawarp memory latency divergence by eliminating interwarp interference. The

scheduling policy isolates requests from a warp in their own warp-group (a batch

49

of requests) and takes scheduling decisions at the granularity of warp-groups. We

evaluate different strategies for the scheduling of warp-groups. These strategies are

motivated by the need to coordinate between different memory schedulers when a

single warp sends requests to multiple memory controllers and also by the need to

maintain good bandwidth utilization for some applications while minimizing latency.

We first propose schemes that reduce intrawarp latency divergence in a single memory

controller (BASJF, Section 4.3.3), then augment it to be implicitly multicontroller

aware (BASJF+AB, Section 4.3.4). We then further optimize the scheduler to regain

lost bandwidth utilization (MERB, Section 4.3.5.1). We couple the scheduler with

a write-drain mechanism that reduces write-induced stall times for warps (WAWD,

Section 4.3.6). The combined techniques reduce the adverse effects of memory la-

tency divergence and improve performance by 8.6% on average for a set of GPGPU

workloads.

4.2 Background

In this section, we take a brief look at the typical architecture of a modern GPU

and that of the main memory system, including scheduling policies.

4.2.1 GPU Cores

Fig. 4.1 shows the basic architecture of a modern GPU. The GPU consists of

a number of shader cores (Streaming Multiprocessor or SM in NVIDIA parlance).

Each shader core executes a group of threads in Single Instruction Multiple Thread

(SIMT) fashion. We model 32 SIMD lanes in each SM. A group of threads executing

on the different lanes of the SIMD processor in lockstep is referred to as a warp (in

NVIDIA parlance) or a wavefront (in AMD parlance). A cluster of such warps (or

groups of threads), called a Cooperative Thread Array (CTA) or thread block, is

assigned to each core. A kernel consists of one or more CTAs and there is a global

CTA scheduler that issues CTAs to the cores taking into account the total number of

CTAs required by the application and the resources available. The SMs are in-order

cores; thus, when a warp is blocked waiting for the result of a load instruction, the

warp scheduler within the SM will pick a ready warp to schedule on the SM. A warp

50

Figure 4.1. Simulated GPU Architecture

will remain blocked until all of its memory requests are returned by the memory

system.

4.2.2 Memory System

The SMs have private L1 caches and are connected to different memory partitions

through a crossbar interconnect. Each memory partition consists of a slice of the

shared L2 and a GDDR5 channel. The L1 and L2s employ LRU replacement and

write-evict strategies. Each GDDR5 [76] channel is typically 64-bits wide with the

command and address bus running at 1.5GHz. The data bus runs at twice the

frequency of the address/command bus and it is dual-data-rate (i.e., it transmits data

at both the rising and falling edges of the data bus clock). Each GDDR5 chip has 16

banks and we consider 2 GDDR5 devices per channel that are operated in tandem (as

one rank). The GDDR5 chip architecture is specialized for high bandwidth. Apart

from higher bank counts and increased operating frequency, there are other archi-

tectural improvements such as a more robust power delivery network which allows a

higher frequency of activates compared to DDR3 (i.e., a lower tFAW parameter) that

leads to the higher performance of GDDR5. In the following two sections, we discuss

the features of the baseline throughput-optimized memory controller.

51

4.2.3 Baseline Memory Controller Organization

Memory controllers in throughput processors are optimized to provide high band-

width. Fig. 4.2 shows the important components of a typical memory controller that

we model in this study.

A The Read Queue buffers the read requests received from the interconnect.

Typically, each entry contains the address of the request, the source SM identifier,

and the source warp identifier.

B The Write Queue buffers similar information as the read queue, but for write

requests.

C TheTransaction Scheduler is the heart of the memory controller. The scheduler

can pick transactions based on locality considerations (row-buffer hits vs row-buffer

misses), request age, thread priorities, and other such high-level considerations. It is

also responsible for interleaving write and read requests. The transaction scheduler

picks a request each cycle from the read or write queues and enqueues a series of

DRAM commands (ACT, PRE, COL RD, etc.) into the appropriate command queue

(labeled D) in Fig. 4.2. The main throughput-optimizing features of the baseline

scheduler are the address mapping policy and the scheduling policy. In our baseline,

these two features are as follows.

4.2.3.1 Address Mapping

A high throughput memory-address scheme has to preserve row-buffer locality

and maintain high pin utilization. The translation of cache-line addresses to the

DRAM channel, bank, row, and column addresses used by the memory controller

is a key element of the memory controller design. First, consecutive cache-lines are

mapped to the same row in the same bank to promote row-buffer locality. Blocks of

consecutive cache-lines are interleaved across the memory channels at a granularity

of 256 bytes. To prevent pathological channel camping, where unusual access strides

lead to excessive contention on one or few channels, the channel address is formed

by XOR-ing a subset of higher-order bits with some lower-order bits to allow better

spread across channels. Similarly, to prevent strided accesses from camping on the

same bank, the bank address is formed by XOR-ing the bank address bits with a

portion of higher-order address bits [29].

52

Figure 4.2. Baseline Memory Controller Structure

4.2.3.2 Baseline Scheduling Policy

The transaction scheduler picks a request each cycle from the read queue or write

queue and enqueues the appropriate commands in the corresponding command queue.

The transaction scheduler’s primary responsibility is to exploit row-buffer locality. It

thus aggressively reorders read requests to match the open row in each bank similar

to the commonly used FR-FCFS policy [12]. Since the command schedulers processes

commands from the command queues in order, the transaction scheduler maintains

a table of the open-rows in each bank and scans the entire length of the read queue

in order to select row-buffer hits. However, to prevent row-miss requests from being

starved, it uses a combination of an age threshold based prioritization of old requests

as well as a maximum row-hit streak control mechanism. Write requests to DRAM

are the result of write-back from the last level cache and are thus not on the critical

path for program execution. Writes are thus buffered in the write queue and are

drained when the write queue occupancy rises above a high water mark or when

there are no requests on the read queue [16]. The write requests are typically drained

until the write queue has fewer than a fixed number of elements (the low water mark)

or when too many read requests are stalled by the writes. Owing to the cost of the

DRAM bus-turnaround delay (tWTR), reads are not interleaved with writes on the

same rank [35].

53

D The Command Queues in the memory controller store the low-level DRAM

commands that need to be issued to the different banks to complete the transactions

selected by the transaction scheduler. The queues are on a per-bank basis.

E TheCommand Scheduler is responsible for issuing the DRAM commands to the

GDDR5 chips. The command scheduler is cognizant of the low-level command timing

restrictions and the state of the different DRAM banks. The command scheduler

iterates over the different queues to interleave requests to different ranks/banks so as

to leverage bank-level parallelism. However, within a bank, it orders requests in order

to avoid disrupting the scheduling decisions taken by the transaction scheduler. The

command scheduler is also responsible for issuing refresh commands in addition to

the commands enqueued by the transaction scheduler. The command scheduler has

a big impact on bank-level parallelism. It scans the head of the bank-level command

queues in a round-robin fashion. If E is not able to issue the command at the

head of the queue in a cycle (because of timing constraints), it moves to the next

bank’s command queue. This ensures that while long-latency operations are being

executed in one bank, the other banks are quickly engaged to serve other requests.

The bank-group architecture of GDDR5 has the advantage of lower intercommand

delays when the commands are issued to different bank groups [76] (e.g., the gap

between consecutive column-read commands issued to different bank groups, tCCDs,

is smaller than the gap required between column-read commands to the same bank

group, tCCDL). The command scheduler thus tries to interleave requests between

different bank groups first and then within each bank group through a multilevel

round-robin policy.

4.3 Warp-Aware Memory Schedulers

As mentioned earlier, the efficacy of the DRAM scheduler will depend on the

following two factors.

• The scheduling scheme’s ability to return all of a warp’s requests in close

succession. This will also require the schedulers in different channels to have an

efficient coordination mechanism amongst themselves.

• The scheduler’s ability to maintain good bandwidth utilization and overall low

memory latency by exploiting row-hits and bank-level parallelism.

54

With the above two goals, we examine a few different memory scheduling policies,

each improving the preceding one in one or more aspects.

4.3.1 Warp-Aware Memory Controller Organization

First, we look at the changes that are needed to the memory controller hardware

for enabling warp-aware scheduling. Fig. 4.3 shows the structure of the proposed

warp-aware memory controller with the new addition, the Batching Unit F , high-

lighted in blue. This is the batch formation stage that scans A every cycle to

form batches of requests from a warp. Requests from a warp may arrive at a

memory controller interleaved with requests from other warps. The main job of

the batch unit is to decide when a group of requests from a warp (called a warp

group) is complete. We use a time-based threshold (T) to decide when a group can

be considered complete. After time T has elapsed since the arrival of the first request

for a warp, the batch unit considers the group complete and indicates this to the

transaction scheduler. We observe that less than 3% of the average memory latency

is required to completely collect the requests from a warp in the worst case (i.e.,

in the case when the interconnect is highly congested introducing variability in the

arrival time of the warp’s requests at the memory controller). Ausavarungnirun [15]

et al. discuss the formation of batches of requests from each CPU. However, in their

scheme, a batch is considered complete as soon as a request to a different row is

received. We can afford to delay the formation of a batch because in a GPU the

latency of the last request is the determinant of the performance. This is not the

case in a CPU, where stalling a performance-critical memory request to group it with

other memory requests might cause severe performance degradation. All the proposed

memory schedulers described hereafter use F .

4.3.2 Warp-Aware FCFS (WAFCFS)

The WAFCFS policy is designed for simplicity. The transaction scheduler picks

the oldest complete warp-group and issues the corresponding requests in order to the

different bank command queues. The transaction scheduler thus requires very little

complexity, but is not cognizant of the state of the DRAM. The rationale behind this

scheme is that it allows requests from a warp to be scheduled to the banks without

55

Figure 4.3. Memory Controller Organization

any interference from other warps. Also, the other important benefit of the WAFCFS

scheme is that the different memory controllers service a single warp’s requests in

parallel. Since the requests from a warp show up at very similar times to the different

memory controllers, selecting warp-groups based on their arrival order generally

leads to simultaneous processing of a warp’s requests in different memory controllers.

While these two features of the WAFCFS scheme, i.e., warp-aware scheduling inside

and across channels, can provide some performance advantage (by reducing memory

divergence), it can severely degrade performance by being noncognizant of DRAM

characteristics and thus needs to be improved upon.

This policy is similar to the complexity-effective memory scheduling scheme de-

scribed by Yuan et al. [77]. In their work, the authors propose an intelligent intercon-

nect which does not interleave requests from different SMs to allow a single warp’s

SM’s requests to arrive at the controller in close succession. The scheduler uses a

simple FCFS scheme to pick individual requests with the hope of being able to exploit

row-locality within a SM’s requests without the need of complex FR-FCFS-style

reordering. With the batching unit forming warp-groups, a WAFCFS policy sees

similar row-locality as the one proposed by Yuan et al.

56

4.3.3 Bank-Aware Shortest Job First (BASJF)

To improve upon the WAFCFS scheme, while remaining warp-aware, we propose

the Bank-Aware Shortest Job First (BASJF) scheme. This warp-aware scheduler

is basically a shortest-job-first (SJF) scheduler that arbitrates between the different

warp-groups of memory requests with the aim of minimizing the service time for a

warp (i.e., the time it takes to service all requests for the warp). The main distinction

between the BASJF policy and a simple SJF policy that just considers the number of

requests from each warp is that the BASJF considers the expected service time for the

entire warp-group. BASJF uses a scoring system (described in detail in the following

section) that accounts for the locality and bank-level parallelism of the requests in

the group (besides the total number of requests), the state of the DRAM banks and

bank groups, and the occupancy of each of the bank-level command queues. The

scoring system effectively calculates the total service time of each completely formed

warp group. The scheduler then picks the warp-group with the lowest total score each

cycle and enqueues its requests in the bank queues (more details in Section 4.3.3.2).

4.3.3.1 Scoring System

The aim of the scoring system is to estimate the expected overall service time for a

warp’s memory request. Clearly, this is dependent on the number of DRAM requests

issued by the warp as well as the latency of the request that would finish last. The

latency of a request will depend on the occupancy of the bank queue and whether it

would require a new row to be activated. The first factor contributes to the queuing

delay of the request and the second to the core delay [27, 35]. The scoring system

accounts for both.

Servicing a row-miss incurs a delay of 36 ns compared to 12 ns for a row-hit.

The scoring system thus assigns a cost of 1 unit to a row-hit and 3 to a row-miss.

To determine the hit or miss status of a request, the scoring system first ascertains

what would be the open row in the target DRAM bank when the request under

consideration gets to the front of the bank-level command queue or in other words,

the row address of the request that gets serviced immediately before this request.

Thus if a request is the first request in its group, it checks the row-address of the

last request in the corresponding bank queue. Subsequent requests from a group also

57

need to check the row address of the last preceding request from the same group that

is directed at its bank. At the end of this exercise, each request has a score of either

1 or 3.

In addition to assigning the core delay score, the scoring system also adds the total

score of all the pending requests in the target bank queue to each memory request.

This accounts for the queueing delay of the request. The final score for the warp is

the maximum score assigned to its requests. The scoring system thus accounts for the

row hit/miss status of a request as well as the queuing delay resulting from the state

of the bank queues. This is more accurate than a SJF policy based on counting the

number of requests or the number of row hits or misses in predicting the completion

time of the warp-group.

