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ABSTRACT

Technology scaling has resulted in a steady increase in transistor speed. How-

ever, unlike transistors, global wires that span across the chip show a reverse

trend of getting slower with shrinking process. Modern processors are severely

constrained by wire delay and the widening gap between transistors and wires will

only exacerbate the problem. Following the traditional design approach of adopting

a single design point for all global wires will be suboptimal in terms of both power

and performance. VLSI techniques allow several wire implementations with varying

latency, power, and bandwidth properties. The dissertation advocates exposing

wire properties to architects and demonstrates that prudent management of wires

at the microarchitectural level can lead to significant improvement in power and

delay characteristics of future communication bound processors. A heterogeneous

interconnect (composed of wires with different latency, bandwidth, and power

characteristics) is proposed that leverages varying latency and bandwidth needs

of on-chip global messages to alleviate interconnect overhead.

The effect of interconnect is more pronounced in large on-chip structures. Since

on-chip caches occupy more than 50% of the microprocessor real estate and up to

80% of their access time is attributed to the wire delay, the dissertation focuses on

the prudent management of wires for cache accesses. This work demonstrates that a

cache design that pays special attention to network parameters and wire properties

can be very different from traditional cache models and performs significantly

better. The dissertation studies every aspect of communication happening in

on-chip caches and proposes techniques that leverage heterogeneous interconnect

to reduce their overhead. Finally, in an effort to make the interconnect model

explicit to architects and impact future research, a state-of-the-art wire and router

modeling is incorporated into a publicly available CACTI tool along with novel



methodologies to accurately estimate the delay, power, and area of large caches

with uniform and nonuniform access times.
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CHAPTER 1

INTRODUCTION

1.1 Emerging Challenges

For the past three decades, there has been a steady increase in processor per-

formance due to shrinking of feature size and microarchitectural innovations. A

recent analysis shows that in a time frame of 10 years, processor performance has

improved by a factor of 55 [46] because of rising clock frequency and advancements

in microarchitecture. While industry projections continue to show a healthy road

map for technological advancements, the realization of a similar performance boost

in the next 10 years is being severely challenged by technology constraints and

architecture complexity. Continued scaling of transistors has posed a number of

new challenges to the architecture community.

• Power Budget

Power consumption in a processor is a function of transistor density (a tran-

sistor load also includes capacitive load of connecting wires) and switching

frequency. With a modern processor’s transistor budget exceeding the bil-

lion count, we have reached a point where we cannot afford to operate all

transistors in a chip at the same time. In the past, increased transistor

budget with every process generation is also accompanied by a scaled down

operating voltage. Since power consumption has a quadratic dependence

on voltage, lowering operating voltage significantly helps reduce power con-

sumption. However, with the growing concern of process variation and other

reliability issues (discussed in the next subsection) very low operating voltage

is no longer an option in deep submicron technologies. As a result, architects

designing future processors will need to work with a strict power and tem-
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perature budget. Novel microarchitectural techniques are required to eke out

performance with a limited power budget.

• Reliability

Shrinking transistor dimensions coupled with high clock speed and low oper-

ating voltage has introduced a number of reliability issues such as param-

eter variation and soft errors. With the continued scaling of transistors,

we have reached a point where it is extremely difficult to precisely control

the dimensions of a transistor. Given the sensitivity of transistor properties

to its dimensions, process variation can significantly affect the latency and

leakage characteristics of transistors. High operating frequencies of modern

processors further complicate the problem by providing very little time for

transistors to reach the stable state. Radiation induced soft errors [89] and Vth

(transistor threshold voltage) degradation [29] are other emerging problems

that constrain scaling down operating voltage. As a net result of these new

problems, future microarchitecture design can no longer focus singularly on

performance. Architects should also innovate techniques to improve processor

robustness to tolerate process parameter variation and soft errors.

• Wire Delay

Global wires are another major show stopper in modern processors. While

arithmetic computation continues to consume fewer pico-seconds and die

area with every generation, the cost of on-chip communication continues

to increase [84]. Traditional electrical interconnects are viewed as a critical

limiting factor, with regard to latency, bandwidth, and power. The ITRS

road-map projects that global wire speeds will degrade substantially at smaller

technologies and a signal on a global wire can consume over 12 ns (60 cycles at

a 5 GHz frequency) to traverse 20 mm at 32 nm technology [7]. In some Intel

chips, half the total dynamic power is attributed to interconnects [79]. Hence,

a careful analysis and a better understanding of interconnects are necessary

to alleviate the deleterious effects of wire scaling.
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1.2 Wire Aware Design

Most architecture proposals in the recent past focus directly or indirectly on

solving these new challenges. Of all the problems described above, the problems

associated with wire scaling are particularly compelling for two reasons. First, all

existing architectural techniques aimed at reducing wire delay or wire power are

indirect. For example, microarchitectural techniques such as prefetching, run-ahead

execution, speculative coherence, or speculation in other forms try to hide wire

delays rather than reduce them. Similarly, a reduction in wire power is achieved by

avoiding communication instead of directly reducing the interconnect power. Direct

wire level optimizations are still limited to circuit designers. Second, traditional

design approaches employ a single wire choice optimized for the average case for all

global wires in a processor. In the past, this was not a big issue since both processor

performance and power dissipation are typically determined by the characteristics of

transistors. However, with the current trend of processors becoming more and more

communication bound, the choice of interconnect parameters will have a dramatic

impact on a processor’s power and performance characteristics.

Focusing on interconnect design can also help alleviate other critical problems,

such as power consumption and processor reliability discussed in the previous

section. For example, though a low operating voltage is not a favorable option for

transistors, recent studies [53, 130] show that it is a powerful technique to reduce

interconnect power in modern processors. With on-chip wires accounting for 30-50%

of the processor power [79, 122], reducing interconnect power has the potential to

impact total power consumption. Similarly, the use of high-bandwidth optical wires

or fast full-swing wires obviate the need for pipelined latches - a potential source

for soft errors in processors. Thus, understanding wire technologies and exploiting

them at the microarchitecture level can not only alleviate the wire delay problem

but also open up new avenues to solve other major challenges faced by architects.

Simple wire design strategies can greatly influence a wire’s properties. For

example, by tuning wire width and spacing, wires can be designed with varying

latency and bandwidth properties. Similarly, by tuning repeater size and spacing,
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latency and energy of wires can be varied. To take advantage of VLSI techniques

and better match the interconnect design to communication requirements, a het-

erogeneous interconnect is proposed, where every link consists of wires that are

optimized for either latency, energy, or bandwidth.

1.3 Thesis Statement

The widening gap between transistor and wire delays necessitates careful analysis

and better understanding of on-chip wires. VLSI techniques provide a number of

different wires with varying delay, power, and area characteristics. The disserta-

tion advocates exposing wire properties to architects and demonstrates that prudent

management of wires at the microarchitectural level can improve both power and

performance characteristics of future communication-bound processors.

In general, the effect of slow global wires is more pronounced in large structures

in a processor. Since on-chip caches occupy more than 50% of the processor die [85]

and up to 80% of their access time is attributed to wire delay [92], the dissertation

focuses almost entirely on the prudent use of wires for cache accesses. When dealing

with caches, there are three primary forms of communication entailed: wire delay

to simply reach and access the Level-2 (L2) cache bank on a L2 cache hit, wire

delay to ensure cache coherence when data are shared, and wire delay to access

Level-1 (L1) cache data if a single-thread executes over a relatively large area (for

example, in a high-ILP clustered design). This dissertation studies every aspect

of communication happening within a cache hierarchy and innovates techniques to

reduce their overheads. The first focus is on large lower level caches followed by

coherence transactions and private L1 caches.

A large cache is typically partitioned into multiple banks and employs an on-chip

network for address and data communication. Such a cache model is referred

to as a Non-Uniform Cache Access (NUCA) architecture. Each bank is further

partitioned into multiple subarrays with a h-tree network interconnecting these

subarrays. The study demonstrates that a cache design that pays special attention

to interbank network and h-tree design will perform significantly better in terms



5

of both performance and power. Novel design methodologies to identify optimal

cache organizations are proposed and their evaluation shows that a design space

exploration that includes both interconnect and cache parameters yields power-

or performance-optimal cache organizations that are quite different from those

assumed in prior studies.

The above study also gave key insights necessary to innovate new solutions.

With interconnects having such a high influence, many architectural innovations

are possible by leveraging interconnect properties. To further reduce the wire delay

overhead and accelerate cache accesses, three novel cache pipelines are proposed

that break the traditional sequential cache access pipeline. All the proposed tech-

niques exploit the varying needs of address messages, data messages, and different

bits in an address message and identify opportunities to carefully map them to a

heterogeneous network to improve access time and reduce power consumption.

Having optimized regular cache reads and cache writes happening through

lower level caches, as a next step, the focus is shifted to coherence transactions.

With the proliferation of Chip-Multiprocessors (CMP), modern cache hierarchies

incur an additional on-chip overhead of maintaining coherence among different

private caches. These coherence messages involve on-chip communication with

latencies that are projected to grow to tens of cycles in future billion transistor

architectures [3]. A heterogeneous interconnect is very powerful in reducing the

overhead of these transactions. For example, when employing a directory-based

protocol, on a cache write miss, the requesting processor may have to wait for data

from the home node (a two hop transaction) and for acknowledgments from other

sharers of the block (a three hop transaction). Since the acknowledgments are

on the critical path and have low bandwidth needs, they can be mapped to wires

optimized for delay, while the data block transfer is not on the critical path and

can be mapped to wires that are optimized for low power.

Finally, techniques to optimize L1 cache access pipeline are explored. Typically,

accesses to L1 caches are wire limited in an aggressive high ILP processor such

as a clustered architecture. A clustered architecture consists of many small and
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fast computational units connected by a communication fabric. Since a cluster

has limited resources and functionality, it enables fast clocks, low power, and

low design effort compared to a monolithic design. However, the uneven scaling

of transistors and wires makes communication between different clusters a major

bottleneck. The dissertation shows that employing heterogeneous interconnect in

such an environment not only helps alleviate communication delay but also improves

intercluster bandwidth and interconnect power dissipation.

To expose interconnect properties to architects and strengthen future research

methodologies, the proposed NUCA design methodologies along with interconnect

models are incorporated into a publicly available, open-source cache modeling tool

called CACTI. CACTI 6.0 [92], released as a part of this effort, focuses on design of

large caches with special emphasis on interconnect design. Two major extentions

to the tool were made: first, the ability to model different types of wires, such as

RC-based wires with different power/delay characteristics and differential low-swing

buses; second, the ability to model scalable Non-uniform Cache Access (NUCA).

In addition to adopting the state-of-the-art design space exploration strategies for

NUCA, the exploration is also enhanced by considering on-chip network contention

and a wider spectrum of wiring and routing choices. Other key contributions to the

tool include a dramatically improved search space along with facilities to perform

trade-off analysis.

1.4 Dissertation Overview

The dissertation is organized as follows. Chapter 2 studies the design space

for on-chip wires and discusses their analytical models. In Chapter 3, a novel

methodology is discussed to model NUCA caches and describe CACTI 6.0 features

in detail. Chapter 4 introduces new cache pipelines that leverage heterogeneous

interconnects to accelerate cache accesses. Following this, Chapter 5 describes the

application of heterogeneous interconnect in optimizing inter-core communications

and reducing coherence overhead. Finally, Chapter 6 studies heterogeneous in-
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terconnect configuration in a clustered architecture, followed by the conclusion in

Chapter 7.



CHAPTER 2

DESIGN SPACE OF ON-CHIP WIRES

This chapter provides a quick overview of factors that influence wire properties

and describes different wire implementations for a heterogeneous network. The

second half of the chapter details analytical models employed for delay and power

calculation of various full-swing and low-swing wires employed in a heterogeneous

network.

2.1 Wire Implementations with Varying

Characteristics

The delay of a wire is a function of the RC time constant (R is resistance and

C is capacitance). The resistance per unit length of the wire can be expressed by

the following equation [54]:

Rwire =
ρ

(thickness − barrier)(width − 2 barrier)
(2.1)

Thickness and width represent the geometrical dimensions of the wire cross-section,

barrier represents the thin barrier layer around the wire to prevent copper from

diffusing into surrounding oxide, and ρ is the material resistivity. The capacitance

per unit length can be modeled by four parallel-plate capacitors for each side of the

wire and a constant for fringing capacitance [54]:

Cwire = ǫ0(2Kǫhoriz

thickness

spacing
+ 2ǫvert

width

layerspacing
)

+fringe(ǫhoriz, ǫvert) (2.2)
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The potentially different relative dielectrics for the vertical and horizontal ca-

pacitors are represented by ǫhoriz and ǫvert, K accounts for Miller-effect coupling

capacitances, spacing represents the gap between adjacent wires on the same metal

layer, and layerspacing represents the gap between adjacent metal layers. Now

techniques that enable wires with varying properties are examined.

2.1.1 Wire Width and Spacing

As can be seen from equation (2.1), increasing the width of the wire can signif-

icantly decrease resistivity, while also resulting in a modest increase in capacitance

per unit length (equation (2.2)). Similarly, increasing the spacing between adjacent

wires results in a drop in Cwire. By allocating more metal area per wire and

increasing the wire width and spacing, the overall effect is that the product of

Rwire and Cwire decreases, resulting in lower wire delays. The primary difference

between wires in the different types of metal layers in modern processors is the

wire width and spacing (in addition to the thickness). Ho et al. [54] report that a

10mm unbuffered wire at 180nm technology has delays of 57 FO4s, 23 FO4s, and

6 FO4s on local, semiglobal, and global wires. Thus, wire width and spacing are

powerful parameters that can vary the latency by at least a factor of 10. However,

wide wires are more suited for low-bandwidth traffic such as for clock and power

distribution. If global communication involves the transfer of 64-byte data between

cache banks or cores, employing 512 wide wires can have enormous area overheads.

For a given metal area, the wider the wire, the fewer the number of wires that

can be accommodated (see Figure 2.1). Hence, optimizing a wire for low delay by

designing wide wires has a negative impact on bandwidth.

2.1.2 Repeater Size and Spacing

The resistance and capacitance of a wire are both linear functions of the wire

length. Hence, the delay of a wire, which depends on the product of wire resistance

and capacitance, is a quadratic function of wire length. A simple technique to

overcome this quadratic dependence is to break the wire into multiple smaller
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Delay Optimized Bandwidth Optimized Power Optimized Power and Bandwidth Optimized              

Figure 2.1. Examples of different wire implementations. Energy optimized wires
have fewer and smaller repeaters, while bandwidth optimized wires have narrow
widths and spacing.

segments and connect them with repeaters [9]. As a result, wire delay becomes

a linear function of wire length and depends on the number of segments, the wire

delay across each segment, and the logic delay across each repeater. Overall wire

delay can be minimized by selecting optimal repeater sizes and spacing between

repeaters [9] and this technique is commonly employed in modern-day processors.

However, these repeaters have high overheads associated with them. Contacts have

to be cut from the metal layer to the silicon substrate every time a logic element

is introduced in the middle of a wire. The contacts and the transistors not only

impose area overheads and routing constraints, but also impose high capacitive

loads on the wires. Banerjee et al. [14, 15] report that sub-100nm designs will have

over a million repeaters and that optimally sized repeaters are approximately 450

times the minimum sized inverter at that technology point.

Energy in the interconnect can be reduced by employing repeaters that are

smaller than the optimally-sized repeaters and by increasing the spacing between

successive repeaters (see Figure 2.1). This increases overall wire delay. Figure

2.2 shows the impact of repeater sizing and spacing on wire delay. Figure 2.3,

shows the contours corresponding to the 2% delay penalty increments for different

repeater configurations. Recently, Banerjee et al. [14] developed a methodology to

estimate repeater size and spacing that minimizes power consumption for a fixed

wire delay. They show that at 50nm technology, it is possible to design a repeater

configuration such that the wire has twice the delay and 1/5th the energy of a wire
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Figure 2.2. Effect of repeater spacing/sizing on wire delay.

that is delay-optimal. Thus, repeater size and spacing are parameters that can

dramatically influence interconnect power and performance.

2.1.3 Low-swing Wires

One of the primary reasons for the high power dissipation of global wires is

the full swing (0 V to Vdd) requirement imposed by the repeaters. While the

repeater spacing and sizing adjustments reduce power overhead to some extent,

the requirement is still relatively high. Low voltage swing alternatives represent

another mechanism to vary the wire power, delay, and area trade-off. Reducing the

voltage swing on global wires can result in a linear reduction in power. In addition,

assuming a separate voltage source for low-swing drivers will result in a quadratic

savings in power. However, these lucrative power savings are accompanied by many

caveats. Since we can no longer use repeaters or latches, the delay of a low-swing

wire increases quadratically with length. Since such a wire cannot be pipelined, they

also suffer from lower throughput. A low-swing wire requires special transmitter

and receiver circuits for signal generation and amplification. This not only increases
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Figure 2.3. Contours for 2% delay penalty

the area requirement per bit, but also assigns a fixed cost in terms of both delay

and power for each bit traversal. In spite of these issues, the power savings possible

through low-swing signalling makes it an attractive design choice.

Due to fixed overhead associated with low-swing wires, their application is

beneficial only for long on-chip wires. Hence, the study limits the application

of low-swing wires to address and data network in large caches.

2.1.4 Transmission Lines

In future technologies, other promising wire implementations may become fea-

sible, such as transmission lines [31, 41]. In a transmission line, the wire delay is

determined by the time taken to detect a voltage ripple on the wire. This delay

is determined by the LC time constant and the velocity of the ripple, which is a

function of the speed of light in the dielectric surrounding the interconnect. A

transmission line, therefore, enables very low wire latencies. For a wire to operate
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as a transmission line, it must have very high width, thickness, horizontal and

vertical spacing, and signal frequency. There are other implementation issues as

well, such as the design of signal modulation and sensing circuits, reference planes

above and below the metal layer, and shielding power and ground lines adjacent to

each transmission line [20].

Because of the large area requirements and other associated costs, transmission

lines have been sparsely used in modern processors, usually as single wires for

clock distribution [86, 124, 128]. They have also been shown to work in other

test CMOS chips [31, 43]. As we move to higher clock frequencies and increasing

metal layers, transmission line implementations may become more practical and

cost-effective. However, owing to the high area requirements per wire, transmission

lines are likely to be feasible only for very low bandwidth communication. Thus, a

transmission line represents another interesting wire implementation that trades off

bandwidth for extremely low latencies. However, due to the complexity associated

with transmission lines, they are not considered further in this dissertation.

2.2 Heterogeneous Interconnects

From the above discussion, it is clear that a large number of different wire imple-

mentations are possible, either by varying properties such as wire width/spacing and

repeater size/spacing, or by employing transmission lines. In addition to traditional

global wires that are sized and spaced to optimize delay (they are referred to here

as B-Wires), there are at least three other interesting wire implementations that

the architecture can benefit from:

• P-Wires: Wires that are power-optimal. The wires have longer delays as they

employ small repeater sizes and wide repeater spacing.

• W-Wires: Wires that are bandwidth-optimal. The wires have minimum width

and spacing and have longer delays.



14

• L-Wires: Wires that are latency-optimal. These wires employ very wide width

and spacing and have low bandwidth (potentially, a network with fewer than

20 bits).

To limit the range of possibilities, P-Wires and W-Wires can be combined to form

a single wire implementation with minimum width and spacing and with small

repeater sizes and wide repeater spacing. Such wires have poor delay characteristics,

but allow low power and high bandwidth (referred to as PW-Wires). Modern

technology allows more than 10 layers of metal in a processor [69]. The pitch

of wires in each layer is determined by technology constraints (such as minimum

via size that can tolerate variation, minimum metal width, etc.) and metal area

budget. Typically low level metal layers constitute wires with smaller pitch and

are employed for macro-level wiring. The latencies of these wires are a fraction of a

cycle and their lengths scale down with process technology. The growing disparity

between transistor and wire delay is more pronounced in top level wires that are

used for time-critical communications across the chip. This study assumes that

B and L wires are implemented in 8X (global) plane and PW wires are placed in

4X (semiglobal) plane. However, the proposed implementations are possible in any

metal plane.

2.3 Analytical Models

The following sections discuss analytical delay and power models for different

wires. All the process specific parameters required for calculating the transistor

and wire parasitics are obtained from ITRS [7].

2.3.1 Global Wires

For a long repeated wire, the single pole time constant model for the interconnect

fragment shown in Figure 2.4 is given by,

τ = (
1

l
rs(c0 + cp) +

rs

s
Cwire + Rwiresc0 + 0.5RwireCwirel) (2.3)



15

ll

RepeaterRepeater

Figure 2.4. Interconnect segment

In the above equation, c0 is the capacitance of the minimum sized repeater, cp

is its output parasitic capacitance, rs is its output resistance, l is the length of the

interconnect segment between repeaters, and s is the size of the repeater normalized

to the minimum value. The values of c0, cp, and rs are constant for a given process

technology. Wire parasitics Rwire and Cwire represent resistance and capacitance

per unit length. The optimal repeater sizing and spacing values can be calculated

by differentiating equation (2.3) with respect to s and l and equating it to zero.

Loptimal =

√

2rs(c0 + cp)

RwireCwire

(2.4)

Soptimal =

√

rsCwire

Rwirec0

(2.5)

The delay value calculated using the above Loptimal and Soptimal is guaranteed

to have minimum value.

The total power dissipated is the sum of three main components (equation (2.6))

[14].

Ptotal = Pswitching + Pshort−circuit + Pleakage (2.6)
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The dynamic and leakage components of the repeaters in a wire are computed

using equations (2.8) and (2.10).

Pdynamic = αV 2

DDfclock(
Soptimal

Loptimal

(cp + c0) + c) (2.7)

+(αVDDWminISCfclockloge3)Soptimal

τ

Loptimal

(2.8)

fclock is the operating frequency, Wmin is the minimum width of the transistor,

ISC is the short-circuit current, and the value (τ/L)optimal can be calculated from

equation (2.9).

(
τ

L
)optimal = 2

√
rsc0rc

(

1 +

√

0.5 ∗
(

1 +
cp

c0

)

)

(2.9)

Pleakage =
3

2
VDDIleakWnSoptimal (2.10)

Ileak is the leakage current and Wn is the minimum width of the nMOS transistor.

With the above equations, it is possible to compute the delay and power for

global and semiglobal wires. Wires faster than global wires can be obtained by

increasing the wire width and spacing between the wires. Wires whose repeater

spacing and sizing are different from equation (2.4) and (2.5) will incur a delay

penalty. For a given delay penalty, the power optimal repeater size and spacing can

be obtained from the contour shown in Figure 2.3. The actual calculation involves

solving a set of differential equations [14].

2.3.2 Low-swing Wires

A low-swing interconnect system consists of three main components: (1) a

transmitter that generates and drives the low-swing signal, (2) twisted differential

wires, and (3) a receiver amplifier.
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• Transmitter

For an RC tree with a time constant τ , the delay of the circuit for an input with

finite rise time is given by equation (2.11)

delayr = tf

√

[log
vth

Vdd

]2 + 2triseb(1 − vth

V dd
)/tf (2.11)

where tf is the time constant of the tree, vth is the threshold voltage of the

transistor, trise is the rise time of the input signal, and b is the fraction of the

input swing in which the output changes (b is assumed to be 0.5).

For falling input, the equation changes to

delayf = tf

√

√

√

√[log(1 − vth

Vdd

)]2 +
2tfallbvth

tfVdd

(2.12)

where tfall is the fall time of the input. For the falling input, a value of 0.4 is

assumed for b [125].

To get a reasonable estimate of the initial input signal rise/fall time, two

inverters connected in series are considered. Let d be the delay of the second

inverter. The tfall and trise values for the initial input can be approximated to

tfall =
d

1 − vth

trise =
d

vth

For the transmitter circuit shown in Figure 2.5, the model proposed by Ho et

al. [55] is employed.
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Figure 2.5. Low-swing transmitter (actual transmitter has two such circuits to
feed the differential wires)

The total delay of the transmitter is given by,

tdelay = nanddelay + inverterdelay + driverdelay (2.13)

Each gate in the above equation (nand, inverter, and driver) can be reduced to

a simple RC tree. Later, a Horowitz approximation [125] is applied to calculate

the delay of each gate. The power consumed in different gates can be derived

from the input and output parasitics of the transistors.

NAND gate: The equivalent resistance and capacitance values of a NAND

gate is given by,

Req = 2 ∗ Rnmos

Ceq = 2 ∗ CPdrain + 1.5 ∗ CNdrain + CL

where CL is the load capacitance of the NAND gate and is equal to the input

capacitance of the next gate. The value of CL is equal to INVsize ∗ (CPgate +
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CNgate) where equal to the input capacitance of the next gate. The value of CL

is equal to INVsize ∗ (CPgate + CNgate) where INVsize is the size of the inverter

whose calculation is discussed later in this section.

NOTE: The drain capacitance of a transistor is highly nonlinear. In the above

equation for Ceq, the effective drain capacitance of two nMOS transistors con-

nected in series is approximated to 1.5 times the drain capacitance of a single

nMOS transistor.

τnand = Req ∗ Ceq

Using the τnand and trise values in equation (2.12), nanddelay can be calculated.

Power consumed by the NAND gate is given by

Pnand = Ceq ∗ V 2

dd

The fall time (tfall) of the input signal to the next stage (NOT gate) is given by

tfall = nanddelay(
1

1 − vth

)

Driver: To increase the energy savings in low-swing model, a separate low

voltage source for driving low-swing differential wires is assumed. The size of

these drivers depends on its load capacitance, which in turn depends on the

length of the wire. To calculate the size of the driver, the drive resistance of the

nMOS transistors for a fixed desired rise time of eight F04 is first calculated.

Rdrive =
−Risetime

CL ∗ ln(0.5)

Wdr =
Rm

Rdrive

∗ Wmin

In the above equation, CL is the sum of capacitance of the wire and input

capacitance of the sense amplifier. Rm is the drive resistance of a minimum

sized nMOS transistor and Wmin is the width of the minimum sized transistor.
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From the Rdrive value, the actual width of the pMOS transistor can be calcu-

lated. The model limits the transistor width to 100 times the minimum size.

NOTE: The driver resistance Rdrive calculated above is valid only if the supply

voltage is set to full Vdd. Since low-swing drivers employ a separate low voltage

source, the actual drive resistance of these transistors will be greater than the

pMOS transistor of the same size driven by the full Vdd. Hence, the Rdrive value

is multiplied with an adjustment factor RES ADJ to account for the poor

driving capability of the pMOS transistor. Based on the SPICE simulation,

RES ADJ value is calculated to be 8.6.

NOT gate: The size of the NOT gate is calculated by applying the method of

logical effort. Consider the NAND gate connected to the NOT gate that drives

a load of CL, where CL is equal to the input capacitance of the driver.

path effort =
CL

CNgate + CPgate

The delay will be minimum when the effort in each stage is the same.

stage effort =
√

(4/3) ∗ path effort

CNOT in =
(4/3) ∗ CL

stage effort

INVsize =
CNOTin

CNgate + CPgate

Using the above inverter size, the equivalent resistance and the capacitance of

the gate can be calculated.

Req = Rpmos

Ceq = CPdrain + CNdrain + CL

where CL for the inverter is equal to (CNgate).
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τnot = Req ∗ Ceq

Using the above τnot and tfall values, notdelay can be calculated. Energy con-

sumed by this NOT gate is given by

Enot = Ceq ∗ V 2

dd

The rise time for the next stage is given by

trise =
notdelay

vth

• Differential Wires

To alleviate the high delay overhead of the un-repeated low-swing wires, similar

to differential bitlines, pre-emphasis and pre-equalization optimizations are em-

ployed. In pre-emphasis, the drive voltage of the driver is maintained at higher

voltage than low-swing voltage. By overdriving these wires, it takes only a

fraction of time constant to develop the differential voltage. In pre-equalization,

after a bit traversal, the differential wires are shorted to recycle the charge.

Developing a differential voltage on pre-equalized wires takes less time compared

to the wires with opposite polarity.

The following equations present the time constant and capacitance values of the

segments that consist of low-swing drivers and wires.

tdriver = (Rdriver∗(Cwire+2∗Cdrain)+RwireCwire/2+(Rdriver+Rwire)∗Csense amp)

(2.14)

The Cwire and Rwire in the above equation represents resistance and capacitance

parasitics of the low-swing wire. Rdriver and Cdrain are resistance and drain

capacitance of the driver transistors. The pre-equalization and pre-emphasis

optimizations bring down this time constant to 35% of the above value.
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The total capacitance of the low-swing segment is given by

Cload = Cwire + 2 ∗ Cdrain + Csense amp

The dynamic energy due to charging and discharging of differential wires is

given by

Cload ∗ VoverDrive ∗ Vlowswing

For our evaluations, an overdrive voltage of 400mV and a low swing voltage of

100mV is assumed.

• Sense Amplifier

Figure 2.6 shows the cross-coupled inverter sense amplifier circuit used at the

receiver. The delay and power values of the sense amplifier were directly

calculated from SPICE simulation and tabulated in Table 2.1.

2.4 Summary

This chapter examined different wire implementations possible in a network. It

showed that wires come in a variety of flavors with different power, delay, and

bandwidth characteristics. Then, heterogeneous interconnect fabric is defined

that consists of three different types of wires: low-latency, low-bandwidth wires

(L-wires), traditional base case wires (B-wires), and power and bandwidth

efficient wires (PW-wires). The subsequent chapters will study how interconnect

choices influence the design of large caches and explore techniques that leverage

different types of wires to improve power-delay characteristics of on-chip caches.
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Table 2.1. Sense-amplifier delay and energy values for different process technolo-
gies

Technology Delay (ps) Energy (fJ)
90nm 279 14.7
68nm 200 5.7
45nm 38 2.7
32nm 30 2.16



CHAPTER 3

INTERCONNECT DESIGN FOR LARGE

CACHES

Chapter 2 discussed various types of wires along with their power, delay, and

bandwidth characteristics. This chapter demonstrates how the choice of these wires

influences the design of on-chip caches. To design scalable large caches, many

recent proposals advocate splitting the cache into a large number of banks and

employing a network-on-chip (NoC) to allow fast access to nearby banks (referred

to as Non-Uniform Cache Access (NUCA) Architecture).

Most studies on NUCA organizations have assumed a generic NoC and fo-

cused on logical policies for cache block placement, movement, and search. Since

wire/router delay and power are major limiting factors in modern processors, this

work focuses on interconnect design and its influence on NUCA performance and

power. With interconnect overheads appropriately accounted for, the optimal

cache organization is typically very different from that assumed in prior NUCA

studies. In an effort to strengthen future NUCA design methodologies and to make

interconnect models explicit to architects, the proposed techniques are incorporated

into an open-source cache modeling tool called CACTI.

CACTI 6.0, released as part of this work, is provided with two major extensions:

first, the ability to model different types of wires, such as RC-based wires with

different power/delay characteristics and differential low-swing buses are added to

the tool; second, the tool is enhanced to model Non-uniform Cache Access (NUCA).

In addition to adopting state-of-the-art design space exploration strategies for

NUCA, the exploration is also enhanced by considering on-chip network contention

and a wider spectrum of wiring and routing choices. At the end of the chapter, a
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validation analysis of the new tool is presented along with a case study to showcase

how the tool can improve architecture research methodologies.

3.1 Need for an Enhanced Cache Modeling Tool

Multi-core processors will incorporate large and complex cache hierarchies. The

Intel Montecito employs two 12 MB private L3 caches, one for each core [85], and

there is speculation that future 3D processors may dedicate an entire die for large

SRAM caches or DRAM main memory [23, 78, 103]. Therefore, it is expected that

future processors will have to intelligently manage many mega-bytes of on-chip

cache. Future research will likely explore architectural mechanisms to (i) organize

the L2 or L3 cache into shared/private domains, (ii) move data to improve locality

and sharing, (iii) optimize the network parameters (topology, routing) for efficient

communication between cores and cache banks. Examples of on-going research in

these veins include [19, 21, 30, 33, 34, 45, 57, 59, 65, 75, 109, 131].

Many cache evaluations employ the CACTI cache access modeling tool [126] to

estimate delay, power, and area for a given cache size. The CACTI estimates are

invaluable in setting up baseline simulator parameters, computing temperatures of

blocks neighboring the cache, evaluating the merits/overheads of novel cache organi-

zations (banking, reconfiguration, additional bits of storage), etc. While CACTI 5.0

produces reliable delay/power/area estimates for moderately sized caches, it does

not model the requirements of large caches in sufficient detail. Besides, the search

space of the tool is limited and, hence, so is its application in power/performance

trade-off studies. With much of future cache research focused on multimegabyte

cache hierarchy design, this is a serious short-coming. Hence, in this work, the

CACTI tool is extended in many ways, with the primary goal of improving the

fidelity of its large cache estimates. The tool can also aid in trade-off analysis; for

example, with a comprehensive design space exploration, CACTI 6.0 can identify

cache configurations that consume three times less power for about a 25% delay

penalty.
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The main enhancement provided in CACTI 6.0 is a very detailed modeling of

the interconnect between cache banks. A large cache is typically partitioned into

many smaller banks and an inter-bank network is responsible for communicating

addresses and data between banks and the cache controller. Earlier versions of

CACTI have employed a simple H-tree network with global wires and have assumed

uniform access times for every bank (a uniform cache access architecture, referred

to as UCA). Recently, nonuniform cache architectures (NUCA [65]) have also been

proposed that employ a packet-switched network between banks and yield access

times that are a function of where data blocks are found (not a function of the

latency to the most distant bank). Support for such an architecture within CACTI

is added.

As the size of the cache scales up, irrespective of using a packet-switched or

H-tree network, the delay and power of the network components dominate the

overall cache access delay and power. Figure 3.1 shows that the H-tree of the

CACTI 5.0 model contributes an increasing percentage to the overall cache delay

as the cache size is increased from 2 to 32 MB. Its contribution to total cache

power is also sizable: around 50%. As the cache size increases, the bitline power

component also grows. Hence, the contribution of H-tree power as a percentage

remains roughly constant. The inter-bank network itself is sensitive to many

parameters, especially the wire signaling strategy, wire parameters, topology, router

configuration, etc. The new version of the tool carries out a design space exploration

over these parameters to estimate a cache organization that optimizes a combination

of power/delay/area metrics for UCA and NUCA architectures. Network contention

plays a nontrivial role in determining the performance of an on-chip network design.