4.3.3.2 BASJF Transaction Scheduling Policy

Every cycle, the transaction scheduling policy looks at the completed warp-groups

to pick a warp using the scoring system above and then issues a request from the warp

with the smallest score to the appropriate bank queue. In the case of a tie, the warp

with the highest number of row-hits is picked since row-hits help minimize DRAM

power consumption. By scheduling from a warp-group together, BASJF achieves

warp-awareness, and at the same time, the bank-aware scoring system allows high

utilization of the banks. This effectively leads to higher bandwidth utilization and

lower average DRAM access latencies compared to WAFCFS.

Note that once a warp is selected, its requests will take several cycles to be

enqueued in the bank queues. It is quite possible that in the meantime, another

warp group shows up with fewer requests or has a lower overall score. For example,

when the transaction scheduler is in the process of sending out the 4 requests from a

warp, a warp with a single request shows up at the memory controller. At this point,

the transaction scheduler compares the score of the in-service warp to the score of the

new warp, and if it is sufficiently lower (a predefined threshold), then it suspends the

servicing of the in-service warp and issues the requests from the new warp. To reduce

complexity, the transaction scheduler can override its current decision a maximum of

4 times in succession. After that, it has to drain all the previously selected warps’

requests before it can move on to a new warp.

58

4.3.4 Scheduling for Multiple Memory Controllers

The main drawback of the BASJF policy as described above is that it does not

promote any implicit management of request scheduling across different memory con-

trollers. Warp-groups corresponding to the same warp in different memory channels

will have different scores and will be positioned differently in the scoring charts.

Thus, memory requests from a warp to different memory channels will see varying

completion times. The different memory controllers therefore need to coordinate the

scheduling of warp-groups to reduce latency-divergence.

The most obvious architecture for such coordinate scheduling will entail some man-

ner of information exchange between the different memory controller. In fact, some

previous memory management schemes [13], [40] in the CPU space have looked at

exchanging scheduling information and even at the movement of data pages between

memory controllers. These techniques, however, are designed to transfer information

periodically after long time epochs. The overheads and complexity of an explicit com-

munication mechanism for coordinating between memory controllers for fine-grained

request scheduling are too high. Such a coordination scheme will need to exchange

informations over the network-on-chip between the memory controllers and possibly

a centralized arbiter that enforces coordinated scheduling.

To avoid such complexity, we try to modify the BASJF scheduler so that there is

some implicit coordination between the different memory controllers. Since different

requests from a warp arrive at the different memory controller within a short window

of time, it is conceiveable that a transaction scheduler that is cognizant of the arrival

order of warp-groups (similar to the WAFCFS scheme) will be implicitly coordinated

with other schedulers in servicing requests from the same warp. Thus to improve

warp-awareness of the aspect of the BASJF scheduler, we incorporate a simple age-

bias in the scheduling policy. This leads to the BASJF+AB (BASJF with Age Bias)

scheduling policy. This is an addition to the BASJF scheme, i.e., it uses the same

bank-aware scoring scheme and selects the warp-group with the lowest score in the

common case. However, if a warp-group’s age goes past an age threshold (K), then

the BASJF+AB scheduler picks the oldest warp. By bounding the latest service

time for a warp, the different memory controllers are implicitly coordinated in their

59

scheduling of a warp’s requests. The value of the age threshold is set statically and is

the same across all the channels, thus ensuring an upper bound on the interchannel

latency variation for a warp.

In Section 4.5.1, we examine the efficacy of the BASJF+AB scheme against an

idealized, explicitly coordinated warp-aware scheduler.

4.3.5 Improving the Performance of BASJF+AB

BASJF+AB will differ significantly from the BASJF policy in its scheduling

decision when there are warp-groups with high scores whose age exceed the threshold

K. With such a policy, it is possible that the scheduler frequently selects older

warp-groups that take a long time to finish primarily because they have long latency

row-miss requests. This will negatively impact the bandwidth utilization and thus

runs the risk of negating the expected benefits of warp-aware scheduling. Even

without the age-bias, warp-groups with row-misses will need to be scheduled to

prevent starvation.

The negative impact of a row-miss request in one bank can be alleviated if the

row-miss could be coscheduled with row-hit requests in other banks—effectively the

overhead of precharging and activating a bank can be hidden by the data transfer

of row-hit requests in other banks. The transaction scheduler needs to be cognizant

of the timing parameters of the GDDR5 DRAM memory to estimate the minimum

number of row-hits it needs to schedule to different banks before it can schedule a

row-miss request from a warp-group that has crossed the age-threshold. This leads to

bandwidth utilization that is very close to what is achieved by the BASJF scheduler,

but at the same time, it allows time-bounded servicing of warp-groups with row-

misses like in the BASJF+AB system. Central to this scheme is a metric called

the Minimum Efficient Row Burst (MERB) that can be precomputed based on the

GDDR5 timing numbers and be used by the transaction scheduler to decide how

many row-hit requests need to be scheduled at a minimum before issuing row-miss

requests from an older warp.

60

4.3.5.1 Estimating MERB

The sequence of events that take place to transfer a sequence of cache-lines in

a DRAM bank are as follows. First, an activate command command with the row

and bank addresses is issued to bring data from the DRAM arrays to the bank-level

sense-amplifiers (also called the row-buffer). tRCD time after the ACT command, a

column-read command can be issued which starts sending the data from the row-buffer

to the output pins. tCAS time after the issuance of RD, data are found on the data

pins, and it takes tBurst number of cycles to complete the transfer of once cache-line.

The bank can be precharged (i.e., made ready for another activate) after tRC time

has elapsed since the ACT command by issuing a precharge command. Other RD

commands can be issued to the activated row before precharging. Also, there needs

to be a gap of at least tRTP between a RD and a subsequent PRE command.

Now, each GDDR5 channel is 64-bits wide (with 2 x32 GDDR5 chips on the

channel); thus, 4 DRAM command clock cycles (8 DRAM data clock cycles) are

needed to transfer one 128B cache-line.

First, consider that the scheduler has a single bank of GDDR5 to schedule requests

to. With 6 or less RDs, the time period is tRC (tRCD+tCAS+6∗tBURST = tRC)

and is more otherwise.

Thus if n, the number of row-hit requests issued per bank, is less than 6, then the

bandwidth utilization is given by

utilization =
tBurst ∗ n

tRC
(4.1)

On the other hand, with 7 or more column reads, the utilization is

utilization =
tBurst ∗ n

tRCD + tBurst ∗ n+ (tRTP − tBurst) + tRP
(4.2)

Substituting values for GDDR5, the utilization numbers are given by the following

equations.

If n is less than or equal to 6, utilization is given by

utilization =
4 ∗ n

60
(4.3)

and if n is more than 6, utilization is given by

utilization =
4 ∗ n

4 ∗ n+ 34
(4.4)

61

With reads from two different banks, reads to one bank can overlap the tRCD,tRTP

and tRP stalls required in the other. If there were 9 bursts per row-bank, then the

utilization can reach close to 100%. With 4 or 8 banks, only 4 or 2 bursts per row-bank

are required to reach close to maximum bandwidth utilization. The row-to-row

activation delay (tRRD) constraint prevents reaching maximum utilization with only

a single row-burst to a bank.

The minimum number of row-bursts required per bank while rotating between

different banks to achieve high bandwidth utilization can be used by the controller

to estimate when it is safe to schedule a row-miss request. This enables the scheduler

to service the row-miss request with low queueing delay and still allows the bus

utilization to remain high.

The MERB scheduler primarily picks warps that are bank-friendly, similar to the

BASJF scheduler. However, in contrast to the BASJF+AB scheduler, it opportunisti-

cally schedules row-miss requests using the MERB metric, often before the warp with

the row-miss request has passed the age threshold. If the total number of row-hit

requests across the banks is enough to hide the latency of a row-miss request, the

scheduler schedules the oldest warp with a row-miss request. In essence, the MERB

scheduler tries to alleviate the negative impact that the BASJF+AB scheduler has

on bandwidth utilization.

4.3.6 Warp-Aware Write Draining (WAWD)

Writes to the DRAM are typically off the critical path. As a result, they are

buffered in write queues. When the write-queue occupancy goes above a high-water-

mark, the writes are drained from the write queue until the queue occupancy drops

below a low-water-mark. At this time, reads are typically not scheduled because

switching from a write to a read incurs idle cycles on the data bus due to the write-

to-read turnaround delay (tWTR) [35]. Thus, reads can be stalled for a long time

by the write-drain mechanism. All the warp-aware memory scheduling mechanisms

described above use a modified write-drain mechanism that is warp-aware. Before

starting the write-drain mechanism, the read queue is checked and the scheduler

continues to issue reads if

• the reads are from warp-groups with a single request

62

• the reads are from warp-groups a subset of whose requests have been sent to

the bank queues.

In effect, this ensures that the write-drain mechanism does not unduly stall some

warps. Since this optimization is applied to every warp-aware scheduling scheme,

it does little to improve the relative performance of these schemes. However, this

helps improve performance over a naive, non-warp-aware draining scheme used in the

baseline. With warp-group preemption, it is possible that up to 4 different warp-

groups are in the transaction scheduler stage in the memory controller. The WAWD

scheme first dequeues all requests from these warp-groups to the bank queues and

then scans the batching unit for completed warps with single requests. Even if the

warp-group has high scores (i.e., a large expected completion time), the WAWD

scheme issues the warp ahead of the write-drain. The WAWD scheduler is triggered

once the write queue occupancy gets close to the high water mark and we empirically

observed that triggering the WAWD mechanism at (high water mark - 8) provides

the best performance.

4.3.7 Hardware Overhead

To identify the source warp of a request, each request needs to be tagged with

a warp-ID by the source SM. The 5 bits required to uniquely identify a warp will

not be a significant increase in the size of a request packet, which already contains

a SM identifier, a request ID (8 bits to allow each SM to have 256 outstanding

request), the command type, and the address. Depending on the flit size, this

might not require additional links in the interconnect. Previous studies have shown

that the interconnect delay does not have a big impact on the round trip memory

latency [77], [78], so a slight increase in packet size is not likely to impact performance.

The batch-formation stage needs a table to store the warp-IDs of the pending

requests in the queue and pointers to the requests belonging to each queue. With each

request potentially belonging to a different warp, a 64-entry CAM table indexed by

the warp-ID is required in the batching unit of each controller. The small CAM table

is sufficient because we track the requests only during the batching stage and thus

the time window is relatively small. This means that we do not need to provision the

tracking structure for every warp in the system. Once a batch is completely formed,

63

it is not tracked in the CAM. Each entry in this table is a pointer to a request

belonging to that warp in the Read Queue. Since each warp may have 32 different

requests at the same time and each pointer will be 6 bits wide, this requires a total

storage of 64 ∗ 32 ∗ 6 bits, or 1.5KB. A timestamp when the last observed request for

a warp arrived at the memory controller also needs to be recorded in this table. The

warp-group is marked complete by the batch scheduler once sufficient time has passed

since the arrival of the last request and is marked ready for the transaction scheduler

to consider. We maintain a 64-bit value for the timestamp which is updated with the

arrival timestamp of the last request for that warp-ID. In addition, each warp’s score

may be stored in the same table and we limit this to 8 bits per warp-group. Thus, the

final storage overhead is 2.06KB. In addition, to estimate the score of a warp-group,

each bank queue needs to maintain information about the total score of the requests

in the queue and the row-address of the last entry in the queue. This again is little

overhead to maintain and is similar to what a FR-FCFS scheduler would need in the

baseline.

4.3.8 Summary of Proposed Schemes

The proposed schemes thus try to reduce the average effective memory latency

for a warp (i.e., latency of the last request from the warp). A batching unit creates

batches of requests for each warp (warp-groups) and the transaction scheduler picks

different warps to schedule. With the exception of the WAFCFS scheme, the rest

of the schemes progressively add features on top of the preceding one. First, the

BASJF scheme tries to estimate the relative cost of servicing different warp-groups

and prioritizes the shortest job. The BASJF+AB scheme introduces an age-bias to

the BASJF scheme that also allows older warp-groups to be sometimes prioritized

over shorter warp groups. The age bias effectively acts as an implicit communication

mechanism between different memory controllers. The MERB scheme is an addition

to the BASJF+AB scheduler. It carefully orchestrates the scheduling to ensure that

older long running warp-groups (due to row-misses) are scheduled in conjunction with

smaller, row-hit warp-groups in other banks to effectively use the bandwidth. This

helps address the bandwidth inefficiencies introduced by the BASJF+AB scheme.

Finally, the WAWD scheme adds warp-aware write draining to the MERB scheme

64

and tries to eliminate situations where a subset of requests from a warp-group are

orphaned by the write-drain mechanism. This reduces the write-induced stall time

for warp-groups with only one or few requests.

4.4 Methodology

We use GPGPU-Sim version 3.1.2 [78], [79] from the University of British Columbia

for our experiments. We model a GPU very similar to NVIDIA’s GTX-480 GPU.

The simulator has been verified against real hardware and reported to be within 3%

accuracy [80]. The salient features of the GPU are listed in Table 4.1. We integrate

the DRAM timing model from the USIMM [20] DRAM simulator after modifying

USIMM to model GDDR5 timing and the memory controller model proposed in 4.3.1.

We model a Hynix 1Gb GDDR5 DRAM part [76], and the timing constraints that

were modeled are listed in Table 4.1.

Table 4.1. Simulation Parameters.