To consider its effect, the design space exploration is augmented with empirical data

on network contention.

Components of the tool are partially validated against detailed Spice simula-

tions. Finally, an example case study is presented to demonstrate how the tool can

facilitate architectural evaluations.
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Figure 3.1. Contribution of H-tree network to overall cache delay and power

3.2 CACTI 6.0

Figure 3.2 shows the basic logical structure of a uniform cache access (UCA)

organization. The address is provided as input to the decoder, which then activates

a wordline in the data array and tag array. The contents of an entire row (referred

to as a set) are placed on the bitlines, which are then sensed. The multiple tags

thus read out of the tag array are compared against the input address to detect if

one of the ways of the set does contain the requested data. This comparator logic

drives the multiplexor that finally forwards at most one of the ways read out of the

data array back to the requesting processor.

The CACTI cache access model [112] takes in the following major parameters

as input: cache capacity, cache block size (also known as cache line size), cache

associativity, technology generation, number of ports, and number of independent

banks (not sharing address and data lines). As output, it produces the cache

configuration that minimizes delay (with a few exceptions), along with its power
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Figure 3.2. Logical organization of the cache (from CACTI 3.0 [108])

and area characteristics. CACTI models the delay, power, and area of eight major

cache components: decoder, wordline, bitline, senseamp, comparator, multiplexer,

output driver, and inter-bank wires. The wordline and bitline delays are two of the

most significant components of the access time. The wordline and bitline delays

are quadratic functions of the width and height of each array, respectively. In

practice, the tag and data arrays are large enough that it is inefficient to implement

them as single large structures. Hence, CACTI partitions each storage array (in

the horizontal and vertical dimensions) to produce smaller subarrays and reduce

wordline and bitline delays. The bitline is partitioned into Ndbl different segments,

the wordline is partitioned into Ndwl segments, and so on. Each subarray has its

own decoder and some central predecoding is now required to route the request to

the correct subarray. The most recent version of CACTI (version 5.0) employs a

model for semiglobal (intermediate) wires and an H-tree network to compute the

delay between the predecode circuit and the furthest cache subarray. CACTI carries

out an exhaustive search across different subarray counts (different values of Ndbl,

Ndwl, etc.) and subarray aspect ratios to compute the cache organization with

optimal total delay. Typically, the cache is organized into a handful of subarrays.

An example of the cache’s physical structure is shown in Figure 3.3.
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Figure 3.3. Physical organization of the cache (from CACTI 3.0 [108])

3.2.1 Interconnect Modeling for UCA Caches

As already shown in Figure 3.1, as cache size increases, the interconnect (within

the H-tree network) plays an increasingly greater role in terms of access time and

power. The interconnect overhead is impacted by (i) the number of subarrays, (ii)

the signaling strategy, and (iii) the wire parameters. While prior versions of CACTI

iterate over the number of subarrays by exploring different values of Ndbl, Ndwl,

Nspd, etc., the model is restricted to a single signaling strategy and wire type (global

wire). Thus, the design space exploration sees only a modest amount of variation

in the component that dominates the overall cache delay and power. Therefore, the

exploration is extended to also include a low-swing differential signaling strategy as

well as the use of local and fat wires whose characteristics are shown in Figure 3.4

and 3.5.

By examining these choices and carrying out a more comprehensive design space

exploration, CACTI 6.0 is able to identify cache organizations that better meet the

user-specified metrics. Figure 3.6 shows a power-delay curve where each point
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Figure 3.6. Design space exploration with global wires

represents one of the many hundreds of cache organizations considered by CACTI

5.0. The red points (bottom region) represent the cache organizations that would

have been considered by CACTI 5.0 with its limited design space exploration with

a single wire type (global wire with delay-optimal repeaters). The yellow points

(middle region) in Figure 3.7 represent cache organizations with different wire types

that are considered by CACTI 6.0. Clearly, by considering the trade-offs made

possible with wires and expanding the search space, CACTI 6.0 is able to identify

cache organizations with very relevant delay and power values.

The choice of an H-tree network for CACTI 5.0 (and earlier versions of CACTI)

was made for the following reason: it enables uniform access times for each bank,

which in turn, simplifies the pipelining of requests across the network. Since

low-swing wires cannot be pipelined and since they better amortize the trans-

mitter/receiver overhead over long transfers, a different network style is adopted

when using low-swing wires. Instead of the H-tree network, a collection of simple

broadcast buses is adopted that span across all the banks (each bus is shared by
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Figure 3.7. Design space exploration with full-swing global wires (red, bottom
region), wires with 30% delay penalty (yellow, middle region), and differential
low-swing wires (blue, top region)

half the banks in a column – an example with eight banks is shown in Figure 3.8).

The banks continue to have uniform access times, as determined by the worst-case

delay. Since the bus is not pipelined, the wire delay limits the throughput as well

and decreases the operating frequency of the cache. The cycle time of a cache is

equal to the maximum delay of a segment that cannot be pipelined. Typically,

the sum of bitline and sense amplifier delay decides the cycle time of a cache.

In a low-swing model, the cycle time is determined by the maximum delay of the

low-swing bus. Low-swing wires with varying width and spacing are also considered

that further play into the delay/power/area trade-offs.

With low-swing wires included in the CACTI design space exploration, the tool

is able to identify many more points that yield low power at a performance and area

cost. The blue points (top region) in Figure 3.7 represent the cache organizations

considered with low-swing wires. Thus, by leveraging different wire properties, it
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Figure 3.8. 8-bank data array with a differential low-swing broadcast bus

is possible to generate a broad range of cache models with different power/delay

characteristics.

3.2.2 NUCA Modeling

The UCA cache model discussed so far has an access time that is limited by the

delay of the slowest sub-bank. A more scalable approach for future large caches is

to replace the H-tree bus with a packet-switched on-chip grid network. The latency

for a bank is determined by the delay to route the request and response between

the bank that contains the data and the cache controller. Such a NUCA model was

first proposed by Kim et al. [65] and has been the subject of many architectural

evaluations. Therefore, CACTI is extended to support such NUCA organizations

as well.

The tool first iterates over a number of bank organizations: the cache is par-

titioned into 2N banks (where N varies from 1 to 12); for each N , the banks
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are organized in a grid with 2M rows (where M varies from 0 to N). For each

bank organization, CACTI 5.0 is employed to determine the optimal subarray

partitioning for the cache within each bank. Each bank is associated with a router.

The average delay for a cache access is computed by estimating the number of

network hops to each bank, the wire delay encountered on each hop, and the cache

access delay within each bank. It is further assumed that each traversal through

a router takes up R cycles, where R is a user-specified input. Router pipelines

can be designed in many ways: a four-stage pipeline is commonly advocated [42],

and recently, speculative pipelines that take up three, two, and one pipeline stage

have also been proposed [42, 90, 98]. While the user is given the option to pick

an aggressive or conservative router, the tool defaults to employing a moderately

aggressive router pipeline with three stages.

More partitions lead to smaller delays (and power) within each bank, but greater

delays (and power) on the network (because of the constant overheads associated

with each router and decoder). Hence, the above design space exploration is re-

quired to estimate the cache partition that yields optimal delay or power. The above

algorithm was recently proposed by Muralimanohar and Balasubramonian [91]. The

algorithm is further extended in the following ways.

First, different wire types for the links between adjacent routers are explored.

These wires are modeled as low-swing differential wires as well as local/global/fat

wires to yield many points in the power/delay/area spectrum.

Second, different types of routers are modeled. The sizes of buffers and virtual

channels within a router have a major influence on router power consumption as well

as router contention under heavy load. By varying the number of virtual channels

per physical channel and the number of buffers per virtual channel, different points

on the router power-delay trade-off curve could be achieved.

Third, contention in the network in much greater detail is modeled. This itself

has two major components. If the cache is partitioned into many banks, there are

more routers/links on the network and the probability of two packets conflicting

at a router decrease. Thus, a many-banked cache is more capable of meeting the
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bandwidth demands of a many-core system. Further, certain aspects of the cache

access within a bank cannot be easily pipelined. The longest such delay within the

cache access (typically the bitline and sense-amp delays) represents the cycle time

of the bank – it is the minimum delay between successive accesses to that bank.

A many-banked cache has relatively small banks and a relatively low cycle time,

allowing it to support a higher throughput and lower wait-times once a request is

delivered to the bank. Both of these two components (lower contention at routers

and lower contention at banks) tend to favor a many-banked system. This aspect is

also included in estimating the average access time for a given cache configuration.

The contention values for each considered NUCA cache organization are empir-

ically estimated for typical workloads and incorporated into CACTI 6.0 as look-up

tables. For the grid topologies considered (for different values of N and M), L2 re-

quests originating from single-core, two-core, four-core, eight-core, and sixteen-core

processors are simulated. Each core executes a mix of programs from the SPEC

benchmark suite. The benchmark set is divided into four categories, as described

in Table 3.1.

For every CMP organization, four sets of simulations are run, corresponding to

each benchmark set tabulated. The generated cache traffic is then modeled on a

detailed network simulator with support for virtual channel flow control. Details

of the architectural and network simulator are listed in Table 3.2. The contention

value (averaged across the various workloads) at routers and banks is estimated for

each network topology and bank cycle time. Based on the user-specified inputs, the

Table 3.1. Benchmark sets

Memory intensive applu, fma3d, swim, lucas
benchmarks equake, gap, vpr, art

L2/L3 latency ammp, apsi, art, bzip2,
sensitive benchmarks crafty, eon, equake, gcc

Half latency sensitive & ammp, applu, lucas, bzip2
half non-latency crafy, mgrid,

sensitive benchmarks mesa, gcc
Random benchmark set Entire SPEC suite
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Table 3.2. Simplescalar simulator parameters

Fetch queue size 64
Branch predictor comb. of bimodal and 2-level

Bimodal predictor size 16K
Level 1 predictor 16K entries, history 12
Level 2 predictor 16K entries

BTB size 16K sets, 2-way
Branch mispredict penalty at least 12 cycles

Fetch width 8 (across up to 2 basic blocks)
Dispatch and commit width 8

Issue queue size 60 (int and fp, each)
Register file size 100 (int and fp, each)

Re-order Buffer size 80
L1 I-cache 32KB 2-way
L1 D-cache 32KB 2-way set-associative,
L2 cache 32MB 8-way SNUCA

3 cycles, 4-way word-interleaved
L2 Block size 64B
I and D TLB 128 entries, 8KB page size

Memory latency 300 cycles for the first chunk
Network topology Grid

Flow control mechanism Virtual channel
No. of virtual channels 4 /physical channel
Back pressure handling Credit based flow control

appropriate contention values in the look-up table are taken into account during the

design space exploration. Some of this empirical data is represented in Figure 3.9.

It is observed that for many-core systems, the contention in the network can be as

high as 30 cycles per access (for a two banked model) and cannot be ignored during

the design space exploration.

For a network with completely pipelined links and routers, contention values

are only a function of the router topology and bank cycle time and will not be

affected by process technology or L2 cache size. It is assumed here that the cache

is organized as static-NUCA (SNUCA), where the address index bits determine the

unique bank where the address can be found and the access distribution does not

vary greatly as a function of the cache size. CACTI is designed to be more generic

than specific. The contention values are provided as a guideline to most users.

If a user is interested in a more specific NUCA policy, there is no substitute to

generating the corresponding contention values and incorporating them in the tool.
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As a case study in Section 3.3, a different NUCA policy is examined. If CACTI is

being employed to compute an optimal L3 cache organization, the contention values

will likely be much less because the L2 cache filters out most requests. To handle

this case, the average contention values are also computed assuming a large 2 MB

L1 cache and this is incorporated into the model as well. In summary, the network

contention values are impacted by the following parameters: M , N , bank cycle

time, number of cores, router configuration (VCs, buffers), and size of preceding

cache.

Figure 3.10 shows an example design space exploration for a 32 MB NUCA

L2 cache while attempting to minimize latency. The X-axis shows the number

of banks into which the cache is partitioned. For each point on the X-axis, many

different bank organizations are considered and the organization with optimal delay

(averaged across all banks) is finally represented on the graph. The Y-axis repre-

sents this optimal delay and it is further broken down to represent the contributing

components: bank access time, link and router delay, router and bank contention.



38

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

L
a
te

n
c
y
 (

c
y
c
le

s
)

No. of Banks

Total No. of Cycles

Network Latency

Bank access latency

Network contention Cycles

Figure 3.10. NUCA design space exploration

It is observed that the optimal delay is experienced when the cache is organized

as a 2 × 4 grid of 8 banks. The improved methodology significantly impacts the

processor performance and power consumption. On an average, the new cache

model improves performance by 114% along with 50% reduction in cache access

power. See the next chapter for methodology and detailed graphs.

3.2.3 Router Models

The ubiquitous adoption of the system-on-chip (SoC) paradigm and the need

for high bandwidth communication links between different modules have led to

a number of interesting proposals targeting high-speed network switches/routers

[40, 88, 90, 98, 99]. This section provides a brief overview of router complexity

and different pipelining options available. It ends with a summary of the delay and

power assumptions made for our NUCA CACTI model. For all the evaluations,

virtual channel flow control is assumed because of its high throughput and ability

to avoid deadlock in the network [40].
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Figure 3.11 shows a typical virtual channel router architecture and Figure 3.12

shows the different steps involved in routing a message to the appropriate destina-

tion [42]. A flit is the smallest unit of flow control and is usually the number of bits

transmitted on a link in a single cycle. The size of the message sent through the

network is measured in terms of flits. Every network message consists of a head flit

that carries details about the destination of the message and a tail flit indicating the

end of the message. If the message size is very small, the head flit can also serve

the tail flit’s functionality. The highlighted blocks in Figure 3.12 correspond to

stages that are specific to head flits. Whenever a head flit of a new message arrives

at an input port, the router stores the message in the input buffer and the input

controller decodes the message to find the destination. After the decode process,

it is then fed to a virtual channel (VC) allocator. The VC allocator consists of

a set of arbiters and control logic that takes in requests from messages in all the

input ports and allocates appropriate output virtual channels at the destination.

If two head flits compete for the same channel, then depending on the priority set

in the arbiter, one of the flits gains control of the VC. Upon successful allocation

of the VC, the head flit proceeds to the switch allocator. Once the decoding and

VC allocation of the head flit are completed, the remaining flits perform nothing

in the first two stages. The switch allocator reserves the crossbar so the flits can

be forwarded to the appropriate output port. Finally, after the entire message is

handled, the tail flit de-allocates the VC. Thus, a typical router pipeline consists

of four different stages with the first two stages playing a role only for head flits.

Peh et al. [98] propose a speculative router model to reduce the pipeline depth of

virtual channel routers. In their pipeline, switch allocation happens speculatively,

in parallel with VC allocation. If the VC allocation is not successful, the message is

prevented from entering the final stage, thereby wasting the reserved crossbar time

slot. To avoid performance penalty due to mis-speculation, the switch arbitration

gives priority to nonspeculative requests over speculative ones. This new model

implements the router as a three-stage pipeline.
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Figure 3.11. Router architecture

Figure 3.12. Router pipeline [42]

The bulk of the delay in router pipeline stages comes from arbitration and other

control overheads. Mullins et al. [90] remove the arbitration overhead from the

critical path by precomputing the grant signals. The arbitration logic precomputes

the grant signal based on requests in previous cycles. If there are no requests present

in the previous cycle, one viable option is to speculatively grant permission to all

the requests. If two conflicting requests get access to the same channel, one of the

operations is aborted. While successful speculations result in a single-stage router

pipeline, mis-speculations are expensive in terms of delay and power.
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Single stage router pipelines are not yet a commercial reality. At the other end of

the spectrum is the high speed 1.2 GHz router in the Alpha 21364 [88]. The router

has eight input ports and seven output ports that includes four external ports to

connect off-chip components. The router is deeply pipelined with eight pipeline

stages (including special stages for wire delay and ECC) to allow the router to run

at the same speed as the main core.

Essentially, innovations in router microarchitectures are on-going. The pipeline

depth ranges from a single cycle speculative model [90] to an eight stage model

in the Alpha 21364 [88]. For the purpose of the study, the moderately aggressive

implementation with a 3-stage pipeline [98] is adopted. The power model is also

derived from a corresponding analysis by some of the same authors [120]. As a

sensitivity analysis, the results also show the effect of employing router microarchi-

tectures with different pipeline latencies.

As discussed earlier, various routers have been proposed with differing levels

of speculation and pipeline stages [42, 90, 98]. The number of stages for each

router is left as a user-specified input, defaulting to 3 cycles. For router power,

the analytical power models for crossbars is employed and arbiters employed in

the Orion toolkit [123]. CACTI’s RAM model is employed for router buffer power.

These represent the primary contributors to network power (in addition to link

power, which was discussed in the previous subsection). A grid topology is modelled

where each router has 5 inputs and 5 outputs, and considers three points on the

power-performance trade-off curve. Each point provides a different number of

buffers per virtual channel and a different number of virtual channels per physical

channel. Accordingly, a significant variation in buffer capacity (and power) and

contention cycles at routers is seen. As before, the contention cycles are computed

with detailed network simulations. Table 3.3 specifies the three types of routers

and their corresponding buffer, crossbar, and arbiter energy values.
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Table 3.3. Energy consumed (in J) by arbiters, buffers, and crossbars for various
router configurations at 32nm technology (flit size of 128 bits).