GPU System Configuration

No. of Compute Units 30
Warp Size 32

Max Threads/Core 1024
L1 cache/Core 32KB, 128B cache-line size

8-way assoc. LRU
Number of DRAM channels 8
L2 cache/Memory partition 128KB, 128B line-size

16-way assoc, LRU
DRAM device Hynix GDDR5 H5GQ1H24AFR [76]

6 64-bit Channels
DRAM 2 x32 Chips/Channel

Configuration 16 Banks/Chip
4 Banks/Bank Group

GDDR5 Pin Bandwidth 6.0 Gbps
GDDR5 Clk period (tCK) .667ns

DRAM Read Queue 64 entries per controller
DRAM Write Queue 64 entries per controller
High/Low Watermarks 32/16

tRC=40ns, tRCD=12ns, tRP=12ns
GDDR5 tCAS=12ns, tRAS=28ns, tFAW=23ns
Timing tWTR=5ns, tFAW=23ns, tWL=4 tCK

Parameters tRAS=28ns, tRTP=2ns, tRTRS=1 tCK
tCCDL=3 tCK, tCCDS=2 tCK

65

To evaluate our proposals, we use benchmarks from Parboil [81], Rodinia [82],

Mars [83], and Lonestar [37] suites. The complete list of benchmarks that we con-

sidered are shown in Table 4.2. We group these benchmarks into three groups as

follows:

• Type-1 Applications: Type-1 applications are memory-sensitive and produce

more than one uncoalesced memory accesses per load.

• Type-2 Applications: These applications are memory sensitive, but have

perfectly coalesced memory accesses (i.e., a single request per warp on average).

• Type-3 Applications: These are not sensitive to memory performance show-

ing less than 15% improvement with a perfect L1 cache and hence are not

affected by our proposals.

We investigate the impact of our schemes on applications belonging to the Type-

1 and Type-2 categories. We run each benchmark for 1 billion instructions or to

completion, whichever is earlier.

4.5 Evaluation

We evaluate the impact of our proposed scheduling schemes on Type-1 and Type-

2 applications. We compare the following five schedulers against the the baseline

throughput optimized scheduler:

• Warp-Aware FCFS (WF in the figures)

• Bank-Aware Shortest-Job-First (B in the figures)

• Bank-Aware Shortest-Job-First with Age-Bias (B+A)

• Minimum Efficient Row Burst (B+A+M)

• Warp-Aware Write-Drain (B+A+M+W)

4.5.1 Impact on Type-1 Applications

In this section, we look at the performance impact of the four different scheduling

schemes discussed in Section 4.3.

Fig. 4.4 and Fig. 4.5, respectively, show the IPC improvement and average effective

DRAM latency experienced by warps with the different scheduling schemes. The

results for the simulations have been normalized to a baseline FR-FCFS policy.

66

Table 4.2. Workloads

Abbr. Benchmark Suite

Type-1 Applications
sad Sum of Absolute Differences Parboil
spmv Sparse-Matrix

Dense-Vector Multiplication Parboil
bfs Breadth-First Search Rodinia
cfd CFD Solver Rodinia

kmeans K-Means Clustering Rodinia
nw Needle-Man Wunsch Rodinia
PVC PageViewCount MapReduce
SS SimilarityScore MapReduce
bh Barnes-Hut LonestarGPU
sp Survey Propagation LonestarGPU
sssp Single-Source Shortest Paths LoneStarGPU

Type-2 Applications
stream Streamcluster Rodinia
srad2 SRAD2 Rodinia
bp Backpropagation Rodinia

hotspot HotSpot Rodinia
invindex InvertedIndex MapReduce
PVR PageViewRank MapReduce

Type-3 Applications
pf Particlefilter Rodinia

lukcyt Leukocyte Rodinia
lud LU Decomposition Rodinia
mm Matrix Multiplication Rodinia
hw Heartwall Rodinia

4.5.1.1 WAFCFS:

We see that the WAFCFS scheme (the WF bar in the figures) is the worst

performing across the board, with an average performance degradation of 11.2% over

the baseline. This is still better than a naive FCFS scheme which does not form

warp-groups by about 15%. By grouping requests from a warp together, the WAFCFS

scheme sees higher row-hit rates than FCFS and also manages to reduce the effective

memory latency of a warp over FCFS by eliminating interwarp interference. However,

grouping warps alone does not recover all the row locality that an out-of-order

FR-FCFS scheduler would be able to exploit, and this leads to the overall degradation

in performance.

67

Figure 4.4. Performance normalized to FR-FCFS baseline

Figure 4.5. Effective main memory latency normalized to FR-FCFS baseline

4.5.1.2 BASJF:

The BASJF scheme (the B bar in the figures) provides an improvement of 3.4%

over the baseline. This improvement is due to a 9.1% reduction in effective memory

latency experienced by the warps. The reduction in latency comes from the carefully

orchestrated scheduling of warp-groups by BASJF that allows requests from a warp

to finish together. The BASJF scoring system prioritizes warp-groups with row-

hits over row-miss requests and as a result, its row-hit rate is very similar to the

baseline FR-FCFS case. Consequently, BASJF allows the GDDR5 system to maintain

bandwidth utilization that is only 1.3% lower than the baseline. BASJF benefits are

most pronounced for applications like sad, nw, and SS with these benchmarks showing

up to 6.5% improvement. Warps from these applications generate several uncoalesced

requests, but each warp accesses only one memory controller in the common case,

which allows the BASJF scheduler to optimize the access stream. On the other hand,

applications such as spmv, sp, and sssp show relatively lower benefits because each

warp in these applications accesses multiple memory controllers in the common case

68

and the BASJF scheduler has no form of coordination between the controllers to

reduce the intrawarp, intercontroller latency variation.

4.5.1.3 BASJF+AB:

The BASJF+AB scheme’s (B+A in the figures) primary goal is to implicitly

coordinate the servicing of warp-groups in different controllers. This is done with the

age-bias which forces the controller to pick warp-groups that have been stalled in the

transaction queue for a long time. With the age-bias set to the same value in all con-

trollers, each memory controller picks warp-groups belonging to the same warp very

often. As expected, BASJF+AB outperforms BASJF for some applications whose

warps generate requests to multiple memory controllers. Applications cfd, spmv,

sssp and sp whose warps touch 3.2 memory controllers on average show performance

improvements up to 9% over the baseline. However, unlike BASJF, BASJF+AB

also has the potential to degrade performance. Applications such as PVC and bfs,

which are bandwidth sensitive and frequently require the involvement of only a single

memory channel for their warp’s data requests, suffer from the increased row-miss rate

introduced by BASJF+AB. By enforcing the age-bias, BASJF+AB often prioritizes

row-misses over row-hits. Applications with a limited memory controller spread do

not enjoy any of the benefits of the BASJF+AB and instead suffer from the reduced

bandwidth utilization of BASJF+AB. Fig. 4.6 shows that for PVC and bfs, the

BASJF+AB scheme reduces the effective bandwidth utilization by 13%, and 8%,

respectively, leading to performance degradation. In fact, BASJF+AB reduces the

bandwidth utilization for all benchmarks compared to FR-FCFS. This is expected

because FR-FCFS is designed to maximize bandwidth utilization by prioritizing

row-hits over row-misses. However, for applications like cfd, sp, sssp, and nw, the

effect of the reduced bandwidth utilization is outweighed by the effect of the reduced

effective DRAM latency, which results from the elimination of intrawarp latency

divergence. As a result of the interplay of these opposing factors, BASJF+AB shows

improvements up to 10.8% and degradations up to 2.9%. This leads to an average

improvement of only 4.0% with the BASJF+AB scheme.

To estimate the effectiveness of the age-bias in coordinating between different

memory-controllers, we compare the BASJF+AB scheme against a hypothetical,

69

multimemory-controller-aware scheme that we call Ideal Coordination (results shown

in Fig. 4.7). In this scheme, whenever a controller picks a warp-group to service,

it sends an instantaneous message to the other memory controllers with the cur-

rently selected warp-ID. The other memory-controllers prioritize the requests from

the specified warp. This scheme thus abstracts away the complexities of explicit com-

munication between controllers. We see that the BASJF+AB scheme closely follows

the Ideal Coordination scheme in terms of overall performance, which demonstrates

that the age-bias can accomplish a degree of intermemory-controller coordination

implicitly. The difference is more pronounced in the case of applications where many

memory-controllers are involved in satisfying the request of a single warp (e.g., cfd,

kmeans, and sp). Overall the Ideal Coordination scheme differs from the BASJF+AB

scheme by 1.1%.

4.5.1.4 MERB:

The MERB scheduler (B+A+M) tries to preserve the benefits of BASJF+AB,

namely the implicit coordination between different memory controllers and, at the

same time, intends to provide high bandwidth. This is achieved by allowing warps

with row-misses to be scheduled as soon as enough requests are found to other DRAM

banks with row-hits. This allows the row-hits in the other banks to hide the overheads

involved with precharging the bank and opening a new row. The MERB scheduler

Figure 4.6. Bandwidth Utilization Compared to FR-FCFS

70

thus improves the bandwidth utilization of the BASJF+AB scheme by hiding the

row-miss overhead with overlapped row-hits. Fig. 4.6 shows the effect of MERB on

the effective bandwidth utilization. By allowing row-misses to occur in a completely

(or sufficiently) overlapped manner with the row-hits in other banks, MERB can not

only recover the bus efficiency lost by BASJF+AB, it can improve the utilization over

a baseline FR-FCFS in some cases. The effective main memory latency is lowered

by 16.4% compared to the baseline (an improvement of 7% over the BASJF+AB

scheme). Combined with the near-optimal bandwidth utilization, this leads to an

increase of performance by 6.9% over the baseline. Applications like PVC, bfs, and

SS which had suffered from the increased row-miss rates of BASJF+AB now show

improvements of up to 6.3% over the baseline.

4.5.1.5 WAWD:

The WAWD mechanism (B+A+M+W in the figures) represents the warp-aware

write management scheme when it is applied to the final warp-aware memory sched-

uler (MERB). The WAWD mechanism ensures that long latency write-drains do not

stall small warp-groups (containing one request) or warp-groups which have already

received some service from the memory controller. Write drains have been shown

Figure 4.7. Effectiveness of Age-Bias

71

to be detrimental to CPU performance [16], [35], and we see in Fig. 4.8 that the

write traffic in GPUs constitutes a larger fraction of the memory traffic than what is

conventionally found in CPUs. Fig. 4.4 shows that the WAWD scheduling increases

the performance by an average of 8.9% over the baseline. Larger improvements are

seen in cases where the write-to-read ratio is high, such as sad, and also in applications

which generate few memory requests per warp, such as nw.

4.5.2 Impact on Type-2 Applications

Type-2 applications have structured and regular data accesses, exhibit high spatial

locality, and are bandwidth-bound in many cases. We found that there is a modest

1.4% performance improvement on average with the MERB+WAWD scheme over

the baseline throughput-optimized scheduler (Fig. 4.9). None of the applications

show any performance degradation. This is expected because all the warp-aware

scheduling schemes, with the exception of WAFCFS, behave similar to the baseline

throughput-optimized scheduler for regular applications. For example, in BASJF

(and MERB), when there is only one memory request per warp, the scoring system

will always allow older row-hits to be prioritized over row-misses and younger row-hits

and thus will behave similar to the FR-FCFS policy. The performance gains with

Figure 4.8. Write Intensity

72

MERB+WAWD can be attributed to two factors. First, MERB handles row-miss

requests more efficiently than the baseline; this is corroborated by the somewhat

improved bandwidth utilization in a few benchmarks (stream, PVR, hotspot). Also

with WAWD, the delaying of the write-drains helps a few pending reads and the

waiting warps for the additional performance improvement. This demonstrates that

when applications are regular and have high degree of coalescing, the MERB+WAWD

scheduler is marginally better than the bandwidth-optimizing baseline scheduler.

Since traditional graphics workloads are latency-insensitive and bandwidth-intensive,

they would behave similar to the Type-2 workloads.

4.5.3 Comparison with Single-Bank Warp-Aware Scheduling

Lakshminarayana et al. were the first to propose a warp-aware memory scheduling

policy in [84]. Their strategy comprises the formation of queues of requests from each

warp at the memory controller and on every cycle, using an evaluation function [85]

to decide between issuing a row-hit request and a request belonging to the warp-

group that was recently serviced and is also the shortest queue (in terms of requests

remaining in the warp-group).

The algorithm in [84] uses a potential function that, by default, aims to maximize

the row-hit rate. A parameter α is used to bias the potential function towards

Figure 4.9. Performance Impact on Type-2 Applications

73

preferring a request from the smallest remaining warp-group. This parameter has

to be determined empirically and set statically for each program. In contrast, our

batch-formation and scheduling schemes (BASJF and BASJF+AB) determine the

completion time of a warp-group and schedules the one with the shortest completion

time and not from the warp-group that has the fewest requests. When a selected

warp-group has row-miss requests, the MERB scheduler finds the scheduling slot

when the row-miss can be overlapped efficiently with row-hits in other banks. Thus,

our method is more general and does not require profiling of applications to figure out

the right balance between warp-aware scheduling and FR-FCFS. Also, the algorithm

in [84] applies to within a bank. As we have shown in Section 4.5, it is important to

coordinate the scheduling of requests across banks and even multiple channels. Our

schemes determine the completion time of warp-groups with information from every

bank-queue. In [84], writes are interleaved with reads in the baseline as well as in the

proposed schemes. We assume a more conventional, and higher performance baseline

write scheduling mechanism and we incorporate warp-awareness in the write-drain

mechanism to avoid starving critical, orphaned reads. Finally, the potential function

in [84] requires a combination of complex calculations. The BASJF scheme and its

derivatives require simple addition and comparison operations to select a warp-group.