Component Configuration 1 Configuration 2 Configuration 3
4 VCs/PC 2VCs/PC 2 VCs/PC

16 buffers/VC 8 buffers/VC 2 buffers/VC
Arbiter 0.33e-12 0.27e-12 0.27e-12

Crossbar (avg) 0.99e-11 0.99e-11 0.99e-11
Buffer read operation/VC 0.11e-11 0.76e-12 0.50e-12
Write buffer operation/VC 0.14e-11 0.10e-11 0.82e-12

3.2.4 Improvement in Trade-Off Analysis

For architectural studies, especially those related to memory hierarchy design,

an early estimate of cache access time and power for a given input configuration is

crucial to make informed decisions. As described in Section 3.2, CACTI 5.0 carries

out a design space exploration over various subarray partitions; it then eliminates

organizations that have an area that is 50% higher than the optimal area; it further

eliminates those organizations that have an access time value more than 10% the

minimum value; and finally, it selects an organization using a cost function that

minimizes power and cycle time.

Modern processor design is not singularly focused on performance and many

designers are willing to compromise some performance for improved power. Many

future studies will likely carry out trade-off analyses involving performance, power,

and area. To facilitate such analyses, the new version of the tool adopts the

following cost function to evaluate a cache organization (taking into account delay,

leakage power, dynamic power, cycle time, and area):

cost =

Wacc time

acc time

min acc time
+

Wdyn power

dyn power

min dyn power
+

Wleak power

leak power

min leak power
+

Wcycle time

cycle time

min cycle time
+
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Warea

area

min area

The weights for each term (Wacc time, Wdyn power, Wleak power, Wcycle time, Warea)

indicate the relative importance of each term and these are specified by the user as

input parameters in the configuration file:

-weight 100 20 20 10 10

The above default weights used by the tool reflect the priority of these metrics

in a typical modern design. In addition, the following default line in the input

parameters specifies the user’s willingness to deviate from the optimal set of metrics:

-deviate 1000 1000 1000 1000 1000

The above line dictates that we are willing to consider a cache organization where

each metric, say the access time, deviates from the lowest possible access time

by 1000%. Hence, this default set of input parameters specifies a largely uncon-

strained search space. The following input lines restrict the tool to identify a cache

organization that yields least power while giving up at most 10% performance:

-weight 0 100 100 0 0

-deviate 10 1000 1000 1000 1000

3.3 Case Study

It is expected that CACTI 6.0 will continue to be used in architectural eval-

uations in many traditional ways: it is often used to estimate cache parameters

while setting up architectural simulators. The new API makes it easier for users to

make power, delay, and area trade-offs and this feature is expected to be heavily

used for architectural evaluations that focus on power-efficiency or are attempting

to allocate power/area budgets to cache or processing. With many recent research

proposals focused on NUCA organizations, it is also expected the tool to be heavily

used in that context. Since it is difficult to generalize NUCA implementations, it

is expected that users modeling NUCA designs may need to modify the model’s
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parameters and details to accurately reflect their NUCA implementation. Hence, as

a case study of the tool’s operation, an example NUCA evaluation and its interplay

with CACTI 6.0 is presented.

Many recent NUCA papers have attempted to improve average cache access

time by moving heavily accessed data to banks that are in close proximity to the

core [21, 34, 57, 59, 65]. This is commonly referred to as dynamic-NUCA or D-

NUCA because a block is no longer mapped to a unique bank and can move between

banks during its L2 lifetime. A novel idea is postulated first and then shown how

CACTI 6.0 can be employed to evaluate that idea. Evaluating and justifying such

an idea could constitute an entire paper – a high-level evaluation that highlights

the changes required to CACTI 6.0 is simply focussed here.

For a D-NUCA organization, most requests will be serviced by banks that are

close to the cache controller. Further, with D-NUCA, it is possible that initial

banks will have to be searched first and the request forwarded on if the data is not

found. All of this implies that initial banks see much higher activity than distant

banks. To reduce the power consumption of the NUCA cache, it is proposed that

heterogeneous banks be employed: the initial banks can employ smaller power-

efficient banks while the distant banks can employ larger banks.

For the case study evaluation, it is focussed on a grid-based NUCA cache

adjacent to a single core. The ways of a set are distributed across the banks,

so a given address may reside in one of many possible banks depending on the way

it is assigned to. Similar to D-NUCA proposals in prior work [65], when a block

is brought into the cache, it is placed in the most distant way and it is gradually

migrated close to the cache controller with a swap between adjacent ways on every

access. While looking for data, each candidate bank is sequentially looked up until

the data is found or a miss is signaled.

Recall that CACTI 6.0 assumes an S-NUCA organization where sets are dis-

tributed among banks and each address maps to a unique bank. When estimating

average access time during the design space exploration, it is assumed that each

bank is accessed with an equal probability. The network and bank contention values
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are also estimated for an S-NUCA organization. Thus, two changes have to be made

to the tool to reflect the proposed implementation:

• The design space exploration must partition the cache space into two: the

bank sizes for each partition are estimated independently, allowing the initial

banks to have one size and the other banks to have a different size.

• Architectural evaluations have to be performed to estimate the access fre-

quencies for each bank and contention values so that average access time can

be accurately computed.

With the simulation infrastructure, it is considered a 32 MB 16-way set-associative

L2 cache and modeled the migration of blocks across ways as in the above D-NUCA

policy. Based on this, the access frequency shown in Figure 3.13 was computed, with

many more accesses to initial banks (unlike the S-NUCA case where the accesses

per bank are uniform). With this data integrated into CACTI 6.0, the design

space exploration loop of CACTI 6.0 was wrapped around with the following loop

structure:

for i = 0 to 100

# Assume i% of the cache has one

# bank size and the remaining

# (100-i)% has a different bank size

for the first i% of cache,

perform CACTI 6.0 exploration

(with new access frequencies

and contention)

for the remaining (100-i)% of cache,

perform CACTI 6.0 exploration

(with new access frequencies

and contention)
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Figure 3.13. Access frequency for a 32MB cache. The y-coordinate of a point in
the curve corresponds to the percentage of accesses that can be satisfied with x KB
of cache

As an input, the -weight and -deviate parameters are provided to specify that

an organization that minimizes power while yielding performance within 10% of

optimal is looked for. The output from this modified CACTI 6.0 indicates that the

optimal organization employs a bank size of 4MB for the first 16MB of the cache

and a bank size of 8MB for the remaining 16MB. The average power consumption

for this organization is 20% lower than the average power per access for the S-NUCA

organization yielded by unmodified CACTI 6.0.

3.4 Validation

The newly added modules in CACTI 6.0 are validated against high fidelity

SPICE models. This includes low-swing wires, router components, and improved

bitline and wordline models. Since SPICE results depend on the model files for

transistors, the technology modeling changes made to the recent version of CACTI

(version 5) is first discussed followed by the methodology for validating the newly

added components to CACTI 6.0.
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Earlier versions of CACTI (version one through four) assumed linear technology

scaling for calculating cache parameters. All the power, delay, and area values are

first calculated for 800nm technology and the results are linearly scaled to the user

specified process value. While this approach is reasonably accurate for old process

technologies, it can introduce nontrivial error for deep submicron technologies (less

than 90nm). This problem is fixed in CACTI 5 [116] by adopting ITRS parameters

for all calculations. The current version of CACTI supports four different process

technologies (90nm, 65nm, 45nm, and 32nm) with process specific values obtained

from ITRS. Though ITRS projections are invaluable for quick analytical estimates,

SPICE validation requires technology model files with greater detail and ITRS

values cannot be directly plugged in for SPICE verification. The only noncom-

mercial data available publicly for this purpose for recent process technologies is

the Predictive Technology Model (PTM) [6]. For our validation, the HSPICE

tool was employed along with the PTM 65 nm model file for validating the newly

added components. The simulated values obtained from HSPICE are compared

against CACTI 6.0 analytical models that take PTM parameters as input 1. The

analytical delay and power calculations performed by the tool primarily depend

on the resistance and capacitance parasitics of transistors. For our validation, the

capacitance values of source, drain, and gate of n and p transistors are derived

from the PTM technology model file. The threshold voltage and the on-resistance

of the transistors are calculated using SPICE simulations. In addition to modeling

the gate delay and wire delay of different components, our analytical model also

considers the delay penalty incurred due to the finite rise time and fall time of an

input signal [126].

Figures 3.14 and 3.15 show the comparison of delay and power values of the

differential, low-swing analytical models against SPICE values. As mentioned

earlier, a low-swing wire model can be broken into three components: transmitter

1The PTM parameters employed for verification can be directly used for CACTI simulations.
Since most architectural and circuit studies rely on ITRS parameters, CACTI by default assumes
ITRS values to maintain consistency.
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Figure 3.14. Low-swing model delay verification

(that generates the low-swing signal), differential wires2, and sense amplifiers. The

modeling details of each of these components are discussed in Section 2.3.2. Table

3.4 shows the delay and power values of each of these components for a 5mm

low-swing wire.

Though the analytical model employed in CACTI 6.0 dynamically calculates the

driver size appropriate for a given wire length, for the wire length of our interest,

it ends up using the maximum driver size (which is set to 100 times the minimum

transistor size) to incur minimum delay overhead. Earlier versions of CACTI also

had the problem of overestimating the delay and power values of the sense-amplifier.

CACTI 6.0 eliminates this problem by directly using the SPICE generated values

for sense-amp power and delay. On an average, the low-swing wire models are

verified to be within 12% of the SPICE values.

2Delay and power values of low-swing driver is also reported as part of differential wires.
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Table 3.4. Delay and energy values of different components for a 5mm low-swing
wire.

Transmitter Delay, SPICE - 84ps, CACTI - 92ps Power, SPICE - 7.2fJ , CACTI - 7.5fJ
Differential Wires Delay, SPICE - 1.204ns, CACTI - 1.395ns Power, SPICE - 29.9fJ, CACTI - 34fJ
Sense amplifier Delay, SPICE - 200ps Power, SPICE - 5.7fJ

The lumped RC model used in prior versions of CACTI for bitlines and wordlines

are replaced with a more accurate distributed RC model in CACTI 6.0. Based on

a detailed spice modeling of the bitline segment along with the memory cells, the

difference between the old and new model is found to be around 11% at 130 nm

technology. This difference can go up to 50% with shrinking process technologies

as wire parasitics become the dominant factor compared to transistor capacitance

[100]. Figure 3.16 and 3.17 compare the distributed wordline and bitline delay

values and the SPICE values. The length of the wordlines or bitlines (specified in

terms of memory array size) are carefully picked to represent a wide range of cache
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sizes. On an average, the new analytical models for the distributed wordlines and

bitlines are verified to be within 13% and 12% of SPICE generated values.

Buffers, crossbars, and arbiters are the primary components in a router. CACTI

6.0 uses its scratch RAM model to calculate read/write power for router buffers.

Orion’s arbiter and crossbar model is employed for calculating router power and

these models have been validated by Wang et al. [121].

3.5 Related Work

The CACTI tool was first released by Wilton and Jouppi in 1993 [126] and it

has undergone four major revisions since then [104, 108, 112]. More details on the

latest CACTI 5.0 version are provided in Section 3.2. The primary enhancements

of CACTI 2.0 [104] were power models and multi-ported caches; CACTI 3.0 [108]

added area models, independently addressed banks, and better sense-amp circuits;

CACTI 4.0 [112] improved upon various SRAM circuit structures, moved from

aluminium wiring to copper, and included leakage power models; CACTI 5.0 adds
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support for DRAM modeling. The CACTI 6.0 extensions described in this paper

represent a major shift in focus and add support for new interconnect components

that dominate cache delay and power. Unlike the prior revisions of CACTI that

focused on bank and SRAM cell modeling, the current revision focuses on intercon-

nect design. The results in later sections demonstrate that the estimates of CACTI

6.0 are a significant improvement over the estimates of CACTI 5.0.

A few other extensions of CACTI can also be found in the literature, including

multiple different versions of e-CACTI (enhanced CACTI). eCACTI from the Uni-

versity of California-Irvine models leakage parameters and gate capacitances within

a bank in more detail [81] (some of this is now part of CACTI 4.0 [112]). A prior

version of eCACTI [3] has been incorporated into CACTI 3.0 [108]. 3DCACTI is a

tool that implements a cache across multiple stacked dies and considers the effects

of various inter-die connections [117].

A number of tools [10, 27, 44, 51, 111, 119, 123] exist in the literature to

model network-on-chip (NoC). The Orion toolkit from Princeton does a thorough
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analytical quantification of dynamic and leakage power within router elements [123]

and some of this is included in CACTI 6.0. However, Orion does not consider

interconnect options, nor carry out a design space exploration (since it is oblivious

of the properties of the components that the network is connecting). NOCIC [119]

is another model that is based on Spice simulations of various signaling strategies.

Given a tile size, it identifies the delay and area needs of each signaling strategy.

3.6 Summary

This chapter describes a novel cache modeling methodology and demonstrates

the role of interconnect in deciding the characteristics of large caches. The pro-

posed innovations are incorporated into an open-source cache modeling tool called

CACTI. The following points summarize some of the key contributions made to the

tool:

• Extends the design space exploration to different wire and router types.

• Considers the use of low-swing differential signaling in addition to traditional

global wires.

• Incorporates the effect of network contention during the design space explo-

ration.

• Takes bank cycle time into account in estimating the cache bandwidth.

• Validates a subset of the newly incorporated models.

• Improves upon the tool API, including the ability to specify novel metrics

involving power, delay, area, and bandwidth.

The new version of the tool released as CACTI 6.0 identifies a number of relevant

design choices on the power-delay-area curves. The estimates of CACTI 6.0 can

differ from the estimates of CACTI 5.0 significantly, especially when more fully

exploring the power-delay trade-off space. CACTI 6.0 is able to identify cache

configurations that can reduce power by a factor of three, while incurring a 25%
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delay penalty. Components of the tool are validated against Spice simulations

and results showed good agreement between analytical and transistor-level models.

Finally, an example case study of heterogeneous NUCA banks is presented that

demonstrates how the tool can benefit architectural evaluations.



CHAPTER 4

NOVEL CACHE PIPELINES

4.1 Leveraging Interconnect

Choices for Performance

Optimizations

The previous chapter discussed the critical role played by interconnects in

deciding the power and performance characteristics of large caches. With wire

delay accounting for more than 80% of the access time in large caches, a number of

innovations are possible by focusing on interconnect design. This chapter discusses

how to leverage the high-speed L-wires 2 to improve cache performance. All the

proposed innovations guarantee equal complexity with respect to metal area in both

baseline model and proposed models.

Consistent with most modern implementations, it is assumed that each cache

bank stores the tag and data arrays and that all the ways of a set are stored in a

single cache bank. For most of this discussion, it is assumed that there is enough

metal area to support a baseline inter-bank network that accommodates 256 data

wires and 64 address wires, all implemented as minimum-width wires on the 8X

metal plane (the 8X-B-wires in Table 4.1). A higher bandwidth inter-bank network

does not significantly improve IPC, so it is believed that this is a reasonable baseline.

Next, optimizations that incorporate different types of wires, without exceeding the

above metal area budget, is considered.

4.1.1 Early Look-Up

L-wires can be leveraged for low latency, but they consume eight times the area

of a B-wire on the 8X metal plane. The implementation of a 16-bit L-network will
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Table 4.1. Delay and area characteristics of different wire implementations at 65
nm technology.

Wire Type Relative Latency Relative Area Latency (ns/mm) Wiring Pitch (nm)
8X-B-Wire 1x 1x 0.122 210
4X-B-Wire 2.0x 0.5x 0.244 105

L-Wire 0.25x 8x 0.03 1680

require that 128 B-wires be eliminated to maintain constant metal area. Consider

the following heterogeneous network that has the same metal area as the baseline:

128 B-wires for the data network, 64 B-wires for the address network, and 16

additional L-wires.

In a typical cache implementation, the cache controller sends the complete

address as a single message to the cache bank. After the message reaches the cache

bank, it starts the look-up and selects the appropriate set. The tags of each block

in the set are compared against the requested address to identify the single block

that is returned to the cache controller. It is observed that the least significant

bits of the address (LSB) are on the critical path because they are required to

index into the cache bank and select candidate blocks. The most significant bits

(MSB) are less critical since they are required only at the tag comparison stage

that happens later. This opportunity can be exploited to break the traditional

sequential access. A partial address consisting of LSB can be transmitted on the

low bandwidth L-network and cache access can be initiated as soon as these bits

arrive at the destination cache bank. In parallel with the bank access, the entire

address of the block is transmitted on the slower address network composed of

B-wires. ( This design choice is referred to as option-A). When the entire address

arrives at the bank and when the set has been read out of the cache, the MSB is

used to select at most a single cache block among the candidate blocks. The data

block is then returned to the cache controller on the 128-bit wide data network.