We compare the MERB scheme with a variant of the α-SJF scheme [84], which we

call the Single-Bank Warp-Aware Scheduler (SBWAS). In SBWAS, at each cycle, the

transaction scheduler schedules either a row-hit request to a bank or a request from

the warp-group with the fewest requests for that specific bank (there is no global bank

information) and rotates over banks in round-robin fashion. The row-hit request is

picked with a probability of α. For each benchmark, we determined the value of α

by profiling (possible values being 0.25, 0.5, and 0.75). We found that on average,

SBWAS provides an improvement of 2.51 % compared to the baseline warp-unaware

scheduler. The applications which generate requests to multiple banks and controllers

(e.g., spmv, sp, ssp, cfd) show little improvement with SBWAS. bfs shows the most

improvement with SBWAS as it touches fewer banks than other benchmarks (3.8%).

On the other hand, although the application sad generally touches one or two banks

74

per warp, the high number of writes erode the benefits of SBWAS when interleaved

with reads.

4.6 Related Work

4.6.1 Memory Scheduling

A large body of work has looked at memory scheduling techniques for multicore

systems [10], [12]–[14], [34], [35].

4.6.2 GPU Memory Scheduling

The only paper that explores the benefits of warp-aware scheduling is by Laksh-

minarayana et al. [84], which we discuss in detail in Section 4.5.3. Staged-Memory-

Scheduling [15] aims to improve the bandwidth utilization of the DRAM channel in a

heterogeneous CPU+GPU system by forming batches of row-hit requests from each

source and then arbitrating between these requests. Jeong et al. propose a QoS

aware policy that allows the GPU to consume only the bandwidth that is absolutely

necessary to maintain a certain QoS [86] and prioritize CPU requests to provide the

latency sensitive CPUs with low latency. Yuan et al. [77] order requests from a SM

at the interconnect to harvest intrawarp locality with a simple FCFS scheduler by

eliminating interwarp request interleaving. However, none of the proposed techniques

have looked at the importance of incorporating warp-level ideas to reduce memory

divergence.

4.6.3 PAR-BS:

The PAR-BS scheme [34] forms batches of requests in a CPU’s memory controller

and issues requests from a batch to the memory system. The express motivation

behind the batch-formation is fairness and as a result, a batch in PAR-BS will include

requests from many threads and have different batches for different banks. Our

batching scheme does exactly the opposite and groups requests from a warp together

to reduce the latency divergence of a warp. In addition, we arbitrate between batches

based on a bank-aware shortest job first policy to reduce wait time for warps, which

is different from PAR-BS, which uses a MLP-based SJF policy for thread priorities.

75

4.6.4 ATLAS:

The ATLAS scheduler [13] was proposed to promote fair-scheduling across chan-

nels in a multimemory-controller CPU-chip. ATLAS uses the Least-Attained-Service

metric to rank thread priorities and a long time quanta after which different memory

controllers exchange information to update thread ranks for the next execution epoch.

Threads which received lower service in the previous quanta are prioritized over

others. The main impediment to implementing an ATLAS-like scheduler in SIMT

context is the need for intermemory-controller information exchange at a fine time

granularity. The ATLAS scheme uses long time quantas for scalability, whereas

we need memory-controllers to coordinate at the granularity of warps. We also

show that a strong age-bias can effectively achieve this coordination without explicit

communication. In addition, none of the schemes described above mitigate the impact

of the write-drain policy. Our warp-aware write-drain scheme provides significant

benefits in many benchmarks.

4.6.5 Memory Divergence Mitigation in GPUs

Instead of utilizing warp-level multithreading to hide the memory divergence

latency, Meng et al. [18] advocate intrawarp latency hiding. This is accomplished

through dynamic warp subdivision, a technique that allows some threads in a warp

to make progress while the others are stalled on memory accesses [87]. This requires

a single warp to be able to occupy multiple slots in the warp-scheduler and thus

incurs at least double the cost and complexity in the scheduling hardware in each

core. Several software optimizations have been proposed to tackle memory divergence.

These include data herding [19] to force all threads in a warp to load from the same

memory block through a compiler framework, a runtime system that tries to optimize

the memory layout to reduce memory divergence [88] as well as techniques to improve

memory coalescing [89]. Recently other techniques have been proposed to reduce

effective memory latency [72], [90], [91].

4.7 Conclusions

Memory divergence is a complex problem which is affected by the nature of

data parallel applications and by the implementations of the compilers, libraries,

76

and the runtime system. We show that existing GPUs can be made more efficient

by incorporating warp-awareness in the DRAM scheduling policy. We demonstrate

novel techniques that can be implemented in state-of-the-art schedulers to reduce

the interwarp interference leading to lower effective DRAM stall times for warps.

The proposed scheduler (MERB) can reduce the latency of stalled warps while main-

taining good bandwidth utilization. Our best-performing scheduler boosts average

performance by 8.6% over a throughput-optimized baseline.

CHAPTER 5

USIMM: A SIMULATION FRAMEWORK

FOR MAIN MEMORY

The USIMM DRAM simulator was released in 2012 as the simulation infrastruc-

ture for the Memory Scheduling Championship held with ISCA-2012. USIMM is a

detailed main memory timing simulator. In its native form, USIMM uses a trace-based

input and a simple out-of-order processor model. However, the modular design has

allowed it to be integrated with other execution driven full-system simulators such

as SIMICS [48] and GPGPU-Sim [78]. In this chapter, we describe the simulation

infrastructure in detail: the software architecture of the simulator, the verification

methodology, and the simulator accuracy.

5.1 Simulator Design

5.1.1 High-Level Overview

This section provides a detailed description of the USIMM code. USIMM has the

following high-level flow. A front-end consumes traces of workloads and models a

reorder buffer (ROB) for each core on the processor. Memory accesses within each

ROB window are placed in read and write queues at the memory controller at each

channel. Every cycle, the simulator examines each entry in the read and write queues

to determine the list of operations that can issue in the next cycle. A scheduler

function is then invoked to pick a command for each channel from among this list of

candidate commands. This scheduler function is the heart of the USIMM simulator

and can be customized easily to implement different schedulers. The underlying

USIMM code is responsible for modeling all the correctness features: DRAM states,

DRAM timing parameters, and models for performance and power. The scheduler

must only worry about performance/power features: heuristics to select commands

every cycle such that performance, power, and fairness metrics are optimized. Once

78

the scheduler selects these commands, USIMM updates DRAM state and marks

instruction completion times so they can be eventually retired from the ROB.

5.1.2 Code Files

The code is organized into the following files:

• main.c : Handles the main program loop that retires instructions, fetches

new instructions from the input traces, and calls update memory(). Also calls

functions to print various statistics.

• memory controller.c : Implements update memory(), a function that checks

DRAM timing parameters to determine which commands can issue in this cycle.

Also has functions to calculate power.

• scheduler.c : Function provided by the user to select a command for each

channel in every memory cycle.

• configfile.h memory controller.h params.h processor.h scheduler.h utils.h

utlist.h : various header files.

5.1.3 Inputs

The main() function in file main.c interprets the input arguments and initializes

various data structures. The memory system and processor parameters are derived

from a configuration file, specified as the first argument to the program. Each

subsequent argument represents an input trace file. Each such trace is assumed to

run on its own processor core.

5.1.4 Simulation Cycle.

The simulator then begins a long while loop that executes until all the input traces

have been processed. Each iteration of the while loop represents a new processor

cycle, possibly advancing the ROB. The default configuration files assume 3.2 GHz

processor cores and 800 MHz DRAM channels, so four processor cycles are equivalent

to a single memory bus cycle. Memory functions are invoked in processor cycles that

are multiples of four.

79

5.1.5 Commit

The first operation in the while loop is the commit of oldest instructions in the

pipelines of each core. Each core maintains a reorder buffer (ROB) of fixed size that

houses every in-flight instruction in that core. For each core, the commit operation in

a cycle attempts to sequentially retire all completed instructions. Commit is halted

in a cycle when the commit width is reached or when an incomplete instruction is

encountered. A commit width of 2 per processor cycle corresponds to a core IPC of

2 if the trace was devoid of memory operations. The simulated IPC for most traces

will be much less than 2.

5.1.6 Checking for Readiness

The next operation in the while loop is a scan of every memory instruction in the

read and write queues of the memory controller to determine what operation can issue

in this cycle. A single memory instruction translates into multiple memory system

commands (e.g., PRE, ACT, Column-Read). Our scan first computes what the next

command should be. Note that this changes from cycle to cycle based on the current

row buffer contents, the low-power state, and whether a refresh is being performed.

We also examine a number of DRAM timing parameters to determine if the command

can issue in this cycle. In addition to examining the read and write queues, we

also consider the list of general commands (refresh, power down/up, precharge) and

determine if they can be issued.

5.1.7 Scheduling

Once a list of candidate memory commands for this cycle is determined by our

scan, a schedule() function (in file schedule.c) is invoked. This is the heart of the

simulator and the function that must be provided by contestants in the JWAC MSC.

In each memory cycle, each memory channel is capable of issuing one command. Out

of the candidate memory commands, the schedule function must pick at most one

command for each channel. Once a command has been issued, other commands that

were deemed “ready for issue in this cycle” to the same channel will be rejected in

case the scheduler tries to issue them. While each channel is independently scheduled,

some coordination among schedulers may be beneficial [13].

80

5.1.8 Instruction Completion Times

Once the scheduler selects and issues commands, the simulator updates the state

of the banks and appropriately sets the completion time for the selected memory

instructions. This eventually influences when the instruction can be retired from the

ROB, possibly allowing new instructions to enter the processor pipeline.

5.1.9 Advancing the Trace and Trace Format

Next, new instructions are fetched from the trace file and placed in the ROB.

Memory instructions are also placed in the read and write queues. This process

continues until either the ROB or write queues are full or the fetch width for the core

is exhausted. The trace simply specifies if the next instruction is a memory read (R),

memory write (W), or a nonmemory instruction (N). In case of memory reads and

writes, a hexadecimal address is also provided in the trace. For the MSC, we assume

that a trace can only address a 4 GB physical address space, so the trace is limited

to 32-bit addresses. Memory writes do not usually correspond to actual program

instructions; they refer to evictions of dirty data from cache. As a simplification,

we assume that each line in the trace corresponds to a different program instruction.

Note that this is an approximation not just because of cache evictions, but because

some x86 instructions correspond to multiple memory operations and the traces will

occasionally include memory accesses to fetch instructions (and not just data).

5.1.10 Fetch Constraints and Write Drains

We assume that nonmemory (N) and memory write (W) instructions finish in-

stantaneously, i.e., they are never bottlenecks in the commit process. Memory-writes

will hold up the trace only when the write queue is full. To prevent this, it is the

responsibility of the scheduler to periodically drain writes. Memory-reads are initially

set to complete in the very distant future. The schedule function will later determine

the exact completion time and update it in the ROB data structure. We do not model

an explicit read queue size. The typical length of the read queue is determined by the

number of cores, the size of the ROB, and the percentage of memory reads in a ROB.

In other words, we assume that the read queue is not underprovisioned, relative to

81

other processor parameters. The write queue on the other hand does need a capacity

limit in our simulator since a write queue entry need not correspond to a ROB entry.

5.1.11 Refresh Handling

The simulator ensures that in every 8 × tREFI window, all DRAM chips on a

channel are unavailable for time 8× tRFC, corresponding to eight refresh operations.

If the user neglects to issue eight refreshes during the 8×tREFI time window, USIMM

will forcibly issue any remaining refreshes at the end of the time window. During this

refresh period, the memory channel is unavailable to issue other commands. Each

cycle, the simulator calculates a refresh deadline based on how many refreshes are

pending for that window and eventually issues the required number of refreshes at

the deadline. In order to ensure that the refresh deadline is not missed, the simulator

marks a command ready only if issuing it does not interfere with the refresh deadline.

So, when the refresh deadline arrives, the DRAM chip will be inactive (i.e., the banks

will be precharged and in steady state or some rows will be open but with no on-going

data transfer). The rank may also be in any of the power-down modes, in which case,

it will be powered up by the auto refresh mechanism; the user does not need to issue

the power-up command explicitly. At the end of the refresh period, all banks are in

a precharged, powered-up state.

5.1.12 Implicit Scheduling Constraints

It is worth noting that the simulator design steers the user towards a greedy

scheduling algorithm, i.e., the user is informed about what can be done in any given

cycle and the user is prompted to pick one of these options. However, as we show

in the example below, the user must occasionally not be tempted by the options

presented by the simulator. Assume that we are currently servicing writes. A read

can only be issued if time tWTR has elapsed since the last write. Hence, following

a write, only writes are presented as options to the memory scheduler. If the user

schedules one of these writes, the read processing is delayed further. Hence, at some

point, the scheduler must refrain from issuing writes so that time tWTR elapses and

reads show up in the list of candidate commands in a cycle.

82

5.1.13 Address Mapping

A cache line is placed entirely in one bank. The next cache line could be placed in

the same row, or the next row in the same bank, or the next bank in the same rank,

or in the next rank in the same channel, or in the next channel. The data mapping

policy determines the extent of parallelism that can be leveraged within the memory

system. The MSC focuses on two different processor-memory configurations; each

uses a different data mapping policy. The first configuration (1channel, with AD-

DRESS MAPPING set to 1) tries to maximize row buffer hits and places consecutive

cache lines in the same row, i.e., the lower-order bits pick different columns in a given

row. The address bits are interpreted as follows, from left (MSB) to right (LSB):

1channel mapping policy :: row : rank : bank : channel : column : blockoffset

The second configuration (4channel, with ADDRESS MAPPING set to 0) tries to

maximize memory access parallelism by scattering consecutive blocks across channels,

ranks, and banks. The address bits are interpreted as follows:

4channel mapping policy :: row : column : rank : bank : channel : blockoffset

5.1.14 Example Schedulers

As part of the USIMM distribution, the following set of sample baseline scheduler

functions were released. These functions were meant to demonstrate the general

programming approaches that could be adapted by the MSC contestants.

5.1.14.1 FCFS, scheduler-fcfs.c

True FCFS, i.e., servicing reads in the exact order that they arrive and stalling

all later reads until the first is done, leads to very poor bank-level parallelism and

poor bandwidth utilization. We therefore implement the following variant of FCFS.

Assuming that the read queue is ordered by request arrival time, our FCFS algorithm

simply scans the read queue sequentially until it finds an instruction that can issue

in the current cycle. A separate write-queue is maintained. When the write queue

size exceeds a high water mark, writes are drained similarly until a low water mark

is reached. The scheduler switches back to handling reads at that time. Writes are

also drained if there are no pending reads.

83

5.1.14.2 Credit-Fair, scheduler-creditfair.c

For every channel, this algorithm maintains a set of counters for credits for each

thread, which represent that thread’s priority for issuing a read on that channel.

When scheduling reads, the thread with the most credits is chosen. Reads that

will be open row hits get a 50% bonus to their number of credits for that round of

arbitration. When a column read command is issued, that thread’s total number of

credits for using that channel is cut in half. Each cycle all threads gain one credit.

Write queue draining happens in an FR-FCFS manner (prioritizing row hits over row

misses). The effect of this scheduler is that threads with infrequent DRAM reads will

store up their credits for many cycles so they will have priority when they need to

use them, even having priority for infrequent bursts of reads. Threads with many,

frequent DRAM reads will fairly share the data bus, giving some priority to open-row

hits. Thus, this algorithms tries to capture some of the considerations in the TCM

scheduling algorithm [14].

5.1.14.3 Power-Down, scheduler-pwrdn.c

This algorithm issues PWR-DN-FAST commands in every idle cycle. Explicit

power-up commands are not required as power-up happens implicitly when another

command is issued. No attempt is made to first precharge all banks to enable a deep

power-down.

5.1.14.4 Close-Page, scheduler-close.c

This policy is an approximation of a true close-page policy. In every idle cycle, the

scheduler issues precharge operations to banks that last serviced a column read/write.

Unlike a true close-page policy, the precharge is not issued immediately after the

column read/write, and we do not look for potential row buffer hits before closing

the row.

5.1.14.5 First-Ready-Round-Robin, scheduler-frrr.c

This scheduler tries to combine the benefits of open row hits with the fairness of

a round-robin scheduler. It first tries to issue any open row hits with the “correct”

thread-ID (as defined by the current round robin flag), then other row hits, then row

misses with the “correct” thread-ID, and then finally, a random request.

84

5.1.14.6 MLP-aware, scheduler-mlp.c

The scheduler assumes that threads with many outstanding misses (high memory

level parallelism, MLP) are not as limited by memory access time. The sched-

uler therefore prioritizes requests from low-MLP threads over those from high-MLP

threads. To support fairness, a request’s wait time in the queue is also considered.

Writes are handled as in FCFS, with appropriate high and low water marks.

5.2 DRAM Timing Model

In this section, we take a detailed look at the heart of the USIMM DRAM

simulator, the part that maintains the DRAM state and decides the “readiness”

of the different DRAM commands. First, we discuss the different memory commands

that can be issued by the command scheduler.

5.2.1 Memory Commands.

In every cycle, the memory controller can either issue a command that advances

the execution of a pending read or write, or a command that manages the general

DRAM state. The four commands corresponding to a pending read or write are:

• PRE: Precharge the bitlines of a bank so a new row can be read out.

• ACT: Activate a new row into the bank’s row buffer.

• COL-RD: Bring a cache line from the row buffer back to the processor.

• COL-WR: Bring a cache line from the processor to the row buffer.

The six general “at-large” commands used to manage general DRAM state and

not corresponding to an entry in the read or write queues are:

• PWR-DN-FAST: Power-Down-Fast puts a rank in a low-power mode with

quick exit times. This command can put the rank into one of two states: active

power down or precharge power down (fast). If all the banks in the DRAM

chip are precharged when the PWR-DN-FAST command is applied, the chip

goes into the precharge power down mode. However, if even a single bank has

a row open, the chip transitions into the active power down mode. The power

consumption of the active power down mode is higher than that of the precharge

power down mode. In both these states, the on-chip DLL is active. This allows

the chip to power-up with minimum latency. To ensure transition into the lower

85

power state, it may be necessary to first precharge all banks in the rank (more

on this below).

• PWR-DN-SLOW: Power-Down-Slow puts a rank in the precharge power

down (slow) mode and can only be applied if all the banks are precharged.

The DLL is turned off when the slow precharge power-down mode is entered,

which leads to higher power savings, but also requires more time to transition

into the active state.

• PWR-UP: Power-Up brings a rank out of low-power mode. The latency of this

command (i.e., the time it takes to transition into the active state) is dependent

on the DRAM state when the command is applied (fast or slow exit modes).

If the chip is in the active power down mode, it retains the contents of the

open row-buffer when the chip is powered up. When the rank is powered down,

all pending requests to that rank in the read and write queue note that their

next command must be a PWR-UP. Thus, picking an instruction from the read

or write queues will automatically take care of the power-up, and an at-large

power-up command (similar to a PWR-DN-FAST or PWR-DN-SLOW) is not

required. Similarly, refresh operations will automatically handle the exit from

the power-down mode.

• Refresh: Forces a refresh to multiple rows in all banks on the rank. If a chip

is in a power-down mode before the refresh interval, the rank is woken up by

refresh.

• PRE: Forces a precharge to a bank. This makes the bank ready for future

accesses to new rows).

• PRE-ALL-BANKS: Forces a precharge to all banks in a rank. This is most

useful when preparing a chip for a power-down transition.

5.2.2 Timing Parameters

Table 5.1 shows the timing parameters that are honored by USIMM and Table 5.2

shows the minimum delays that are enforced between successive commands. In

response to the above commands, the next state of the DRAM is decided based

on the previous state.A subset of commands can be issued to the bank when it is in

one of the stable states.

86

Table 5.1. DRAM timing parameters for default memory system configuration.

Timing Default value Description
parameter (cycles at

800MHz)

tRCD 11 Row to Column command Delay. Interval
between row access and data ready at sense amplifiers.

tRP 11 Row Precharge. The time interval that it takes for
a DRAM array to be precharged for another row access.

tCAS 11 Column Access Strobe latency. The time interval
between column access command and the start of
data return by the DRAM device(s). Also known as tCL.

tRC 39 Row Cycle. The time interval between accesses
to different rows in a bank. tRC =tRAS +tRP.

tRAS 28 Row Access Strobe. The time interval between row access
command and data restoration in a DRAM array. A DRAM
bank cannot be precharged until at least tRAS time
after the previous bank activation.

tRRD 5 Row activation to Row activation Delay.
The minimum time interval between two
row activation commands to the same DRAM device.
Limits peak current profile.

tFAW 32 Four (row) bank Activation Window. A rolling time-frame
in which a maximum of four-bank activations can be engaged.
Limits peak current profile in DDR2 and DDR3
devices with more than 4 banks.

tWR 12 Write Recovery time. The minimum time
interval between the end of a write data burst
and the start of a precharge command.
Allows sense amplifiers to restore data to cells.

tWTR 6 Write To Read delay time. The minimum time interval
between the end of a write data burst and
the start of a column-read command. Allows I/O gating
to overdrive sense amplifiers before read command starts.

tRTP 6 Read to Precharge. The time interval between
a read and a precharge command.

tCCD 4 Column-to-Column Delay. The minimum column
command timing, determined by internal burst (prefetch)
length. Multiple internal bursts are used to form longer
burst for column reads. tCCD is 2 beats (1 cycle) for
DDR SDRAM, and 4 beats (2 cycles) for DDR2 SDRAM.

tRFC 128 Refresh Cycle time. The time interval between
Refresh and Activation commands.

tREFI 6240 Refresh interval period.
tCWD 5 Column Write Delay. The time interval between

issuance of the column-write command and
placement of data on the data bus by the DRAM controller.

tRTRS 2 Rank-to-rank switching time. Used in DDR and DDR2
SDRAM memory systems; not used in SDRAM or Direct
RDRAM memory systems. One full cycle in DDR SDRAM.

tPDMIN 4 Minimum power down duration.
tXP 5 Time to exit fast power down

tXPDLL 20 Time to exit slow power down
tDATATRANS 4 Data transfer time from CPU to memory or vice versa.

87

When a command is issued to a bank, it changes the state of the target bank

(or the target rank when the command is Refresh, PWR-UP, PWR-DN-SLOW,

PWR-DN-FAST, or PRE-ALL-BANKS). A subset of commands can be issued to

the bank when it is in one of the stable states. When a command is issued to a

bank, it changes the state of the target bank (or the target rank when the command

is Refresh, PWR-UP, PWR-DN-SLOW, PWR-DN-FAST, or PRE-ALL-BANKS). In

addition, it determines what is the earliest possible time when another command can

be issued to that bank (and also possibly other banks and ranks on that channel).

The values in Table 5.1 are typical of many Micron DDR3 chips, with only the tRFC

parameter varying as a function of chip capacity. Consider tWTR as an example

timing parameter. The direction of the memory channel data bus must be reversed

every time the memory system toggles between reads and writes. This introduces

timing delays, most notably the delay between a write and read to the same rank

(tWTR). To reduce the effect of this delay, multiple writes are typically handled in

succession before handling multiple reads in succession. Note that commands are not

required to turn the bus direction; if sufficient time has elapsed after a write, a read

becomes a candidate for issue.

Table 5.2. Command timing restrictions

Previous Command Next Command Rank Bank Minimum Gap

ACT ACT same same tRC (also tFAW to be considered)
ACT ACT same diff tRRD (also tFAW to be considered)
ACT PRE same same tRAS
ACT COL-RD same same tRCD
ACT COL-WR same same tRCD
PRE ACT same same tRP
PRE Refresh same same tRP

COL-RD COL-RD same any max(tBURST, tCCD)
COL-RD COL-RD diff any tBURST + tCCD
COL-RD COL-WR any any tCAS + tBURST + tRTRS - tCWD
COL-RD PRE same same tBURST + tRTP - tCCD
COL-WR COL-RD same any tCWD + tBURST + tWTR
COL-WR COL-RD diff any tCWD + tBURST + tRTRS - tCAS
COL-WR COL-WR same any max(tBURST, tCCD)
COL-WR COL-WR diff any tBURST + tODT
COL-WR PRE same same tCWD + tBURST + tWR
Refresh ACT same any tRFC
Refresh PRE same any tRFC

88

5.3 DRAM Power Model

The simulator also supports a power model. Relevant memory system statistics

are tracked during the simulation, and these are fed to equations based on those in

the Micron power calculator [92].

5.3.1 Memory Organizations

The power model first requires us to define the type of memory chip and rank

organization being used. The input configuration file specifies the number of channels,

ranks, and banks. This organization is used to support a 4 GB address space per core.

As more input traces are provided, the number of cores and the total memory capacity

grows. Accordingly, we must figure out the memory organization that provides

the required capacity with the specified channels and ranks. For example, for the

1channel.cfg configuration and 1 input trace file, we must support a 4 GB address

space with 1 channel and 2 ranks. Each rank must support 2 GB, and we choose to

do this with 16 x4 1 Gb DRAM chips. If 1channel.cfg is used with 2 input trace files,

we support an 8 GB address space with the same configuration by instead using 16

x4 2 Gb DRAM chips. For the MSC, we restrict ourselves to the configurations

in Table 5.3. USIMM figures out this configuration based on the input system

configuration file and the number of input traces. It then reads the corresponding

power and timing parameters for that DRAM chip from the appropriate file in the

input/ directory (for example, 1Gb x4.vi). The only timing parameter that shows

variation across DRAM chips is tRFC.

While the simulator can support more than 16 traces with 4channel.cfg and more

than 4 traces with 1channel.cfg, the power model does not currently support models

other than those in Table 5.3. The different allowed DRAM chips and the power

parameters for each are summarized in Table 5.4. The current and voltage values in

Table 5.4 were derived from Micron datasheets [31], [32], [47].

5.3.2 Power Equations

The power equations are as follows and are based on equations in the Micron

power calculator [92] and the Micron Memory System Power Technical Note [93]:

89

ReadPower = (IDD4R − IDD3n) ∗ VDD ∗%Cycles when data is being Read (5.1)

WritePower = (IDD4W − IDD3n) ∗ VDD ∗%Cycles when data is beingWritten (5.2)

RefreshPower = (IDD5 − IDD3n) ∗ VDD ∗ TRFC/TREFI (5.3)

ActivatePower = Max.Activate Power ∗ TRC/(Average gap betweenACTs) (5.4)

Max.Activate Power = ((IDD0−(IDD3N ∗TRAS+IDD2N ∗(TRC−TRAS))/TRC)∗VDD)

(5.5)

Background Power is the combination of many components. These components

are listed below.

act pdn = IDD3P ∗VDD∗%(T imeSpent in PowerDownwith atleast oneBank Active)

(5.6)

act stby = IDD3N ∗ VDD ∗%(T imeSpent inActive Standby) (5.7)

pre pdn slow = IDD2P0∗VDD∗%(T imeSpent in PreCharge PowerdownSlowMode)

(5.8)

pre pdn fast = IDD2P1∗VDD∗%(T imeSpent in PreCharge PowerdownFastMode)

(5.9)

pre stby = IDD2N ∗ VDD ∗%(T imeSpent in Standby with all Banks PreCharged)

(5.10)

Table 5.3. Different memory configurations in our power model.