The proposed optimization is targeted only for cache reads. Cache writes are not

done speculatively and wait for the complete address to update the cache line.
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For a 512 KB cache bank with a block size of 64 bytes and a set associativity

of 8, only 10 index bits are required to read a set out of the cache bank. Hence,

the 16-bit L-network is wide enough to accommodate the index bits and additional

control signals (such as destination bank). In terms of implementation details, the

coordination between the address transfers on the L-network and the slower address

network can be achieved in the following manner. Only a single early look-up is

allowed to happen at a time and the corresponding index bits are maintained in a

register. If an early look-up is initiated, the cache bank pipeline proceeds just as in

the base case until it arrives at the tag comparison stage. At this point, the pipeline

is stalled until the entire address arrives on the slower address network. When this

address arrives, it checks to see if the index bits match the index bits for the early

look-up currently in progress. If the match is successful, the pipeline proceeds with

tag comparison. If the match is unsuccessful, the early look-up is squashed and the

entire address that just arrived on the slow network is used to start a new L2 access

from scratch. Thus, an early look-up is wasted if a different address request arrives

at a cache bank between the arrival of the LSB on the L-network and the entire

address on the slower address network. If another early look-up request arrives

while an early look-up is in progress, the request is simply buffered (potentially at

intermediate routers). For the simulations, supporting multiple simultaneous early

look-ups was not worth the complexity.

The early look-up mechanism also introduces some redundancy in the system.

There is no problem if an early look-up fails for whatever reason – the entire address

can always be used to look up the cache. Hence, the transmission on the L-network

does not require ECC or parity bits.

Apart from the network delay component, the major contributors to the access

latency of a cache are delay due to decoders, wordlines, bitlines, comparators,

and drivers. Of the total access time of the cache, depending on the size of the

cache bank, around 60-80% of the time has elapsed by the time the candidate sets

are read out of the appropriate cache bank. By breaking the sequential access as

described above, much of the latency for decoders, bitlines, wordlines, etc., is hidden
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behind network latency. In fact, with this optimization, it may even be possible to

increase the size of a cache bank without impacting overall access time. Such an

approach will help reduce the number of network routers and their corresponding

power/area overheads. In an alternative approach, circuit/VLSI techniques can

be used to design banks that are slower and consume less power (for example,

the use of body-biasing and high-threshold transistors). The exploration of these

optimizations is left for future work.

4.1.2 Aggressive Look-Up

While the previous technique is effective in hiding a major part of the cache

access time, it still suffers from long network delays in the transmission of the entire

address over the B-wire network. In an alternative implementation (referred to as

option-B), the 64-bit address network can be eliminated and the entire address

is sent in a pipelined manner over the 16-bit L-network. Four flits are used to

transmit the address, with the first flit containing the index bits and initiating

the early look-up process. In Section 6.4, it is shown that this approach increases

contention in the address network and yields little performance benefit.

To reduce the contention in the L-network, an optimization is introduced that

is referred to as Aggressive look-up (or option-C). By eliminating the 64-bit address

network, the width of the L-network can be increased by eight bits without exceed-

ing the metal area budget. Thus, in a single flit on the L-network, in addition to

the index bits required for an early look-up, eight bits of the tag is also transmitted.

For cache reads, the rest of the tag is not transmitted on the network. This subset

of the tag is used to implement a partial tag comparison at the cache bank. Cache

writes still require the complete address and the address is sent in multiple flits over

the L-network. According to this simulations, for 99% of all cache reads, the partial

tag comparison yields a single correct matching data block. In the remaining cases,

false positives are also flagged. All blocks that flag a partial tag match must now be

transmitted back to the CPU cache controller (along with their tags) to implement

a full tag comparison and locate the required data. Thus, the bandwidth demands
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are reduced on the address network at the cost of higher bandwidth demands on

the data network. As shown in the results, this is a worthwhile trade-off.

With the early look-up optimization, multiple early look-ups at a bank are

disallowed to simplify the task of coordinating the transmissions on the L and B

networks. The aggressive look-up optimization does not require this coordination,

so multiple aggressive look-ups can proceed simultaneously at a bank. On the other

hand, ECC or parity bits are now required for the L-network because there is no

B-network transmission to fall back upon in case of error. The L-network need not

accommodate the MSHR-id as the returned data block is accompanied with the

full tag. In a CMP, the L-network must also include a few bits to indicate where

the block must be sent to. Partial tag comparisons exhibit good accuracy even if

only five tag bits are used, so the entire address request may still fit in a single

flit. The probability of false matches can be further reduced by performing tag

transformation and carefully picking the partial tag bits [64].

In a CMP model that maintains coherence among L1 caches, depending on the

directory implementation, aggressive look-up will attempt to update the directory

state speculatively. If the directory state is maintained at cache banks, aggressive

look-up may eagerly update the directory state on a partial tag match. Such a di-

rectory does not compromise correctness, but causes some unnecessary invalidation

traffic due to false positives. If the directory is maintained at a centralized cache

controller, it can be updated nonspeculatively after performing the full tag-match.

Clearly, depending on the bandwidth needs of the application and the available

metal area, any one of the three discussed design options may perform best. The

point here is that the choice of interconnect can have a major impact on cache

access times and is an important consideration in determining an optimal cache

organization. Given the set of assumptions, the results in the next section show

that option-C performs best, followed by option-A, followed by option-B.
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4.1.3 Hybrid Network

The optimal cache organization selected by CACTI 6.0 is based on the assump-

tion that each link employs B-wires for data and address transfers. The discussion

in the previous two subsections makes the case that different types of wires in the

address and data networks can improve performance. If L-wires are employed for

the address network, it often takes less than a cycle to transmit a signal between

routers. Therefore, part of the cycle time is wasted and most of the address network

delay is attributed to router delay. Hence, an alternative topology for the address

network is proposed. By employing fewer routers, full advantage of the low latency

L-network is taken and lowers the overhead from routing delays. The corresponding

penalty is that the network supports a lower overall bandwidth.

Figure 4.1 shows the proposed hybrid topology to reduce the routing overhead

in the address network for uniprocessor models. The address network is now a

combination of point-to-point and bus architectures. Each row of cache banks is

allocated a single router and these routers are connected to the cache controllers

with a point-to-point network, composed of L-wires. The cache banks in a row

share a bus composed of L-wires. When a cache controller receives a request from

the CPU, the address is first transmitted on the point-to-point network to the

appropriate row and then broadcast on the bus to all the cache banks in the row.

Each hop on the point-to-point network takes a single cycle (for the 4x4-bank

model) of link latency and three cycles of router latency. The broadcast on the bus

does not suffer from router delays and is only a function of link latency (2 cycles

for the 4x4 bank model). Since the bus has a single master (the router on that

row), there are no arbitration delays involved. If the bus latency is more than a

cycle, the bus can be pipelined [69]. For the simulations in this study, it is assumed

that the address network is always 24 bits wide (just as in option-C above) and

the aggressive look-up policy is adopted (blocks with partial tag matches are sent

to the CPU cache controller). As before, the data network continues to employ

the grid-based topology and links composed of B-wires (128-bit network, just as in

option-C above).
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Figure 4.1. Hybrid network topology for a uniprocessor.

A grid-based address network (especially one composed of L-wires) suffers from

huge metal area and router overheads. The use of a bus composed of L-wires helps

eliminate the metal area and router overhead, but causes an inordinate amount of

contention for this shared resource. The hybrid topology that employs multiple

buses connected with a point-to-point network strikes a good balance between

latency and bandwidth as multiple addresses can simultaneously be serviced on

different rows. Thus, in this proposed hybrid model, three forms of heterogeneity

have been introduced: (i) different types of wires are being used in data and address

networks, (ii) different topologies are being used for data and address networks, (iii)

the address network uses different architectures (bus-based and point-to-point) in

different parts of the network.

4.2 Results

4.2.1 Methodology

This simulator is based on Simplescalar-3.0 [26] for the Alpha AXP ISA. Ta-

ble 4.2 summarizes the configuration of the simulated system. All the delay and



61

Table 4.2. Simplescalar simulator parameters.

Fetch queue size 64
Branch predictor comb. of bimodal and 2-level

Bimodal predictor size 16K
Level 1 predictor 16K entries, history 12
Level 2 predictor 16K entries

BTB size 16K sets, 2-way
Branch mispredict penalty at least 12 cycles

Fetch width 8 (across up to 2 basic blocks)
Dispatch and commit width 8

Issue queue size 60 (int and fp, each)
Register file size 100 (int and fp, each)

Re-order Buffer size 80
L1 I-cache 32KB 2-way
L1 D-cache 32KB 2-way set-associative,
L2 cache 32MB 8-way SNUCA

3 cycles, 4-way word-interleaved
L2 Block size 64B
I and D TLB 128 entries, 8KB page size

Memory latency 300 cycles for the first chunk

power calculations are for a 65 nm process technology and a clock frequency of 5

GHz. Contention for memory hierarchy resources (ports and buffers) is modeled in

detail. A 32 MB on-chip level-2 static-NUCA cache is assumed and employs a grid

network for communication between different L2 banks.

The network employs two unidirectional links between neighboring routers and

virtual channel flow control for packet traversal. The router has five input and

five output ports. Four virtual channels are assumed for each physical channel and

each channel has four buffer entries (since the flit counts of messages are small, four

buffers are enough to store an entire message). The network uses adaptive routing

similar to the Alpha 21364 network architecture [88]. If there is no contention,

a message attempts to reach the destination by first traversing in the horizontal

direction and then in the vertical direction. If the message encounters a stall, in

the next cycle, the message attempts to change direction, while still attempting to

reduce the Manhattan distance to its destination. To avoid deadlock due to adaptive

routing, of the four virtual channels associated with each vertical physical link, the

fourth virtual channel is used only if a message destination is in that column. In
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other words, messages with unfinished horizontal hops are restricted to use only

the first three virtual channels. This restriction breaks the circular dependency

and provides a safe path for messages to drain via deadlock-free VC4. All the

proposals are evaluated for uniprocessor and CMP processor models. This CMP

simulator is also based on Simplescalar and employs eight out-of-order cores and

a shared 32MB level-2 cache. For most simulations, the same network bandwidth

parameters outlined in Section 6.3 is assumed and reiterated in Table 4.3. Since

network bandwidth is a bottleneck in the CMP shown, the CMP results with twice

as much bandwidth. As a workload, the SPEC2k programs employed is executed

for 100 million instruction windows identified by the Simpoint toolkit [107]. The

composition of programs in this multiprogrammed CMP workload is described in

the next subsection.

4.2.2 IPC Analysis

The behavior of processor models is examined with eight different cache con-

figurations summarized in Table 4.3. The first six models help demonstrate the

improvements from the most promising novel designs, and the last two models

show results for other design options that were also considered and serve as useful

comparison points.

The first model is based on methodologies in prior work [65], where the bank size

is calculated such that the link delay across a bank is less than one cycle. All other

Table 4.3. Summary of different models simulated. Global 8X wires are assumed
for the inter-bank links. “A” and “D” denote the address and data networks,
respectively.

MODEL LINK LATENCY BANK ACCESS BANK NETWORK LINK CONTENTS DESCRIPTION
(VERT,HORIZ) TIME COUNT

MODEL 1 1,1 3 512 B-WIRES (256D, 64A) BASED ON PRIOR WORK
MODEL 2 4,3 17 16 B-WIRES (256D, 64A) DERIVED FROM CACTIL2
MODEL 3 4,3 17 16 B-WIRES (128D, 64A) & L-WIRES (16A) IMPLEMENTS EARLY LOOK-UP
MODEL 4 4,3 17 16 B-WIRES (128D) & L-WIRES (24A) IMPLEMENTS AGGRESSIVE LOOK-UP
MODEL 5 HYBRID 17 16 L-WIRES (24A) & B-WIRES (128D) LATENCY-BANDWIDTH TRADEOFF
MODEL 6 4,3 17 16 B-WIRES (256D), 1CYCLE ADD IMPLEMENTS OPTIMISTIC CASE
MODEL 7 1,1 17 16 L-WIRES (40A/D) LATENCY OPTIMIZED
MODEL 8 4,3 17 16 B-WIRES (128D) & L-WIRES (24A) ADDRESS-L-WIRES & DATA-B-WIRES
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models employ the proposed CACTI 6.0 tool to calculate the optimum bank count,

bank access latency, and link latencies (vertical and horizontal) for the grid network.

Model two is the baseline cache organization obtained with CACTI 6.0 that employs

minimum-width wires on the 8X metal plane for the address and data links. Model

three and four augment the baseline interconnect with an L-network to accelerate

cache access. Model three implements the early look-up proposal (Section 4.1.1)

and model four implements the aggressive look-up proposal (Section 4.1.2). Model

five simulates the hybrid network (Section 4.1.3) that employs a combination of bus

and point-to-point network for address communication. As discussed in Section 6.3,

the bandwidths of the links in all these simulated models are adjusted such that

the net metal area is constant. All of the above optimizations help speed up the

address network and do not attempt to improve the data network. To get an idea

of the best performance possible with such optimizations to the address network,

an optimistic model (model six) is simulated where the request carrying the address

magically reaches the appropriate bank in one cycle. The data transmission back

to the cache controller happens on B-wires just as in the other models.

Model seven employs a network composed of only L-wires and both address and

data transfers happen on the L-network. Due to the equal metal area restriction,

model seven offers lower total bandwidth than the other models and each message

is correspondingly broken into more flits. Model eight simulates the case where the

address network is entirely composed of L-wires and the data network is entirely

composed of B-wires. This is similar to model four, except that instead of perform-

ing a partial tag match, this model sends the complete address in multiple flits on

the L-network and performs a full tag match.

Figure 4.2 shows the IPCs (average across the SPEC2k suite) for all eight

processor models, normalized against model one. It also shows the average across

programs in SPEC2k that are sensitive to L2 cache latency. Figure 4.3 shows the

IPCs for models one through six for each individual program (L2 sensitive programs

are highlighted in the figure). Table 4.4 quantifies the average L2 access times with

the proposed optimizations as a function of bank count. In spite of having the least
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Figure 4.2. Normalized IPCs of SPEC2000 benchmarks for different L2 cache
configurations (B-wires implemented on the 8X metal plane).

possible bank access latency (3 cycles as against 17 cycles for other models), model

one has the poorest performance due to high network overheads associated with

each L2 access. Model two, the performance-optimal cache organization derived

from CACTI 6.0, performs significantly better, compared to model one. On an

average, model two’s performance is 73% better across all the benchmarks and

114% better for benchmarks that are sensitive to L2 latency. This performance

improvement is accompanied by reduced power and area from using fewer routers.

The early look-up optimization discussed in Section 4.1.1 improves upon the

performance of model two. On an average, model three’s performance is 6% better,

compared to model two across all the benchmarks and 8% better for L2-sensitive

benchmarks. Model four further improves the access time of the cache by perform-

ing the early look-up and aggressively sending all the blocks that exhibit partial

tag matches. This mechanism has 7% higher performance, compared to model

two across all the benchmarks, and 9% for L2-sensitive benchmarks. The low

performance improvement of model four is mainly due to the high router overhead
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Figure 4.3. IPCs of SPEC2000 benchmarks for different L2 cache configurations
(B-wires implemented on the 8X metal plane).

associated with each transfer. The increase in data network traffic from partial tag

matches is less than 1%. The aggressive and early look-up mechanisms trade off

data network bandwidth for a low-latency address network. By halving the data

network’s bandwidth, the delay for the pipelined transfer of a cache line increases

by two cycles (since the cache line takes up two flits in the baseline data network).

This enables a low-latency address network that can save two cycles on every hop,

resulting in a net win in terms of overall cache access latency. The narrower data

network is also susceptible to more contention cycles, but this was not a major

factor for the evaluated processor models and workloads.

The hybrid model overcomes the shortcomings of model four by reducing the

number of routers in the network. Aggressive look-up implemented in a hybrid

topology (model five) performs the best and is within a few percent of the optimistic

model six. Compared to model two, the hybrid model performs 15% better across

all benchmarks and 20% better for L2-sensitive benchmarks.

Model seven employs the L-network for transferring both address and data

messages. The performance of this model can be better than the optimistic model
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Table 4.4. Access latencies for different cache configurations. The operating
frequency is 5GHz and the message transfers are assumed to happen on 8x wires.

Bank Count Bank Access Time Average Cache Access Time Early Look-up Aggressive Fetch Optimistic Model
(32 MB Cache) (cycles) (cycles) (cycles) (cycles) (cycles)

2 77 159 137 137 132
4 62 151 127 127 118
8 26 97 78.5 77.5 66.5
16 17 84 70.5 69.5 54.5
32 9 87 78.7 73.5 50.5
64 6 104 98.1 88 57
128 5 126 121.2 114 67
256 4 148 144.6 140.5 77.5
512 3 226 223.3 211 116.5
1024 3 326 323 293 166.5
2048 3 419 416.2 403.5 212.5
4096 3 581 578 548.5 293

(model six) that uses B-wires for data transfers. But the limited bandwidth of the

links in model seven increases contention in the network and limits the performance

improvement to only a few programs that have very low network traffic. On an

average, the performance of model seven is 4% less than model two. Model eight

employs the L-network for sending the complete address in a pipelined fashion.

It performs comparably to model four that implements aggressive look-up (4.4%

better than model two). However, it incurs significantly higher contention on the

L-network, making it an unattractive choice for CMPs.