System config Channels and Number of Memory Organization
file Ranks per Channel cores Capacity of a rank

1channel.cfg 1 ch, 2 ranks/ch 1 4 GB 16 x4 1 Gb chips
1channel.cfg 1 ch, 2 ranks/ch 2 8 GB 16 x4 2 Gb chips
1channel.cfg 1 ch, 2 ranks/ch 4 16 GB 16 x4 4 Gb chips
4channel.cfg 4 ch, 2 ranks/ch 1 4 GB 4 x16 1 Gb chips
4channel.cfg 4 ch, 2 ranks/ch 2 8 GB 8 x8 1 Gb chips
4channel.cfg 4 ch, 2 ranks/ch 4 16 GB 16 x4 1 Gb chips
4channel.cfg 4 ch, 2 ranks/ch 8 32 GB 16 x4 2 Gb chips
4channel.cfg 4 ch, 2 ranks/ch 16 64 GB 16 x4 4 Gb chips

90

Finally,

Background Power = act pdn+ act stby + pre pdn slow + pre pdn fast + pre stby

(5.11)

Power dissipated in the ODT resistors is called the Termination Power. Termina-

tion Power not only depends on the activity in the rank in question but also depends

on the activity in other ranks on the same channel. Power dissipated due to reads

and writes terminating in the rank in question is given by

ReadTerminate = pds rd ∗%CyclesReads from thisRank (5.12)

WriteTerminate = pds wr ∗%CyclesWrites to thisRank (5.13)

ReadTerminateOther = pds termRoth ∗%CyclesReads fromother Ranks (5.14)

WriteTerminateOther = pds termWoth ∗%CyclesWrites to other Ranks (5.15)

We use the same rank configuration as assumed in the Micron Technical Note [93];

hence, we assume the same ODT power dissipation. The values of pds rd, pds wr,

pds termRoth, pds termWoth are taken from the Micron Technical Note [93].

The total chip power is the sum of the individual components above. The above

DRAM chip power must be multiplied by the number of DRAM chips to obtain total

memory system power.

Table 5.4. Voltage and current parameters of modeled chips.

Parameter 1Gb x4 1Gb x8 1Gb x16 2Gb x4 2Gb x8 4Gb x4 4Gb x8

VDD 1.5 1.5 1.5 1.5 1.5 1.5 1.5
IDD0 70 70 85 42 42 55 55

IDD2P0 12 12 12 12 12 16 16
IDD2P1 30 30 30 15 15 32 32
IDD2N 45 45 45 23 23 28 28
IDD3P 35 35 35 22 22 38 38
IDD3N 45 45 50 35 35 38 38
IDD4R 140 140 190 96 100 147 157
IDD4W 145 145 205 99 103 118 128
IDD5 170 170 170 112 112 155 155

91

5.3.3 System Power Model

When computing energy-delay-product (EDP), we must multiply system power

with the square of system execution time. For our 4-channel configuration, we

assume that our system incurs 40 W of constant power overheads for processor

uncore components, I/O, disk, cooling, etc. Each core (including its private LLC)

incurs a power overhead of 10 W while a thread is running and 0 W (perfect power

gating) when a thread has finished. The rest comes from the memory system, with

the detailed estimation described above. Our 1-channel configuration is supposed

to represent a quarter of a future many-core processor where each channel on the

processor chip will be shared by many simple cores. Consequently, our system power

estimate with this configuration assumes only 10 W for miscellaneous system power

(a total 40 W that is divided by 4) and 5 W peak power per core (since the core is

simpler). Similar to the 4-channel configuration, a core is power-gated once a thread

has finished executing. In either system power model, the memory system typically

accounts for 15–35% of total system power, consistent with many reported server

power breakdowns [1], [94]–[97].

5.4 Using USIMM

The USIMM simulator can take multiple workload traces as input. Each workload

trace represents a different program running on a different core, with memory accesses

filtered through a 512 KB private LLC. The JWAC MSC will later construct and

release a specific set of workload traces, including commercial workload traces, which

will be used for the competition. The initial USIMM distribution has a few short

traces from single-thread executions of the PARSEC suite that can be used for testing.

The simulator is executed with multiple arguments. The first argument specifies

the configuration file for the processor and memory system. The remaining arguments

each specify an input trace file. The number of cores is the same as the number of

input trace files. The traces only contain the instruction types and memory addresses

accessed by a program, but no timing information (the timing is estimated during

the simulation). Based on the address being touched by a memory instruction, the

request is routed to the appropriate memory channel and memory controller.

92

Some of the traces are derived with publicly available benchmarks. These bench-

marks are executed with Windriver Simics [48] and its g-cache module to produce the

trace. Some of the traces are derived from commercial workloads. To keep simulation

times manageable, the traces released for the JWAC MSC simulated a few million

instructions, but these shortened traces were representative of the behavior for a

longer execution.

Each thread’s trace is restricted to a 4 GB space. When multiple traces are fed

to USIMM, the address space grows and each trace is mapped to its own 4 GB space

within this address space. This is implemented by adding bits to the trace address

(corresponding to the core ID). These additional bits are interpreted as part of the

row address bits. Thus, as more cores are added, the DRAM chips are assumed to

have larger capacities.

Modeling a shared cache would require us to predetermine the threads that will

share the cache. We therefore assume that each thread’s trace is filtered through a

private LLC. Since each core and trace is now independent, we can construct arbitrary

multicore workloads by feeding multiple traces to USIMM. When generating a trace

for a multithreaded application, we must confirm that a memory access is included

in a thread’s trace only after checking the private LLCs of other threads.

The JWAC MSC focused on two main system configurations. The first uses a

smaller scale processor core and a single memory channel, while the second uses a

more aggressive processor core and four memory channels. The two configurations

are summarized in Table 5.5, with the differences in bold. While a single channel

appears underprovisioned by today’s standards, it is more representative of the small

channel-to-core ratio that is likely in future systems. Table 5.6 lists all the different

workloads that were distributed with the simulator.

5.5 Validation Against Micron DDR3 Verilog Models

Validating a DRAM timing simulator is a nontrivial task. The command scheduler

needs to take into account the state of the DRAM banks, needs to be cognizant of the

consequence of the interaction of different commands, and most importantly, makes

sure to not violate the minimum timing delays between different commands. We

design a validation methodology for the USIMM simulator that aims to make sure

93

that the command scheduler never issues commands at a rate faster than what is

allowed by the physical characteristics of the DRAM device (as represented by the

timing parameters). For this, we make use of the Verilog device models provided

by Micron for DDR3 devices. These Verilog timing models have easily customizable

DRAM timing parameters (to model different kinds of DRAM chips) and define a

set of Verilog tasks, each of which corresponds to one DRAM command. These

Verilog modules, in conjunction with a Verilog input file that contains a list of the

different DRAM commands in the form of tasks, can be simulated in ModelSim. The

simulation will report violations if consecutive DRAM commands do not have the

necessary gap between them.

To verify USIMM, we first log all commands issued, their target address, and also

the time that elapses between consecutive commands. This log is then converted to

a Verilog file which serves as the test input for subsequent ModelSim simulations.

When this file is run with ModelSim, it basically amounts to replaying the commands

scheduled by the USIMM memory controller on the Verilog model. Any USIMM

simulation can be used to generate the log file and the consequent Verilog test input

and can be verified against the Micron models.

Table 5.5. System configurations used for the JWAC MSC.

Parameter 1channel.cfg 4channel.cfg

Processor clock speed 3.2 GHz 3.2 GHz
Processor ROB size 128 160

Processor retire width 2 4
Processor fetch width 4 4

Processor pipeline depth 10 10
Memory bus speed 800 MHz 800 MHz

DDR3 Memory channels 1 4
Ranks per channel 2 2
Banks per rank 8 8
Rows per bank 32768 × NUMCORES 32768 × NUMCORES

Columns (cache lines) per row 128 128
Cache line size 64 B 64 B
Address bits 32+log(NUMCORES) 34+log(NUMCORES)

Write queue capacity 64 96
Address mapping rw:rnk:bnk:ch:col:blk rw:col:rnk:bnk:ch:blk

Write queue bypass latency 10 cpu cycles 10 cpu cycles

94

With our verification methodology, we ran several programs and scheduling algo-

rithms. Of particular importance were the tests with the following three schedulers.

• FCFS This algorithm (see Section 5.1.14) issues a command as soon as it is

ready to be issued. In other words, this is the most aggressive in terms of issuing

DRAM commands and problems in the timing model are likely to be exposed

relatively easily with this scheduler.

• Power-Down This algorithm tries to aggressively put banks to sleep whenever

there are idle cycles, i.e., there are no pending requests to a bank. This

test ensures that the power-down modes are entered with the right delay. In

addition, we also modify this scheduler and create a different version for the

purposes of this test to also check if all banks can be precharged in a cycle and

be put in the PRE-PDN-SLOW (or deep power down) mode to test correctness.

• Refresh-enforce This algorithm issues a refresh command to a rank every

tREFI cycles. This models the baseline refresh mechanism adopted by modern

memory controllers.

In all cases, we found that USIMM strictly follows the timing restrictions, i.e., it

never issues commands earlier than they should be. It can thus be said with reasonable

confidence that the DRAM modules in USIMM do not provide overestimates for

performance numbers.

Table 5.6. USIMM workloads

Workload No. Benchmarks
1 4-threaded canneal
2 blackscholes-blackscholes-freqmine-freqmine
3 commercial1-commercial1
4 commercial1-commercial1-commercial2-commercial2
5 commercial2
6 facesim-facesim-ferret-ferret
7 fluidanimate-fluidanimate-ferret-ferret-swaptions

-swaptions-commercial2-commercial2
8 fluidanimate-fluidanimate-ferret-ferret-swaptions

-swaptions-commercial2-commercial2
-blackscholes-blackscholes-freqmine-freqmine
-commercial1-commercial1-stream-stream

9 fluidanimate-swaptions-commercial2-commercial2
10 stream-stream-stream-stream

95

There are however drawbacks to this verification scheme. Each validation run

of USIMM only shows that the scheduler in question is conservative enough to not

violate any timing constraints. It does not conclusively prove that a scheduler can not

be developed which causes USIMM to violate the timing constraints. To address this,

we wrote a scheduler which achieves no particular scheduling tasks, but tries to, in a

sense, stress-test USIMM. Every cycle, this stress-testing scheduler picks a command

at random from the list of all possible commands, and issues it to the memory system.

If the command is valid, then it is accepted by USIMM and logged for validation. If

USIMM flags the command as nonissuable in the current cycle, the scheduler tries

to schedule another command that it picks at random from the list of commands.

Thus, a cycle is advanced only when the scheduler runs out of commands to schedule

or a command is accepted. We believe that this is a sufficiently aggressive scheduler

that can expose problems with USIMM’s timing model. We tried three runs of this

scheduler (each spanning 1 million DRAM commands) to collect logs for the Verilog

models and did not observe any violations reported by ModelSim.

5.6 Alternative Software Architecture

The USIMM model has a unified transaction and command scheduler. The read

and write queues contain detailed information about the command timing which can

be exploited by the scheduler to take “informed” scheduling decisions. In comparison,

the memory controllers employed in modern processors have a different organization,

similar to the organization described in Section 4.2.3. In this organization, a trans-

action scheduler selects a read or write based on high-level scheduling decisions such

as thread-priority, memory-level parallelism, write-queue occupancy, etc. The trans-

action scheduler enqueues the commands required for each transaction to complete

into the per-bank command queues. The command scheduler then goes over the bank

queues in a round-robin fashion and issues commands as they become ready to issue

based on timing constraints and DRAM bank states. The main motivation behind

the unified queue and schedulers in USIMM is to allow the scheduler to be aware

of microarchitectural details of the DRAM device and at the same time be able to

take decisions based on system-level considerations. This enables the user to control

scheduling decisions at a single point in the simulator’s program flow.

96

We implemented another version of USIMM with the same organization as de-

scribed in Section 4.2.3 (that we call alternate-USIMM hereafter) and compared the

performance of the baseline scheduler distributed with USIMM for MSC on the two

systems. The performance difference between the two is quite small. Fig. 5.1 shows

that the maximum difference in performance reported by Alternate-USIMM is 3%

over USIMM. However, it requires significant programmer effort in native USIMM

to correctly mimic the new controller organization. For example, it is possible that

in native USIMM, the scheduling decision taken for a single request (by issuing an

ACT) is rendered useless in a subsequent cycle because some other request issues a

PRE to the same bank before the COL-RD for the first request has been issued. This

will not happen in alternate-USIMM because the decisions taken by the transaction

scheduler are never reversed by the in-order command scheduler.

In summary, the IPCs reported by USIMM and alternate-USIMM do not diverge

significantly. Alternate-USIMM represents real-world hardware designs and hence is

attractive for fidelity. However, by dissociating the task of command and transaction

scheduling, it prevents researchers from exploring schedulers which have fine-grained,

and customized control over command scheduling. On the other hand, USIMM’s

unified queues and scheduler model requires significant programmer effort for modi-

fication, but also allows exploration of timing-aware transaction schedulers.

5.7 Integrating USIMM with a Full-System Simulator

The importance of memory in determining the performance of the overall system is

well known. In spite of this, many full-system simulators have relatively simple mem-

ory models—often simulating fixed access-latency for cache-misses. The full-system

simulator, SIMICS [48], is one such example. It has a detailed out-of-order processor

timing model and can model multiple levels of caches with different organizations and

the MESI cache-coherence protocol. However, the main memory timing is fixed at

200 processor cycles.

We integrated the USIMM DRAM timing and power models with the SIMICS

simulator. Since both these simulators are cycle-accurate and operate on a cycle-by-

cycle basis, it is fairly straightforward to integrate SIMICS and USIMM. Hereafter

in the text, SIMICS refers to this combined simulator. The main advantage of using

97

Figure 5.1. Comparison of Execution Times Reported by USIMM vs Alter-
nate-USIMM (workloads from Table 5.6).

trace-based simulators such as USIMM is the speed of simulation. With USIMM,

we observed 7X, 154X, and 289X speedup over SIMICS when simulating single-core,

4-core, and 8-core versions of the NAS Parallel Benchmarks (each core running 100

million instrusctions). We see that USIMM is significantly faster than the full-system

simulator SIMICS. However, the main differences between the USIMM simulator

and SIMICS are the former’s lack of a detailed processor model and the inability to

model cache-contention for multiprogrammed/multithreaded workloads. To assess

the accuracy of USIMM compared to SIMICS, we compared the performance of

the MSC schedulers on the two simulators. We observed that the DRAM latencies

and IPCs reported by USIMM are both higher compared to SIMICS. This happens

because in SIMICS, the nonmemory instructions are deemed independent of each

other and also the memory instructions in the reorder-buffer are considered completely

independent of each other and not dependant on the result of the other nonmemory

instructions for their memory addresses. As a result, all nonmemory instructions have

a CPI of 1 which is not true in SIMICS. Secondly, this also causes the memory system

to encounter much higher traffic compared to SIMICS, leading to higher queueing

98

delays and hence higher overall DRAM latencies in USIMM. The relative performance

of the different MSC schedulers remained unchanged.

To increase the accuracy of the USIMM processor model, while still retaining the

simple trace-based features and speed of USIMM, we model dependences between

instructions in USIMM by stalling some instructions for longer than a single cycle

based on a probability. Thus two values, extra stall cycles (ESC) and a dependecy

factor (DF), were determined empirically for each benchmark to equate the perfor-

mance numbers reported by USIMM and SIMICS. Nonmemory instructions have

their completion times extended by ESC cycles with a probability of DF. The ESC

and DF values are different for the different benchmarks and, in addition, also show

sensitivity to other IPC improvement techniques. We determined the EF and DSC

values by comparing the SIMICS reported IPC with USIMM simulations consisting

of a single-core, single-channel, and FR-FCFS scheduler (shown in Table 5.7). In

Fig. 5.2, we show the IPCs reported by USIMM, SIMICS and augmented-USIMM

(i.e., the one using DF and ESC) for a set of single-core PARSEC benchmarks. We

see that augmented-USIMM is able to bridge the performance gap between USIMM

and SIMICS for all the benchmarks. To investigate the effect of the scheduling

Figure 5.2. Comparison of the IPCs reported by SIMICS, USIMM and Augment-
ed-USIMM for the FR-FCFS scheduler on single-core PARSEC Benchmarks.

99

Table 5.7. Fudge values

Benchmark ESC DF
blackscholes 60 .66
canneal 41 .5
facesim 39 .5
ferret 28 .5

freqmine 43 .66
fluidanimate 46 .66
swaptions 36 .50

policy on the ESC and DF values, we compare the error between augmented-USIMM

and SIMICS for the best performing MSC scheduler by Ishii et al [98]. We find

that for most benchmarks, the errors range between 1% to 2.3%. Finally, we ran

all the MSC schedulers with multicore PARSEC benchmarks. We found that the

relative performance of the different schedulers is not affected. Fig. 5.3 shows the

average IPC of a set of 4-core PARSEC benchmarks reported by SIMICS, USIMM

and Augmented-USIMM for all the MSC schedulers. We see that the difference

between SIMICS and augmented-USIMM is within 5% in terms of IPC. This indicates

that the results reported by stand-alone, augmented-USIMM can be used to draw

reasonable first-impressions on memory system optimizations through simulations

that are significantly faster than SIMICS.

100

Figure 5.3. Comparison of the IPCs reported by SIMICS, USIMM and Augment-
ed-USIMM for all MSC schedulers on 4-core PARSEC Benchmarks.

CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter summarizes the topics explored in this dissertation and describes

future scheduling techniques for emerging memory systems.

6.1 Contributions

In this dissertation, we discuss novel memory scheduling techniques that extend

the state-of-art. Memory scheduling has received significant attention over the years,

more so in the recent past. Through the techniques we have proposed in this disserta-

tion, we draw attention to memory schedulers that are aware of the microarchitectural

intricacies of the DRAM devices and the execution idiosyncrasies of the client compute

units. We also describe a new main memory system simulator that can assist the

community in analyzing the memory system behavior for future systems.

To summarize, we now list the major highlights of each of the described memory

scheduling techniques and the USIMM tool.

• In Chapter 3, we quantified the impact of write scheduling on the overall system

performance. We also identified that simple additions to the DRAM chip can

promote write and read parallelism and significantly boost performance. For

this, we instituted a small set of buffers inside the DRAM chip’s least cost-

sensitive area. While writes are being sent to some banks inside a DRAM

chip, reads can fetch data from some other banks and store them inside the

staged-read registers. When the write queue has been drained, the data from the

staged-read registers can be drained over the data bus after the bus-turnaround

time has elapsed. Aided by the modifications to the DRAM chip, the memory

scheduler is able to provide higher performance by selectively issuing writes to

banks that have fewer reads and issuing simultaneous reads to banks that are

not servicing writes. The impact of this scheme is even higher when future

102

technology trends, such as increased reliability (which increases write-traffic)

and nonvolatile memories with long write times are considered.

• In Chapter 4, we present several memory scheduling techniques for increasing

the efficiency of GPUs when they execute irregular compute workloads. Due to

the SIMT execution model of the GPU, each load instruction in a GPU issues

many memory accesses and the warp issuing the load instruction is blocked until

all the memory requests are serviced by the memory system. We observed that

modern memory scheduling policies often take scheduling decisions that allow

the interleaved servicing of requests from different warps, which leads to higher

average wait time for the warps. We propose servicing requests from a warp in a

grouped manner, to reduce this interwarp interference. We propose mechanisms

to group requests from a warp together through a batching mechanism. We then

seek to arbitrate between these different batches using shortest-job-first policy,

which takes into account the state of the DRAM banks and the approximate

service time of each warp-group (BASJF). To ensure that different memory

controllers finish servicing requests from a warp at approximately the same

time, we introduced a strong age-bias in the BASJF policy (BASJF+AB).

This allowed implicit coordination between the schedulers in different memory

controllers when servicing a single warp. However, the age-bias also forces

the memory controller to schedule row-miss requests before row-hit requests,

thereby causing some performance degradation. To overcome this issue, we

ensure that the bandwidth utilization is not impacted while scheduling row-miss

requests. This is done by carefully orchestrating the scheduling of row-miss

requests in one bank such that they overlap with row-hits in other banks. We

finally devise a warp-aware write-drain policy that scans the read queues to

service requests from warps with few (and orphaned) requests.

• In Chapter 5, we discuss the design of USIMM, a detailed memory system

simulator which was distributed publicly as the infrastructure for the Memory

Scheduling Championship held with ISCA 2012. We discuss in detail the timing

and power models instituted in USIMM and also discuss the manner in which

the scheduler can be used to rapidly develop scheduling algorithms. We then

103

described a validation methodology for the simulator, which allows a log of

the simulation run to be verified against Micron’s DDR3 Verilog models for

correctness. We also compare the relatively simple software model of USIMM

to a more accurate representation of the hardware controller and show that the

simple USIMM model is sufficiently faithful to actual memory controllers. We

finally integrate USIMM with SIMICS, a full-system simulator, and compare the

accuracy of the trace-driven USIMM model against the combined simulator. We

find that the lack of dependence modeling in USIMM’s simple CPU model is the

source of inaccuracy. We use a simple probability-based stalling of nonmemory

instructions to equalize the IPCs reported by USIMM and SIMICS and find

that the new simulator is within acceptable accuracy levels of simulators with

complex processor models.

We conclude that there are several settings where the memory controller has a

nontrivial impact on system performance. The staged read proposal can yield 7%

improvement, but may face opposition to commercial adoption because of DRAM

chip changes. Interestingly though, upcoming DDR4 devices have adopted a chip

microarchitecture that has some similarity with the Staged Read optimization. In

DDR4, the 16 on-chip banks are split into 4 bank-groups. Each such bank-group has

its own dedicated read/write bus that goes to the I/O pads from the sense amps.

Compared to this, in DDR3, all banks share the bus to the I/O pads, while in staged-

reads, every bank has its own path to the I/O pads. This innovation allows DDR4

to have one-third the bus turnaround penalty when interleaving writes and reads to

different bank-groups compared to interleaved writes and reads to the same bank-

group.

Scheduler innovations, on the other hand, can yield a maximum of 11 % improve-

ment, as shown in the MSC. We improve our tool and show that the improvement

continues to be similar even in a detailed simulator. However, it is possible that

the MSC submissions may have picked the low-hanging fruit, and not too many

additional improvements are possible for DDR3. We examine an emerging platform,

the GPGPU, and show that scheduler innovations can continue to yield significant

(8.9%) improvements as architectures and workloads evolve beyond DDR3.

104

6.2 Future Work

In this section, we look at how emerging trends can lead to interesting applications

of novel memory scheduling strategies.

6.2.1 Scheduling for Heterogeneous Platforms

Advances in process technology have enabled architects to integrate functional

blocks of different types on the same logic die. For example, AMD’s Fusion series of

Accelerated Processing Units (APUs) feature a modest GPU alongside multiple CPU

cores. Integrating CPUs and GPUs on the same die has interesting implications

on the memory architecture of such systems. In the Fusion series, for example,

the DRAM memory controller is shared by the CPUs and the GPU(s), and these

different clients have different expectations from the memory system. GPUs, by

design, are more tolerant of memory latency but require high effective memory band-

width. CPUs, on the other hand, are generally more sensitive to memory latency. A

memory scheduling strategy should thus be able to satisfy the diverse requirements

of these different clients. We tried a scheduler that implements the minimum-efficient

row-burst (MERB, Chapter 4) for this purpose. This scheme allows the controller

to figure out the earliest time when a row-miss request from a CPU can be serviced

given the total number of row-hit requests to other banks. We observed that when

MERB is used as a scheduling policy in a system that runs a bandwidth-intensive

CPU application with other latency-sensitive CPU programs, it can improve the

system performance by 4% over the PAR-BS scheme. The main issue with the current

evaluation technique is the lack of real-world benchmarks which use the GPU and

CPU concurrently. Most applications execute some sequential series of operations

on a CPU and then delegate the task to the GPU which spawns a large number of

threads that perform the number-crunching while the CPU sits unutilized. We plan

to explore the applicability of our scheme in the future when new benchmarks that

simultaneously execute on the CPU and GPU become available.

6.2.2 Scheduling for HMCs

Hybrid Memory Cube [63] is a new memory technology that stacks multiple layers

of DRAM on a logic layer. The HMC device can be connected to a processor(s)

105

through a fast, serial link. One interesting problem to study in the context of the HMC

is the division of scheduling responsibilities between the on-chip memory controller

and the controller that sits on the logic layer of the HMC. One obvious design point

is the implementation of the high level transaction scheduler in the on-chip memory

scheduler and the command scheduler in the HMC’s logic layer. This allows the

on-chip memory controller to deal with thread priorities and other memory access

patterns, while allowing the command scheduler to implement policies that are best

suited for the HMC DRAM layers. Specifically, this division allows the HMC’s logic

layer to present a layer of abstraction to the on-chip memory controller and implement

DRAM device specific protocols.

6.2.3 Scheduling for Mobile Devices

A lot of attention has been paid to memory controller designs for large servers.

However, handheld devices are growing rapidly and require equal attention to their

memory systems. A study of scheduling techniques for mobile devices is made inter-

esting by the following characteristics of the mobile environment. First, the memory

scheduling logic itself has to be simple, to save expensive chip area. Second, the main

emphasis for the scheduler would be energy-efficiency instead of performance. As a

result, techniques that can efficiently leverage the numerous power-down modes of

Low-Power DRAM (LPDDR3) without significant performance penalty need to be

investigated.

REFERENCES

[1] L. A. Barroso and U. Holzle, The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines. Morgan and Claypool, 2009.
http://www.morganclaypool.com/doi/pdf/10.2200/s00193ed1v01y200905cac006

[2] U.S. Environmental Protection Agency, “Report to congress on server and data
center energy efficiency,” tech. rep., Public Law 109-431, Washington D.C., 2007.

[3] Seamicro Inc., “SeaMicro servers.” [Online], Available: http://www.seamicro.
com

[4] Calxeda Inc., “Calxeda servers.” [Online], Available: http://www.calxeda.com

[5] ITRS, “International technology roadmap for semiconductors, 2007 edition.”
[Online], Available: http://www.itrs.net/Links/2007ITRS/Home2007.htm

[6] NVIDIA Corporation, “NVIDIA cuda C programming guide v4.2.” [Online],
Available: http://developer.nvidia.com/nvidia-gpu-computing-documentation

[7] Khronos Group, “OpenCL.” [Online], Available: http://www.khronos.org/
opencl

[8] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt,
“Characterizing and evaluating a key-value store application on heterogeneous
CPU-GPU systems,” in Proc. ISPASS, 2012.

[9] A. N. Udipi, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. Jouppi,
“LOT-ECC: Localized and tiered reliability mechanisms for commodity memory
systems,” in Proc. ISCA, 2012.

[10] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling for chip
multiprocessors,” in Proc. MICRO, 2007.

[11] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip networks,”
in Proc. ISCA, 2009.

[12] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens, “Memory access
scheduling,” in Proc. ISCA, 2000.