Figure 4.4 shows the IPC improvement of different models in a CMP environ-

ment. All the models are evaluated for four different sets of multiprogrammed

workloads. Set 1 is a mixture of benchmarks with different characteristics. Set 2

consists of benchmarks that are sensitive to L2 hit time. Half the programs in set

3 are L2-sensitive and the other half are not. Set 4 consists of benchmarks that are

memory intensive. The individual programs in each set are listed in Figure 4.4. For

the results, it is assumed that the network bandwidth is doubled (by assuming twice

as much metal area) to support the increased demands from eight cores. Similar

to the uniprocessor results, model one incurs severe performance penalty due to

very high network overhead. Model two, derived from CACTI 6.0, out-performs

model one by 51%. Models three, four, and five yield performance improvements
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Figure 4.4. IPC improvement of different cache configurations in an eight core
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gcc; “Memory intensive” - applu, fma3d, art, swim, lucas, equake, gap, vpr.

of 4.2% (early look-up), 4.5% (aggressive look-up), and 10.8% (hybrid network),

respectively, over model two. If the network bandwidth is the same as in the

uniprocessor simulations, these performance improvements are 3.0%, 3.3%, and

6.2%, respectively.

As a sensitivity analysis, the overall IPC improvements are reported for models

two through six for the uniprocessor model with 4X-B wires instead of 8X-B wires

in Figure 4.5. Since 4X wires are slower, the effect of optimizations are more

pronounced than in the 8X model. This is likely the expected trend in future

technologies where wires are slower, relative to logic delays.

4.3 Related Work

A number of recent proposals have dealt with the implementation of large

NUCA caches [21, 33, 34, 57, 59, 65] and focus on optimizing logical policies
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Figure 4.5. Performance for uniprocessor with 4X wires.

associated with a baseline cache design. For example, many of these papers employ

some form of dynamic-NUCA (D-NUCA), where blocks are allowed to migrate to

reduce communication distances. D-NUCA policies also apply to cache models that

incorporate the interconnect optimizations proposed in this work.

To the best of my knowledge, only four other bodies of work have attempted to

exploit novel interconnects at the microarchitecture level to accelerate cache access.

Beckmann and Wood [20] employ transmission lines to speed up access to large

caches. Unlike regular RC-based wires, transmission lines do not need repeaters

and hence can be directly routed on top of other structures. This property is

exploited to implement transmission line links between each cache bank and the

central cache controller. The number of banks is limited to the number of links that

can be directly connected to the controller. Low-latency fat RC-based wires have

been employed to speed up coherence signals in a CMP environment [32] and L1

cache access in a clustered architecture [13]. A recent paper by Li et al. [75] proposes

the implementation of a NUCA cache in three dimensions. A three-dimensional

grid topology is employed and given the low latency for inter-die communication;
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a dynamic time division multiplexing bus is employed for signal broadcast across

dies. Jin et al. [59] suggest removing unnecessary links in a grid topology to reduce

the area and power overhead of the network. They propose Halo network and a

multi-cast router architecture for the D-NUCA domain.

Kumar et al. [69] examine interconnect design issues associated with chip multi-

processors. They detail the scalability problem associated with a shared bus fabric

and explore the potential of a hierarchical bus structure. Kumar et al. [68] propose

Express Virtual Channels (EVC) to alleviate long pipeline overhead associated

with on-chip routers. EVC is a flow control mechanism that exploits special high

priority virtual lanes to bypass router pipeline. Messages that require multiple

router hops are routed through express lanes to reduce communication delay. EVC’s

high priority guarantees switch allocation and helps messages bypass regular router

arbitration and allocation stages. While their mechanism can reduce average hop

latency of a message, employing high priority EVCs can lead to starvation in

regular messages. Furthermore, a network with EVCs will continue to incur high

link overhead and can benefit from heterogeneous wires to further reduce network

overhead.

4.4 Summary

Delays within wires and routers are major components of L2 cache access time.

In the previous chapter, a methodology was proposed to obtain an optimal baseline

model for large caches. This chapter builds upon the model and discusses novel

optimizations to the address network and bank access pipeline that help hide

network delays. These optimizations leverage heterogeneity within the network

and improve upon the IPC of the baseline by 15% across the SPEC benchmark

suite.

This work has focused on the design of a NUCA cache shared by all cores on

a chip. Private L2 cache organizations are also being considered by industry and

academia – each core is associated with a large L2 cache and a request not found

in a local cache may be serviced by a remote cache [19, 30, 34, 85, 109, 131]. A
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remote L2 hit now has a nonuniform access time depending on the remote cache

where the block is found and the network delays incurred in communication with

the directory and the remote cache. The interconnect continues to play a major

role in such cache organizations and many of the interconnect design considerations

for a shared NUCA will also apply to private L2 caches.

The discussions so far have only exploited low-latency L-wires to improve per-

formance. As described in Chapter 2, wires can be designed to minimize power

(while trading off latency). The work can be further extended by considering

techniques to leverage power-efficient wires to reduce interconnect power while

handling prefetches, writebacks, block swaps, etc. Latency tolerant networks can

also enable power optimizations within cache banks (mentioned in Section 4.1.1).



CHAPTER 5

HETEROGENEOUS INTERCONNECTS

FOR COHERENCE TRANSACTIONS

The optimizations proposed so far are targeted at accelerating the basic read/write

operations to large caches. With the proliferation of Chip-Multiprocessors (CMP),

modern cache hierarchies incur an additional overhead due to coherence transac-

tions. This chapter presents a number of techniques by which coherence traffic

within a CMP can be mapped intelligently to different wire implementations with

minor increases in complexity. Such an approach can not only improve performance,

but also reduce power dissipation.

5.1 Coherence Overhead

In a typical CMP, the L2 cache and lower levels of the memory hierarchy are

shared by multiple cores [67, 115]. Sharing the L2 cache allows high cache utilization

and avoids duplicating cache hardware resources. L1 caches are typically not shared

as such an organization entails high communication latencies for every load and

store. There are two major mechanisms used to ensure coherence among L1s in

a chip multiprocessor. The first option employs a bus connecting all of the L1s

and a snoopy bus-based coherence protocol. In this design, every L1 cache miss

results in a coherence message being broadcast on the global coherence bus and

other L1 caches are responsible for maintaining valid state for their blocks and

responding to misses when necessary. The second approach employs a centralized

directory in the L2 cache that tracks sharing information for all cache lines in the

L2. In such a directory-based protocol, every L1 cache miss is sent to the L2

cache, where further actions are taken based on that block’s directory state. Many

studies [2, 22, 56, 70, 74] have characterized the high frequency of cache misses
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in parallel workloads and the high impact these misses have on total execution

time. On a cache miss, a variety of protocol actions are initiated, such as request

messages, invalidation messages, intervention messages, data block writebacks, data

block transfers, etc. Each of these messages involves on-chip communication with

latencies that are projected to grow to tens of cycles in future billion transistor

architectures [3].

This chapter explores optimizations that are enabled when a heterogeneous

interconnect is employed for coherence traffic. For example, when employing a

directory-based protocol, on a cache write miss, the requesting processor may have

to wait for data from the home node (a two hop transaction) and for acknowl-

edgments from other sharers of the block (a three hop transaction). Since the

acknowledgments are on the critical path and have low bandwidth needs, they can

be mapped to wires optimized for delay, while the data block transfer is not on the

critical path and can be mapped to wires that are optimized for low power.

5.2 Optimizing Coherence Traffic

For each cache coherence protocol, there exist a variety of coherence operations

with different bandwidth and latency needs. Because of this diversity, there are

many opportunities to improve performance and power characteristics by employing

a heterogeneous interconnect. The goal of this section is to present a comprehensive

listing of such opportunities. The protocol-specific optimizations are focused on

in Section 5.2.1 and on protocol-independent techniques in Section 5.2.2. The

implementation complexity of these techniques is discussed in Section 5.3.

5.2.1 Protocol-Dependent Techniques

The characteristics of operations is first examined in both directory-based and

snooping bus-based coherence protocols and how they can map to different sets of

wires. In a bus-based protocol, the ability of a cache to directly respond to another

cache’s request leads to low L1 cache-to-cache miss latencies. L2 cache latencies

are relatively high as a processor core has to acquire the bus before sending a



73

request to the L2. It is difficult to support a large number of processor cores with

a single bus due to the bandwidth and electrical limits of a centralized bus [24].

In a directory-based design [37, 72], each L1 connects to the L2 cache through a

point-to-point link. This design has low L2 hit latency and scales better. However,

each L1 cache-to-cache miss must be forwarded by the L2 cache, which implies high

L1 cache-to-cache latencies. The performance comparison between these two design

choices depends on the cache sizes, miss rates, number of outstanding memory

requests, working-set sizes, sharing behavior of targeted benchmarks, etc. Since

either option may be attractive to chip manufacturers, both forms of coherence

protocols are considered in this study.

• Write-Invalidate Directory-Based Protocol

Write-invalidate directory-based protocols have been implemented in existing

dual-core CMPs [115] and will likely be used in larger scale CMPs as well. In

a directory-based protocol, every cache line has a directory where the states of

the block in all L1s are stored. Whenever a request misses in an L1 cache, a

coherence message is sent to the directory at the L2 to check the cache line’s

global state. If there is a clean copy in the L2 and the request is a READ, it

is served by the L2 cache. Otherwise, another L1 must hold an exclusive copy

and the READ request is forwarded to the exclusive owner, which supplies the

data. For a WRITE request, if any other L1 caches hold a copy of the cache line,

coherence messages are sent to each of them requesting that they invalidate their

copies. The requesting L1 cache acquires the block in exclusive state only after

all invalidation messages have been acknowledged.

Hop imbalance is quite common in a directory-based protocol. To exploit this

imbalance, the critical messages can be sent on fast wires to increase performance

and send noncritical messages on slow wires to save power. For the sake of

this discussion, it is assumed that the hop latencies of different wires are in the

following ratio: L-wire : B-wire : PW-wire :: 1 : 2 : 3
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Proposal I: Read exclusive request for block in shared state

In this case, the L2 cache’s copy is clean, so it provides the data to the requesting

L1 and invalidates all shared copies. When the requesting L1 receives the reply

message from the L2, it collects invalidation acknowledgment messages from the

other L1s before returning the data to the processor core1. Figure 5.1 depicts all

generated messages.

The reply message from the L2 requires only one hop, while the invalidation

process requires two hops – an example of hop imbalance. Since there is no

benefit to receiving the cache line early, latencies for each hop can be chosen so

as to equalize communication latency for the cache line and the acknowledgment

messages. Acknowledgment messages include identifiers so they can be matched

against the outstanding request in the L1’s MSHR. Since there are only a few

outstanding requests in the system, the identifier requires few bits, allowing the

acknowledgment to be transferred on a few low-latency L-Wires. Simultaneously,

the data block transmission from the L2 can happen on low-power PW-Wires and

still finish before the arrival of the acknowledgments. This strategy improves per-

1Some coherence protocols may not impose all of these constraints, thereby deviating from a
sequentially consistent memory model.

L2 cache and directory
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Figure 5.1. Read exclusive request for a shared block in MESI protocol
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formance (because acknowledgments are often on the critical path) and reduces

power consumption (because the data block is now transferred on power-efficient

wires). While circuit designers have frequently employed different types of wires

within a circuit to reduce power dissipation without extending the critical path,

the proposals in this chapter represent some of the first attempts to exploit wire

properties at the architectural level.

Proposal II: Read request for block in exclusive state

In this case, the value in the L2 is likely to be stale and the following protocol

actions are taken. The L2 cache sends a speculative data reply to the requesting

L1 and forwards the read request as an intervention message to the exclusive

owner. If the cache copy in the exclusive owner is clean, an acknowledgment

message is sent to the requesting L1, indicating that the speculative data reply

from the L2 is valid. If the cache copy is dirty, a response message with the

latest data is sent to the requesting L1 and a write-back message is sent to the

L2. Since the requesting L1 cannot proceed until it receives a message from the

exclusive owner, the speculative data reply from the L2 (a single hop transfer)

can be sent on slower PW-Wires. The forwarded request to the exclusive owner

is on the critical path, but includes the block address. It is therefore not eligible

for transfer on low-bandwidth L-Wires. If the owner’s copy is in the exclusive

clean state, a short acknowledgment message to the requester can be sent on

L-Wires. If the owner’s copy is dirty, the cache block can be sent over B-Wires,

while the low priority writeback to the L2 can happen on PW-Wires. With the

above mapping, the critical path is accelerated by using faster L-Wires, while

also lowering power consumption by sending noncritical data on PW-Wires. The

above protocol actions apply even in the case when a read-exclusive request is

made for a block in the exclusive state.

Proposal III: NACK messages

When the directory state is busy, incoming requests are often NACKed by the

home directory, i.e., a negative acknowledgment is sent to the requester rather

than buffering the request. Typically, the requesting cache controller re-issues the
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request and the request is serialized in the order in which it is actually accepted

by the directory. A NACK message can be matched by comparing the request id

(MSHR index) rather than the full address, so a NACK is eligible for transfer on

low-bandwidth L-Wires. If load at the home directory is low, it will likely be able

to serve the request when it arrives again, in which case, sending the NACK on

fast L-Wires can improve performance. In contrast, when load is high, frequent

backoff-and-retry cycles are experienced. In this case, fast NACKs only increase

traffic levels without providing any performance benefit. In this case, in order to

save power, NACKs can be sent on PW-Wires.

Proposal IV: Unblock and write control messages

Some protocols [83] employ unblock and write control messages to reduce im-

plementation complexity. For every read transaction, a processor first sends

a request message that changes the L2 cache state into a transient state. After

receiving the data reply, it sends an unblock message to change the L2 cache state

back to a stable state. Similarly, write control messages are used to implement

a 3-phase writeback transaction. A processor first sends a control message to

the directory to order the writeback message with other request messages. After

receiving the writeback response from the directory, the processor sends the data.

This avoids a race condition in which the processor sends the writeback data

while a request is being forwarded to it. Sending unblock messages on L-Wires

can improve performance by reducing the time cache lines are in busy states.

Write control messages (writeback request and writeback grant) are not on the

critical path, although they are also eligible for transfer on L-Wires. The choice

of sending writeback control messages on L-Wires or PW-Wires represents a

power-performance trade-off.

• Write-Invalidate Bus-Based Protocol

Next,the techniques that apply to bus-based snooping protocols are examined.

Proposal V: Signal wires

In a bus-based system, three wired-OR signals are typically employed to avoid



77

involving the lower/slower memory hierarchy [39]. Two of these signals are

responsible for reporting the state of snoop results and the third indicates that the

snoop result is valid. The first signal is asserted when any L1 cache, besides the

requester, has a copy of the block. The second signal is asserted if any cache has

the block in exclusive state. The third signal is an inhibit signal, asserted until all

caches have completed their snoop operations. When the third signal is asserted,

the requesting L1 and the L2 can safely examine the other two signals. Since

all of these signals are on the critical path, implementing them using low-latency

L-Wires can improve performance.

Proposal VI: Voting wires

Another design choice is whether to use cache-to-cache transfers if the data is

in the shared state in a cache. The Silicon Graphics Challenge [49] and the

Sun Enterprise use cache-to-cache transfers only for data in the modified state,

in which case there is a single supplier. On the other hand, in the full Illinois

MESI protocol, a block can be preferentially retrieved from another cache rather

than from memory. However, when multiple caches share a copy, a “voting”

mechanism is required to decide which cache will supply the data, and this voting

mechanism can benefit from the use of low latency wires.

5.2.2 Protocol-independent Techniques

Proposal VII: Narrow Bit-Width Operands for Synchronization Variables

Synchronization is one of the most important factors in the performance of a

parallel application. Synchronization is not only often on the critical path, but

it also contributes a large percentage (up to 40%) of coherence misses [74]. Locks

and barriers are the two most widely used synchronization constructs. Both of

them use small integers to implement mutual exclusion. Locks often toggle the

synchronization variable between zero and one, while barriers often linearly increase

a barrier variable from zero to the number of processors taking part in the barrier

operation. Such data transfers have limited bandwidth needs and can benefit from

using L-Wires.
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This optimization can be further extended by examining the general problem of

cache line compaction. For example, if a cache line is comprised mostly of 0 bits,

trivial data compaction algorithms may reduce the bandwidth needs of the cache

line, allowing it to be transferred on L-Wires instead of B-Wires. If the wire latency

difference between the two wire implementations is greater than the delay of the

compaction/de-compaction algorithm, performance improvements are possible.

Proposal VIII: Assigning Writeback Data to PW-Wires

Writeback data transfers result from cache replacements or external request/intervention

messages. Since writeback messages are rarely on the critical path, assigning them

to PW-Wires can save power without incurring significant performance penalties.

Proposal IX: Assigning Narrow Messages to L-Wires

Coherence messages that include the data block address or the data block itself are

many bytes wide. However, many other messages, such as acknowledgments and

NACKs, do not include the address or data block and only contain control infor-

mation (source/destination, message type, MSHR id, etc.). Such narrow messages

can be always assigned to low latency L-Wires to accelerate the critical path.