[13] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scalable and
high-performance scheduling algorithm for multiple memory controllers,” in
Proc. HPCA, 2010.

[14] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread cluster
memory scheduling: Exploiting differences in memory access behavior,” in Proc.
MICRO, 2010.

107

[15] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. Loh, and O. Mutlu,
“Staged memory scheduling: Achieving high performance and scalability in
hetergenous systems,” in Proc. ISCA, 2012.

[16] J. Stuecheli, D. Kaseridis, D. Daly, H. Hunter, and L. John, “The virtual write
queue: Coordinating DRAM and last-level cache policies,” in Proc. ISCA, 2010.

[17] H. Lee and G. Tyson, “Eager writeback – a technique for improving bandwidth
utilization,” in In Proc. MICRO, 2000.

[18] J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision for integrated
branch and memory divergence tolerance,” in Proc. ISCA, 2010.

[19] J. Sartori and R. Kumar, “Branch and data herding: Reducing control and
memory divergence for error-tolerant GPU applications,” in IEEE Transactions
on Multimedia, 2012.

[20] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “USIMM: The Utah Simulated
Memory Module,” Tech. Rep. UUCS-12-002, University of Utah, Salt Lake City,
UT, 2012.

[21] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems: Cache, DRAM, Disk.
Burlington, MA: Morgan Kauffman, 2008.

[22] JEDEC Solid State Technology Association, “DDR3 SDRAM specification,”
Tech. Rep. JESD79-3E, Arlington, VA, 2010.

[23] JEDEC Solid State Technology Association, “DDR4 SDRAM specification,”
Tech. Rep. JESD79-4, Arlington, VA, 2012.

[24] R. Swinburne, “Intel Core i7 – nehalem architecture dive.” [On-
line], Available: http://www.bit-tech.net/hardware/2008/11/03/intel-core-i7-
nehalem-architecture-dive/

[25] V. Romanchenko, “Quad-Core opteron: Architecture and roadmaps.” [Online],
Available: http://www.digital-daily.com/cpu/quad core opteron

[26] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for exploiting
subarray-level parallelism (SALP) in DRAM,” in Proc. ISCA, 2012.

[27] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis,
and N. Jouppi, “Rethinking DRAM design and organization for energy-
constrained multi-cores,” in Proc. ISCA, 2010.

[28] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, and
A. Davis, “Micro-Pages: Increasing DRAM efficiency with locality-aware data
placement,” in Proc. ASPLOS-XV, 2010.

[29] Z. Zhang, Z. Zhu, and X. Zhand, “A permutation-based page interleaving scheme
to reduce row-buffer conflicts and exploit data locality,” in Proc. MICRO, 2000.

108

[30] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez,
“Balancing DRAM locality and parallelism in shared memory CMP systems,”
in Proc. HPCA, 2012.

[31] Micron Technology Inc., “Micron DDR3 SDRAM part MT41J256M8,” 2006.
[Online], Available: http://download.micron.com/pdf/datasheets/dram/ddr3/
2Gb\ DDR3\ SDRAM\\.pdf

[32] Micron Technology Inc., “Micron DDR3 SDRAM part MT41J1G4,” 2009. [On-
line], Available: http://download.micron.com/pdf/datasheets/dram/ddr3/4Gb\
DDR3\ SDRAM\\.pdf

[33] M. Bojnordi and E. Ipek, “PARDIS: A programmable memory controller for the
DDRx interfacing standards,” in Proc. ISCA, 2012.

[34] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling – enhancing
both performance and fairness of shared DRAM systems,” in Proc. ISCA, 2008.

[35] N. Chatterjee, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. Jouppi,
“Staged reads: mitigating the impact of DRAM writes on DRAM reads,” in Proc.
HPCA, 2012.

[36] M. Burtscher and K. Pingali, GPU Computing Gems Emerald Edition, ch. An Ef-
ficient CUDA Implementation of the Tree-Based Barnes Hut n-body Algorithm.
San Francisco, CA: Morgan Kaufmann, 1st ed., 2011.

[37] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on GPUs,” in Proc. IISWC, 2012.

[38] S. Ghose, H. Lee, and J. F. Martinez, “Improving memory scheduling via
processor-Side load criticality information,” in Proc. ISCA, 2013.

[39] P. Prieto, V. Puente, and J. A. Gregorio, “CMP off-chip bandwidth scheduling
guided by instruction criticality,” in Proc. ICS, 2013.

[40] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian, and A. Davis, “Han-
dling the problems and opportunities posed by multiple on-chip memory con-
trollers,” in Proc. PACT, 2010.

[41] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana, “Self optimizing memory
controllers: A reinforcement learning approach,” in Proc. ISCA, 2008.

[42] J. Borkenhagen and B. Vanderpool, “Read prediction algorithm to provide low
latency reads with SDRAM cache,” Oct 5, 2004. US Patent 6801982 A1.

[43] T. Vogelsang, “Understanding the energy consumption of dynamic random access
memories,” in Proc. MICRO, 2010.

[44] D. Yoon and M. Erez, “Virtualized and flexible ECC for main memory,” in Proc.
ASPLOS, 2010.

[45] M. Qureshi, V. Srinivasan, and J. Rivers, “Scalable high performance main
memory system using phase-change memory technology,” in Proc. ISCA, 2009.

109

[46] B. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory
as a scalable DRAM alternative,” in Proc. ISCA, 2009.

[47] Micron Technology Inc., “Micron DDR3 SDRAM part MT41J128M8,” 2006.
[Online], Available: http://download.micron.com/pdf/datasheets/dram/ddr3/
1Gb\ DDR3\ SDRAM.pdf,

[48] WindRiver Corp., “WindRiver Simics full system simulator.” [Online], Avail-
able: http://www.windriver.com/products/simics/

[49] D. Wang et al., “DRAMsim: A memory-system simulator,” in SIGARCH
Computer Architecture News, September 2005.

[50] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: A quantitative
comparison of two multithreaded benchmark suites on chip-multiprocessors,”
in Proc. IISWC, 2008.

[51] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, and V. V.
andd S. Weeretunga, “The NAS parallel benchmarks,” International Journal of
Supercomputer Applications, vol. 5, pp. 63–73, Fall 1994.

[52] SPEC, “SPEC Java virtual machine benchmark,” 2008. [Online], Available:
http://www.spec.org/jvm2008

[53] J. D. McCalpin, “STREAM – sustainable memory bandwidth in high perfor-
mance computers.” [Online], Available: http://www.cs.virginia.edu/stream/

[54] S. Rixner, “Memory controller optimizations for web servers,” in Proc. MICRO,
2004.

[55] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima, “The cache DRAM
architecture: A DRAM with an on-chip cache memory,” IEEE Micro, vol. 10,
no. 2, 1990.

[56] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA
organizations and wiring alternatives for large caches with CACTI 6.0,” in Proc.
MICRO, 2007.

[57] NEC Corporation, “64M-bit virtual channel SDRAM data sheet,” tech. rep.,
Japan, 2003.

[58] Micron Technologies Inc., “Mobile DRAM power-saving features and power
calculations,” Tech. Rep. TN-46-12, Boise, ID, 2009.

[59] Micron Technologies Inc., “Low-power versus standard DDR SDRAM,” Tech.
Rep. TN-46-15, Boise, ID, 2007.

[60] Micron Technologies Inc., “Exploring the RLDRAM II feature set,” Tech. Rep.
TN-49-02, Boise, ID, 2004.

[61] A. N. Udipi, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. Jouppi,
“Combining memory and a controller with photonics through 3D-stacking to
enable scalable and energy-efficient systems,” in Proc. ISCA, 2011.

110

[62] D. H. Woo et al., “An optimized 3D-stacked memory architecture by exploiting
excessive, high-density TSV bandwidth,” in Proc. HPCA, 2010.

[63] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube – new DRAM architecture
increases density and performance,” in Symposium on VLSI Technology, 2012.

[64] B. Schroeder, E. Pinheiro, and W. D. Weber, “DRAM Errors in the Wild: A
Large-Scale Field Study,” in Proc. SIGMETRICS, 2009.

[65] Hewlett-Packard, “HP ProLiant server memory.” [Online], Available:
http://h18000.www1.hp.com/products/servers/technology/memoryprotection.
html

[66] M. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali,
“Enhancing lifetime and security of PCM-based main memory with start-gap
wear leveling,” in Proc. MICRO, 2009.

[67] M. Qureshi, M. Franceschini, L. Lastras-Montano, and J. Karidis, “Morphable
memory system: A robust architecture for exploiting multi-level phase change
memory,” in Proc. ISCA, 2010.

[68] F. Tabrizi, “Non-volatile STT-RAM: A true universal memory.” [Online], Avail-
able: http://www.flashmemorysummit.com/English/Collaterals/Proceedings
/2009/20090813 ThursPlenary Tabrizi.pdf

[69] ITRS, “International technology roadmap for semiconductors, 2009 edition.”
[Online], Available: http://www.itrs.net/Links/2009ITRS/Home2009.htm

[70] M. Mendez-Lojo, M. Burtscher, and K. Pingali, “A GPU implementation of
inclusion-based points-to analysis,” in Proc. PPoPP, 2012.

[71] D. G. Merrill, M. Garland, and A. S. Grimshaw, “Scalable GPU graph traversal,”
in Proc. PPoPP, 2012.

[72] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu,
R. Iyer, and C. Das, “OWL: Cooperative thread array scheduling techniques for
improving GPGPU performance,” in Proc. ASPLOS, 2013.

[73] G. Dasika, A. Sethia, T. Mudge, and S. Mahlke, “PEPSC: A power-efficient
processor for scientific computing,” in Proc. PACT, 2011.

[74] “NVIDIA Kepler GK110 whitepaper.” [Online], Available:
http://http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf

[75] S. Hong and H. Kim, “An Analytical Model for a GPU Architecture with
Memory-level and Thread-level Parallelism Awareness,” in Proc. ISCA, 2009.

[76] Hynix, “Hynix GDDR5 SGRAM part H5GQ1H24AFR revision 1.0.” [Online],
Available: http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR
(Rev1.0).pdf

111

[77] G. L. Yuan, A. Bakhoda, and T. M. Aamodt, “Complexity effective memory
access scheduling for many-core accelerator architectures,” in Proc. MICRO,
2008.

[78] A. Bakhoda, G. Yuan, W. L. Fung, H. Wong, and T. M. Aamodt, “Analyzing
CUDA workloads using a detailed GPU simulator,” in Proc. ISPASS, 2009.

[79] T. M. Aamodt and W. L. Fung, “GPGPU-Sim 3.x manual.” [Online], Available:
http://gpgpu-sim.org/manual/index.php5/GPGPU-Sim 3.x Manual

[80] T. M. Aamodt and W. L. Fung, “GPGPU-Sim accuracy.” [Online], Avail-
able: http://gpgpu-sim.org/manual/index.php5/GPGPU-Sim\ 3.x\ Manual\
#Accuracy

[81] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L. W. Chang, N. Anssari,
G. D. Liu, and W.-. M. W. Hwu, “The parboil technical report,” Tech. Rep.
IMPACT-12-01, University of Illinois, Urbana-Champaigne, IL, 2012.

[82] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in Proc. IISWC,
2009.

[83] B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang, “Mars: A MapReduce
framework on graphics processors,” in Proc. PACT, 2008.

[84] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin, “DRAM scheduling policy
for GPGPU architectures based on a potential function,” IEEE CAL, vol. 11,
pp. 33–36, July-Dec 2012.

[85] D. Shah and D. Wischik, “Switched networks with maximum weight policies:
Fluid approximation and multiplicative state space collapse,” Ann Appl Probab,
vol. 22, no. 1, pp. 70–127, 2012.

[86] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-wware memory con-
troller for dynamically balancing GPU and CPU bandwidth use in an MPSoC,”
in Proc. DAC, 2012.

[87] D. Tarjan, J. Meng, and K. Skadron, “Increasing memory miss tolerance for
SIMD cores,” in Proc. SC, 2009.

[88] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen, “On-the-fly elimination of
dynamic irregularities for GPU computing,” in Proc. ASPLOS, 2012.

[89] S. Che, J. Sheaffer, and K. Skadron, “Dymaxion: Optimizing memory access
patterns for heterogeneous systems,” in Proc. SC, 2011.

[90] T. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious wavefront
scheduling,” in Proc. MICRO, 2012.

[91] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and
C. Das, “Orchestrated scheduling and prefetching for GPUs,” in Proc. ISCA,
2013.

112

[92] “Micron system power calculator.” [Online], Available: http://www.micron.
com/support/dram/power\ calc.html

[93] Micron Technologies Inc., “Calculating memory system power for DDR3,” Tech.
Rep. TN-41-01, Boise, ID, 2007.

[94] J. Laudon, “UltraSPARC T1: A 32-Threaded CMP for servers,” 2006. [Online],
Available: http://www.cs.duke.edu/courses/fall06/cps220/lectures/UltraSparc\
T1\ Niagra.pdf

[95] C. Lefurgy et al., “Energy management for commercial servers.,” IEEE Com-
puter, vol. 36, no. 2, pp. 39–48, 2003.

[96] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated memory for expansion and sharing in blade servers,”
in Proc. ISCA, 2009.

[97] P. Bose, “The risk of underestimating the power of communication,” in NSF
Workshop on Emerging Technologies for Interconnects (WETI), 2012.

[98] Y. Ishii, K. Hosokawa, M. Inaba, and K. Hiraki, “High performance memory ac-
cess scheduling using compute-phase prediction and writeback-refresh overlap,”
in Proc. JWAC Memory Scheduling Championship, 2012.

	nil1
	nil2
	nil3