5.3 Implementation Complexity

5.3.1 Overhead in Heterogeneous Interconnect

Implementation

In a conventional multiprocessor interconnect, a subset of wires are employed

for addresses, a subset for data, and a subset for control signals. Every bit of

communication is mapped to a unique wire. When employing a heterogeneous

interconnect, a communication bit can map to multiple wires. For example, data

returned by the L2 in response to a read-exclusive request may map to B-Wires or

PW-Wires depending on whether there are other sharers for that block (Proposal

I). Thus, every wire must be associated with a multiplexer and de-multiplexer.

The entire network operates at the same fixed clock frequency, which means that

the number of latches within every link is a function of the link latency. Therefore,

PW-Wires have to employ additional latches, relative to the baseline B-Wires.
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Dynamic power per latch at 5GHz and 65nm technology is calculated to be 0.1mW,

while leakage power per latch equals 19.8µW [69]. The power per unit length for

each wire is computed in the next section. Power overheads due to these latches

for different wires are tabulated in Table 5.1. Latches impose a 2% overhead within

B-Wires, but a 13% overhead within PW-Wires.

The proposed model also introduces additional complexity in the routing logic.

The base case router employs a cross-bar switch and 8-entry message buffers at

each input port. Whenever a message arrives, it is stored in the input buffer and

routed to an allocator that locates the output port and transfers the message. In

case of a heterogeneous model, three different buffers are required at each port to

store L, B, and PW messages separately. In this simulation, three 4-entry message

buffers for each port is employed. The size of each buffer is proportional to the flit

size of the corresponding set of wires. For example, a set of 24 L-Wires employs

a 4-entry message buffer with a word size of 24 bits. The power calculations also

include the fixed additional overhead associated with these small buffers as opposed

to a single larger buffer employed in the base case. In this proposed processor

model, the dynamic characterization of messages happens only in the processors

and intermediate network routers cannot re-assign a message to a different set of

wires. While this may have a negative effect on performance in a highly utilized

network, it is chosen to keep the routers simple and not implement such a feature.

For a network employing virtual channel flow control, each set of wires in the

heterogeneous network link is treated as a separate physical channel and the same

Table 5.1. Power characteristics of different wire implementations. For calculating
the power/length, activity factor α (described in Table 5.3) is assumed to be 0.15.
The above latch spacing values are for a 5GHz network.

Wire Type Power/Length Latch Power Latch Spacing Total Power/10mm
mW/mm mW/latch mm mW/10mm

B-Wire – 8X plane 1.4221 0.119 5.15 14.46
B-Wire – 4X plane 1.5928 0.119 3.4 16.29
L-Wire – 8X plane 0.7860 0.119 9.8 7.80

PW-wire – 4X plane 0.4778 0.119 1.7 5.48



80

number of virtual channels are maintained per physical channel. Therefore, the

heterogeneous network has a larger total number of virtual channels and the routers

require more state fields to keep track of these additional virtual channels. To

summarize, the additional overhead introduced by the heterogeneous model comes

in the form of potentially more latches and greater routing complexity.

5.3.2 Overhead in Decision Process

The decision process in selecting the right set of wires is minimal. For example,

in Proposal I, an OR function on the directory state for that block is enough to

select either B- or PW-Wires. In Proposal II, the decision process involves a check

to determine if the block is in the exclusive state. To support Proposal III, we need

a mechanism that tracks the level of congestion in the network (for example, the

number of buffered outstanding messages). There is no decision process involved

for Proposals IV, V, VI and VIII. Proposals VII and IX require logic to compute

the width of an operand, similar to logic used in the PowerPC 603 [50] to determine

the latency for integer multiply.

5.3.3 Overhead in Cache Coherence Protocols

Most coherence protocols are already designed to be robust in the face of variable

delays for different messages. For protocols relying on message order within a

virtual channel, each virtual channel can be made to consist of a set of L-, B-,

and PW-message buffers. A multiplexer can be used to activate only one type

of message buffer at a time to ensure correctness. For other protocols that are

designed to handle message re-ordering within a virtual channel, it is proposed

to employ one dedicated virtual channel for each set of wires to fully exploit the

benefits of a heterogeneous interconnect. In all proposed innovations, a data packet

is not distributed across different sets of wires. Therefore, different components of

an entity do not arrive at different periods of time, thereby eliminating any timing

problems. It may be worth considering sending the critical word of a cache line on

L-Wires and the rest of the cache line on PW-Wires. Such a proposal may entail
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nontrivial complexity to handle corner cases and is not discussed further in this

work.

In a snooping bus-based coherence protocol, transactions are serialized by the

order in which addresses appear on the bus. None of these proposed innovations for

snooping protocols affect the transmission of address bits (address bits are always

transmitted on B-Wires), so the transaction serialization model is preserved.

5.4 Methodology

5.4.1 Simulator

A 16-core CMP with the Virtutech Simics full-system functional execution-

driven simulator [80] and a timing infrastructure GEMS [82] is simulated. GEMS

can simulate both in-order and out-of-order processors. In most studies, the in-order

blocking processor model provided by Simics to drive the detailed memory model

(Ruby) for fast simulation is used. Ruby implements a one-level MOESI directory

cache coherence protocol with migratory sharing optimization [38, 110].

All processor cores share a noninclusive L2 cache, which is organized as a

nonuniform cache architecture (NUCA) [58]. Ruby can also be driven by an

out-of-order processor module called Opal, and the impact of the processor cores on

the heterogeneous interconnect in Section 5.6.1 is reported. Opal is a timing-first

simulator that implements the performance sensitive aspects of an out of order

processor but ultimately relies on Simics to provide functional correctness. The

Opal is configured to model the processor described in Table 5.2 and use an

aggressive implementation of sequential consistency.

To test the ideas, a workload consisting of all programs from the SPLASH-

2 [127] benchmark suite is employed. The programs were run to completion, but

all experimental results reported in this paper are for the parallel phases of these

applications. A default input set is used for most programs except fft and radix.

Since the default working sets of these two programs are too small, the working set

of fft is increased to 1M data points and that of radix to 4M keys.
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Table 5.2. System configuration.
Parameter Value

number of cores 16
clock frequency 5GHz
pipeline width 4-wide fetch and issue
pipeline stages 11
cache block size 64 Bytes
split L1 I & D cache 128KB, 4-way
shared L2 cache 8MBytes, 4-way, 16-banks non-inclusive NUCA
memory/dir controllers 30 cycles
interconnect link latency 4 cycles (one-way) for the baseline 8X-B-Wires
DRAM latency 400 cycles
memory bank capacity 1 GByte per bank
latency to mem controller 100 cycles

5.4.2 Interconnect Configuration

This section describes details of the interconnect architecture and the method-

ology employed for calculating the area, delay, and power values of the intercon-

nect. All the power and delay calculations are based on 65nm process technology

with 10 metal layers, 4 layers in 1X plane and 2 layers, in each 2X, 4X, and 8X

plane [69]. For this study a crossbar based hierarchical interconnect structure is

employed to connect the cores and L2 cache (Figure 5.2(a)), similar to that in

SGI’s NUMALink-4 [1]. The effect of other interconnect topologies is discussed

in the sensitivity analysis. In the base case, each link in Figure 5.2(a) consists

of (in each direction) 64-bit address wires, 64-byte data wires, and 24-bit control

wires. The control signals carry source, destination, signal type, and Miss Status

Holding Register (MSHR) id. All wires are fully pipelined. Thus, each link in the

interconnect is capable of transferring 75 bytes in each direction. Error Correction

Codes (ECC) account for another 13% overhead in addition to the above mentioned

wires [89]. All the wires of the base case are routed as B-Wires in the 8X plane.

As shown in Figure 5.2(b), the proposed heterogeneous model employs addi-

tional wire types within each link. In addition to B-Wires, each link includes low-

latency, low-bandwidth L-Wires and high-bandwidth, high-latency, power-efficient,
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75−bytes

Processor

L2 Cache

b) Links with different sets of wires
a) Hierarchical network topology for 16−core CMP

Crossbar

B−Wire
L−Wire
PW−Wire

Figure 5.2. Interconnect model used for coherence transactions in a sixteen-core
CMP.

PW-Wires. The number of L- and PW-Wires that can be employed is a function of

the available metal area and the needs of the coherence protocol. In order to match

the metal area with the baseline, each uni-directional link within the heterogeneous

model is designed to be made up of 24 L-Wires, 512 PW-Wires, and 256 B-Wires

(the base case has 600 B-Wires, not counting ECC). In a cycle, three messages may

be sent, one on each of the three sets of wires. The bandwidth, delay, and power

calculations for these wires are discussed subsequently.

Table 5.3 summarizes the different types of wires and their area, delay, and

power characteristics. The area overhead of the interconnect can be mainly at-

tributed to repeaters and wires. The wire width and spacing (based on ITRS

projections)are used to calculate the effective area for minimum-width wires in

the 4X and 8X plane. L-Wires are designed to occupy four times the area of

minimum-width 8X-B-Wires.

Delay: The wire model is based on the RC models proposed in [14, 54, 87]. The

delay per unit length of a wire with optimally placed repeaters is given by equation

(5.1), where Rwire is resistance per unit length of the wire, Cwire is capacitance per

unit length of the wire, and FO1 is the fan-out of one delay:

Latencywire = 2.13
√

RwireCwireFO1 (5.1)
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Table 5.3. Area, delay, and power characteristics of different wire implementations.

Wire Type Relative Latency Relative Area Dynamic Power (W/m) Static Power
(wireWidth + spacing) α = Switching Factor W/m

B-Wire (8X plane) 1x 1x 2.65α 1.0246
B-Wire (4X plane) 1.6x 0.5x 2.9α 1.1578
L-Wire (8X plane) 0.5x 4x 1.46α 0.5670

PW-Wire (4X plane) 3.2x 0.5x 0.87α 0.3074

Rwire is inversely proportional to wire width, while Cwire depends on the follow-

ing three components: (i) fringing capacitance that accounts for the capacitance

between the side wall of the wire and substrate, (ii) parallel plate capacitance

between the top and bottom layers of the metal that is directly proportional to the

width of the metal, (iii) parallel plate capacitance between the adjacent metal wires

that is inversely proportional to the spacing between the wires. The Cwire value for

the top most metal layer at 65nm technology is given by equation (5.2) [87].

Cwire = 0.065 + 0.057W + 0.015/S(fF/µ) (5.2)

The relative delays for different types of wires are derived by tuning width and

spacing in the above equations. A variety of width and spacing values can allow

L-Wires to yield a two-fold latency improvement at a four-fold area cost, relative

to 8X-B-Wires. In order to reduce power consumption, a wire implementation is

selected where the L-Wire’s width was twice that of the minimum width and the

spacing was six times as much as the minimum spacing for the 8X metal plane.

Power: The total power consumed by a wire is the sum of three components

(dynamic, leakage, and short-circuit power). Equations derived by Banerjee and

Mehrotra [14] are used to derive the power consumed by L- and B-Wires. These

equations take into account optimal repeater size/spacing and wire width/spacing.

PW-Wires are designed to have twice the delay of 4X-B-Wires. At 65nm technology,

for a delay penalty of 100%, smaller and widely-spaced repeaters enable power

reduction by 70% [14].
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Routers: Crossbars, buffers, and arbiters are the major contributors for router

power [120]:

Erouter = Ebuffer + Ecrossbar + Earbiter (5.3)

The capacitance and energy for each of these components is based on analytical

models proposed by Wang et al. [120]. A 5x5 matrix crossbar that employs a tristate

buffer connector is modeled. As described in Section 5.3, buffers are modeled for

each set of wires with word size corresponding to flit size. Table 5.3 shows the peak

energy consumed by each component of the router for a single 32-byte transaction.

5.5 Results

The simulations are restricted to directory-based protocols. The effect of pro-

posals pertaining is modeled to such a protocol: I, III, IV, VIII, IX. Proposal-II

optimizes speculative reply messages in MESI protocols, which are not implemented

within GEMS’ MOESI protocol. Evaluations involving compaction of cache blocks

(Proposal VII) is left as future work.

Figure 5.3 shows the execution time in cycles for SPLASH2 programs. The first

bar shows the performance of the baseline organization that has one interconnect

layer of 75 bytes, composed entirely of 8X-B-Wires. The second shows the per-

formance of the heterogeneous interconnect model in which each link consists of

24-bit L-wires, 32-byte B-wires, and 64-byte PW-wires. Programs such as LU-Non-

continuous, Ocean-Non-continuous, and Raytracing yield significant improvements

in performance. These performance numbers can be analyzed with the help of

Figure 5.4 that shows the distribution of different transfers that happen on the in-

terconnect. Transfers on L-Wires can have a huge impact on performance, provided

they are on the program critical path. LU-Non-continuous, Ocean-Non-continuous,

Ocean-Continuous, and Raytracing experience the most transfers on L-Wires. How-

ever, the performance improvement of Ocean-Continuous is very low compared

to other benchmarks. This can be attributed to the fact that Ocean-Continuous

incurs the most L2 cache misses and is mostly memory bound. The transfers on

PW-Wires have a negligible effect on performance for all benchmarks. This is



86

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Bar
ne

s

Cho
les

ky
FFT

FM
M

LU
-C

on
t

LU
-N

on
c

Oce
an

-C
on

t

Oce
an

-N
on

c
Rad

ix

Ray
tra

ce

Volr
en

d

W
at

er
-N

sq

W
at

er
-S

pa

S
p

ee
d

u
p

  

Base Model
Heterogeneous Model

Figure 5.3. Speedup of heterogeneous interconnect

because PW-Wires are employed only for writeback transfers that are always off

the critical path. On average, a 11.2% improvement in performance is observed,

compared to the baseline, by employing heterogeneity within the network.

Proposals I, III, IV, and IX exploit L-Wires to send small messages within the

protocol, and contribute 2.3, 0, 60.3, and 37.4 per cent, respectively, to total L-Wire

traffic. A per-benchmark breakdown is shown in Figure 5.5. Proposal-I optimizes

the case of a read exclusive request for a block in shared state, which is not very

common in the SPLASH2 benchmarks. It is expected that the impact of Proposal-I

will be much higher in commercial workloads where cache-to-cache misses domi-

nate. Proposal-III and Proposal-IV impact NACK, unblocking, and writecontrol

messages. These messages are widely used to reduce the implementation complexity

of coherence protocols. In GEMS’ MOESI protocol, NACK messages are only used

to handle the race condition between two write-back messages, which are negligible

in this study (causing the zero contribution of Proposal-III). Instead, the protocol

implementation relies heavily on unblocking and writecontrol messages to maintain

the order between read and write transactions, as discussed in Section 5.2.1. The
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Figure 5.4. Distribution of messages on the heterogeneous network. B-Wire
transfers are classified as Request and Data.

frequency of occurrence of NACK, unblocking, and writecontrol messages depends

on the protocol implementation, but the sum of these messages are expected to

be relatively constant in different protocols and play an important role in L-wire

optimizations. Proposal-IX includes all other acknowledgment messages eligible for

transfer on L-Wires.

It is observed that the combination of proposals I, III, IV, and IX caused a

performance improvement more than the sum of improvements from each individual

proposal. A parallel benchmark can be divided into a number of phases by synchro-

nization variables (barriers), and the execution time of each phase can be defined

as the longest time any thread spends from one barrier to the next. Optimizations

applied to a single thread may have no effect if there are other threads on the critical

path. However, a different optimization may apply to the threads on the critical

path, reduce their execution time, and expose the performance of other threads

and the optimizations that apply to them. Since different threads take different

data paths, most parallel applications show nontrivial workload imbalance [76].
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Figure 5.5. Distribution of L-message transfers across different proposals.

Therefore, employing one proposal might not speedup all threads on the critical

path, but employing all applicable proposals can probably optimize threads on

every path, thereby reducing the total barrier to barrier time.

Figure 5.6 shows the improvement in network energy due to the heterogeneous

interconnect model. The first bar shows the reduction in network energy and

the second bar shows the improvement in the overall processor Energy × Delay2

(ED2) metric. Other metrics in the E − D space can also be computed with

data in Figures 5.6 and 5.3. To calculate ED2, it is assumed that the total power

consumption of the chip is 200W, of which the network power accounts for 60W.

The energy improvement in the heterogeneous case comes from both L and PW

transfers. Many control messages that are sent on B-Wires in the base case are

sent on L-Wires in the heterogeneous case. As per Table 5.3, the energy consumed

by an L-Wire is less than the energy consumed by a B-Wire. However, due to the

small sizes of these messages, the contribution of L-messages to the total energy
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Figure 5.6. Improvement in link energy and ED2.

savings is negligible. Overall, the heterogeneous network results in a 22% saving in

network energy and a 30% improvement in ED2.

5.6 Sensitivity Analysis

In this subsection, the impact of processor cores, link bandwidth, routing algo-

rithm, and network topology on the heterogeneous interconnect are discussed.

5.6.1 Out-of-order/In-order Processors

To test the ideas with an out-of-order processor, the Opal is configured to model

the processor described in Table 5.2 and only reports the results of the first 100M

instructions in the parallel sections2.

Figure 5.7 shows the performance speedup of the heterogeneous interconnect

over the baseline. All benchmarks except Ocean-Noncontinuous demonstrate dif-

2Simulating the entire program takes nearly a week and there exist no effective toolkits to
find the representative phases for parallel benchmarks. LU-Noncontinuous and Radix were not
compatible with the Opal timing module.
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ferent degrees of performance improvement, which leads to an average speedup of

9.3%. The average performance improvement is less than what is observed in a

system employing in-order cores (11.2%). This can be attributed to the greater

tolerance that an out-of-order processor has to long instruction latencies.

5.6.2 Link Bandwidth

The heterogeneous network poses more constraints on the type of messages that

can be issued by a processor in a cycle. It is therefore likely to not perform very well

in a bandwidth-constrained system. To verify this, a base case is modeled where

every link has only 80 8X-B-Wires and a heterogeneous case where every link is

composed of 24 L-Wires, 24 8X-B-Wires, and 48 PW-Wires (almost twice the metal

area of the new base case). Benchmarks with higher network utilizations suffered

significant performance losses. In these experiments, raytracing has the maximum

messages/cycle ratio and the heterogeneous case suffered a 27% performance loss,

compared to the base case (in spite of having twice the metal area). The hetero-

geneous interconnect performance improvement for Ocean Non-continuous and LU

Non-continuous is 12% and 11%, as against 39% and 20% in the high-bandwidth

simulations. Overall, the heterogeneous model performed 1.5% worse than the base

case.

5.6.3 Routing Algorithm

The simulations thus far have employed adaptive routing within the network.

Adaptive routing alleviates the contention problem by dynamically routing mes-

sages based on the network traffic. It is found that deterministic routing degraded

performance by about 3% for most programs for systems with the baseline and

with the heterogeneous network. Raytracing is the only benchmark that incurs a

significant performance penalty of 27% for both networks.
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Figure 5.7. Speedup of heterogeneous interconnect when driven by OoO cores
(Opal and Ruby)

5.6.4 Network Topology

The default interconnect thus far was a two-level tree based on SGI’s NUMALink-

4 [1]. To test the sensitivity of these results to the network topology, a 2D-torus

interconnect resembling that in the Alpha 21364 [17] is also examined. As shown

in Figure 5.8, each router connects to 4 links that connect to 4 neighbors in the

torus, and wraparound links are employed to connect routers on the boundary.

The proposed mechanisms show much less performance benefit (1.3% on aver-

age) in the 2D torus interconnect than in the two-level tree interconnect as shown in

Figure 5.9. The main reason is that the decision process in selecting the right set of

wires calculates hop imbalance at the coherence protocol level without considering

the physical hops a message takes on the mapped topology. For example, in a

3-hop transaction as shown in Figure 5.1, the one-hop message may take 4 physical

hops while the 2-hop message may also take 4 physical hops. In this case, sending

the 2-hop message on the L-Wires and the one-hop message on the PW-Wires will

actually lower performance.

This is not a first-order effect in the two-level tree interconnect, where most

hops take 4 physical hops. However, the average distance between two processors
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Figure 5.8. 2D Torus topology

in the 2D torus interconnect is 2.13 physical hops with a standard deviation of

0.92 hops. In an interconnect with such high standard deviation, calculating hop

imbalance based on protocol hops is inaccurate. For future work, it is planed to

develop a more accurate decision process that considers source id, destination id,

and interconnect topology to dynamically compute an optimal mapping to wires.

5.7 Related Work

To the best of my knowledge, only two other bodies of work have attempted to

exploit different types of interconnects at the microarchitecture level. Beckmann

and Wood [20, 21] propose speeding up access to large L2 caches by introducing

transmission lines between the cache controller and individual banks. Nelson et

al. [95] propose using optical interconnects to reduce inter-cluster latencies in a

clustered architecture where clusters are widely-spaced in an effort to alleviate

power density. This is the first work that exploits heterogeneous full-swing wires

in a multicore environment to reduce coherence overhead.
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Figure 5.9. Heterogeneous interconnect speedup

5.8 Summary

Coherence traffic in a chip multiprocessor has diverse needs. Some messages

can tolerate long latencies, while others are on the program critical path. Further,

messages have varied bandwidth demands. The specific needs of these messages can

be met by embracing a heterogeneous network. This chapter presents numerous

novel techniques that can exploit a heterogeneous interconnect to simultaneously

improve performance and reduce power consumption.

The evaluation of the proposed techniques targeted at a directory-based protocol

shows that a large fraction of messages have low bandwidth needs and can be

transmitted on low latency wires, thereby yielding a performance improvement of

11.2%. At the same time, a 22.5% reduction in interconnect energy is observed

by transmitting noncritical data on power-efficient wires. The complexity cost is

marginal as the mapping of messages to wires entails simple logic.

There may be several other applications of heterogeneous interconnects within a

CMP. For example, in the Dynamic Self Invalidation scheme proposed by Lebeck et

al. [73], the self-invalidate [71, 73] messages can be effected through power-efficient

PW-Wires. In a processor model implementing token coherence, the low-bandwidth
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token messages [83] are often on the critical path and, thus, can be effected on

L-Wires. A recent study by Huh et al. [56] reduces the frequency of false sharing

by employing incoherent data. For cache lines suffering from false sharing, only

the sharing states need to be propagated and such messages are a good match

for low-bandwidth L-Wires. Overall, a heterogeneous interconnect, in addition to

helping to build an efficient cache hierarchy, also alleviates the overhead of the

inter-core communications happening through the cache hierarchy.



CHAPTER 6

WIRE MANAGEMENT IN A CLUSTERED

ARCHITECTURE

In the last few chapters, the role of interconnects in designing large lower level

on-chip caches is studied. This chapter focuses on application of heterogeneous

network to accelerate L1 accesses. Since the access time of L1 is potentially wire-

limited in a high-ILP clustered architecture, the rest of the chapter assumes a

clustered microarchitecture for the out-of-order core. In a clustered architecture,

on-chip network also carries register values, thus lending itself to a few additional

optimizations that are not strictly tied to L1 cache.

6.1 Clustered Architecture

One of the biggest challenges for computer architects is the design of billion-

transistor architectures that yield high parallelism, high clock speeds, low design

complexity, and low power. There appears to be a consensus among several research

groups [4, 12, 16, 28, 36, 47, 54, 61, 62, 63, 66, 93, 96, 106, 114] that a partitioned

architecture is the best approach to achieving these design goals.

Partitioned architectures consist of many small and fast computational units

connected by a communication fabric. A computational unit is commonly referred

to as a cluster and is typically comprised of a limited number of ALUs, local register

storage, and a buffer for instruction issue. Since a cluster has limited resources and

functionality, it enables fast clocks, low power, and low design effort. Abundant

transistor budgets allow the incorporation of many clusters on a chip. The instruc-

tions of a single program are distributed across the clusters, thereby enabling high

parallelism. Since it is impossible to localize all dependent instructions to a single

cluster, data is frequently communicated between clusters over the inter-cluster
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communication fabric. Depending on the workloads, different flavors of partitioned

architectures can exploit instruction-level, data-level, and thread-level parallelism

(ILP, DLP, and TLP).

One of the biggest bottlenecks in a clustered architecture is the inter-core

communication overhead. To alleviate the high performance penalty of long wire

delays at future technologies, most research efforts have concentrated on reducing

the number of communications through intelligent instruction and data assign-

ment to clusters. Such an assignment can be accomplished either at compile-time

[47, 61, 66, 93, 96, 106, 114] or at run-time [4, 12, 16, 28, 36]. However, in spite

of our best efforts, global communication is here to stay. For a dynamically sched-

uled 4-cluster system (described in Sections 6.3 and 6.4), performance degrades

by 12% when the inter-cluster latency is doubled. The papers listed above also

report similar slowdowns for high-latency interconnects. Thus, irrespective of the

implementation, partitioned architectures experience a large number of global data

transfers and performance can be severely degraded if the interconnects are not

optimized for low delay.

Since inter-cluster communications happen on long wires with high capacitances,

they are responsible for a significant fraction of on-chip power dissipation. Intercon-

nect power is a major problem not only in today’s industrial designs, but also in

high-performance research prototypes. A recent evaluation by Wang et al. [122]

demonstrates that the inter-tile network accounts for 36% of the total energy

dissipated in the Raw processor [114]. Hence, by focusing on techniques that reduce

interconnect overhead, significant improvement in performance and power savings

are possible. To reduce wire delay, a low-latency, low-bandwidth interconnect and

design a cache pipeline that employs a subset of the address bits to prefetch data

is leveraged out of cache banks. The advantage of the fact is also taken that a

number of data transfers involve narrow bit-width operands that can benefit from

a low-bandwidth interconnect. Further, improved performance is seen by diverting

bursts of interconnect traffic to high-bandwidth high-latency interconnects. These
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high-bandwidth interconnects can also be designed to be energy-efficient, enabling

significant energy savings in addition to performance improvements.

In this section, the partitioned architecture model that serves as an evaluation

platform for this study and the proposed innovations that can take advantage of a

heterogeneous interconnect is described.

6.2 The Baseline Partitioned Architecture

Instruction assignment to clusters in a partitioned architecture may happen

at compile-time [18, 47, 61, 66, 93, 96, 106], or at run-time [4, 12, 16, 28, 36].

There are advantages to either approach – static techniques entail lower hardware

overheads and have access to more information on program dataflow, while dynamic

techniques are more reactive to events such as branch mispredicts, cache misses,

network congestion, etc. These evaluations employ a dynamically scheduled par-

titioned architecture. It is expected that these proposals can be applied even to

statically scheduled architectures.

This partitioned architecture model dispatches a large window of in-flight in-

structions from a single-threaded application. A centralized cache implementation

is adopted because earlier studies have shown that a centralized cache offers nearly

as much performance as a distributed cache while enabling low implementation

complexity [11, 52, 101]. The assignment of instructions to clusters happens through

a state-of-the-art dynamic instruction steering heuristic [12, 28, 118] that takes

the following information into account: data dependences, cluster load imbalance,

criticality of operands, and proximity to the data cache. While dispatching an

instruction, the steering algorithm assigns weights to each cluster to determine

the cluster that is most likely to minimize communication and issue-related stalls.

Weights are assigned to a cluster if it produces input operands for the instruction

and if it has many empty issue queue entries. Additional weights are assigned to

a cluster if it is the producer of the input operand that is predicted to be on the

critical path for the instruction’s execution. For loads, more weights are assigned

to clusters that are closest to the data cache. The steering algorithm assigns the
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instruction to the cluster that has the most weights. If that cluster has no free

register and issue queue resources, the instruction is assigned to the nearest cluster

with available resources.

Results produced within a cluster are bypassed to consumers in that cluster

in the same cycle, while communicating the result to consumers in other clusters

takes additional cycles. In order to effect the transfer of data between clusters,

the instruction decode and rename stage inserts a “copy instruction” [28] in the

producing cluster that places the value on the inter-cluster network as soon as the

value is made available. Each cluster has a scheduler for the inter-cluster network

that is similar in organization to the issue queue and that has an issue bandwidth

that matches the maximum number of transfers possible on each link of the network.

Similar to the instruction wake-up process in conventional dynamic superscalars,

the register tags for the operand are sent on the network ahead of the data so that

the dependent instruction can be woken up and can consume the value as soon as

it arrives.

For most of the experiments, a processor model is assumed that has four clusters.

These four clusters and the centralized data cache are connected through a crossbar

network, as shown in Figure 6.1 (a). All links contain a unidirectional interconnect

in each direction. The processor model in Figure 6.1 (a) adopts a heterogeneous

interconnect where every link in the network is comprised of B-Wires, PW-Wires,

and L-Wires. Note that every data transfer has the option to use any one of these

sets of wires. Our evaluations show the effects of using interconnects that employ

different combinations of these sets of wires. For all processor organizations, the

bandwidth requirements to the cache are much higher than bandwidth requirements

to the clusters since more than one third of all instructions are loads or stores.

Hence, the links going in and out of the cache are assumed to have twice as much

area and twice as many wires as the links going in and out of a cluster. If multiple

transfers compete for a link in a cycle, one transfer is effected in that cycle, while the

others are buffered. Unbounded buffers are assumed at each node of the network.

An earlier study [97] has shown that these buffers typically require a modest number
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of entries. The aggressive processor models with 16 clusters are also examined. For

a 16-cluster system, a hierarchical topology similar to the one proposed by Aggarwal

and Franklin [5] is adopted. As shown in Figure 6.1 (b), a set of four clusters is

connected through a crossbar, allowing low-latency communication to neighboring

clusters. The crossbars are connected with a ring topology. Similar to the 4-cluster

system, every link in the network is comprised of wires with different properties.

6.3 Exploiting Heterogeneous Interconnects

6.3.1 Accelerating Cache Access

First, it is examined how low-latency low-bandwidth L-Wires can be exploited

to improve performance. L-Wires are designed by either employing very large wire

widths and spacing or by implementing transmission lines. Because of the area

overhead associated with L-wires 2, theL-Wires is modelled such that 18 L-Wires

occupy the same metal area as 72 B-Wires.

L1 D

Crossbar

Cluster

B−Wire
L−Wire
PW−Wire

L1 D

Crossbar

Ring

(a) 4−cluster system with
     heterogeneous wires

(b) 16−cluster system with
hierarchical interconnect   

Figure 6.1. Clustered architecture with heterogeneous interconnect. (a) A
partitioned architecture model with 4 clusters and a heterogeneous interconnect
comprised of B-, L-, and PW-Wires. (b) A 16-cluster system with a hierarchical
interconnect. Sets of four clusters are connected with a crossbar and the crossbars
are connected in a ring topology.
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Consider the behavior of the cache pipeline in the baseline processor. When

a cluster executes a load instruction, it computes the effective address and com-

municates it to the centralized load/store queue (LSQ) and cache. The load/store

queue waits until it receives addresses of stores prior to the load in program order,

guarantees that there is no memory dependence, and then initiates the cache access.

The cost of communication to the cache influences load latency in two ways – (i)

it delays the arrival of load addresses at the LSQ, (ii) it delays the arrival of store

addresses at the LSQ, thereby delaying the resolution of memory dependences.

To accelerate cache access, the following novel technique is proposed. A subset

of the address bits are transmitted on low-latency L-Wires to prefetch data out

of the L1 cache and hide the high communication cost of transmitting the entire

address. After the cluster computes the effective address, the least significant (LS)

bits of the address are transmitted on the low-latency L-Wires, while the most

significant (MS) bits are transmitted on B-Wires. The same happens for store

addresses. Thus, the LSQ quickly receives the LS bits for loads and stores, while

the MS bits take much longer. The early arrival of the partial addresses allows the

following optimizations.

The LSQ can effect a partial comparison of load and store addresses with the

available LS bits. If the LS bits of the load do not match the LS bits of any earlier

store, the load is guaranteed to not have any memory dependence conflicts and it

can begin cache access. If the LS bits of the load match the LS bits of an earlier

store, it has to wait for the MS bits to arrive before determining if there is a true

dependence. A large number of false dependences can also increase contention for

the LSQ ports. Fortunately, it is found that false dependences were encountered

for fewer than 9% of all loads when employing eight LS bits for the partial address

comparison.

To effect an L1 data cache access, the least significant bits of the effective address

are used to index into the data and tag RAM arrays and read out a relevant set of

cache blocks. The most significant bits of the effective address are used to index

into the TLB and the resulting translation is then compared with the tags to select
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the appropriate data block and forward it to the cluster. Since the accesses to

the cache RAM arrays do not require the most significant bits, the accesses can

be initiated as soon as the least significant bits of the address arrive on L-Wires

(provided the L-Wires transmit enough bits to determine the set index).

Similarly, a few bits of the virtual page number can be included in the transfer

on the L-Wires. This allows TLB access to proceed in parallel with RAM array

look-up. The modifications to enable indexing with partial address information

are more significant for a CAM structure than a RAM structure. Hence, a highly-

associative TLB design may be more amenable to this modified pipeline than a

fully-associative one. When the rest of the effective address arrives, tag comparison

selects the correct translation from a small subset of candidate translations.

Thus, the transfer of partial address bits on L-Wires enables data to be prefetched

out of L1 cache and TLB banks and hide the RAM access latency, which is the

biggest component in cache access time. If the cache RAM access has completed by

the time the entire address arrives, only an additional cycle is spent to detect the

correct TLB translation and effect the tag comparison before returning data to the

cluster. This overlap of effective address transfer with cache RAM and TLB access

can result in a reduction in effective load latency if the latency difference between

L-Wires and B-Wires is significant.

It must be noted that the proposed pipeline works well and yields speedups

even if the processor implements some form of memory dependence speculation.

The partial address can proceed straight to the L1 cache and prefetch data out of

cache banks without going through partial address comparisons in the LSQ if it is

predicted to not have memory dependences. To allow cache and TLB index bits

to fit in a narrow low-bandwidth interconnect, it might be necessary to make the

cache and TLB highly set-associative. For example, 18 L-Wires can accommodate

6 bits of tag to identify the instruction in the LSQ, 8 index bits for the L1 data

cache, and 4 index bits for the TLB. For the assumed cache and TLB sizes, this

corresponds to an associativity of 4 and 8 for the cache and TLB, respectively. If

the associativity is reduced, a few more L-Wires may be needed.
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6.3.2 Narrow Bit-Width Operands

An interconnect composed of L-Wires can also be employed for results that

can be encoded by a few bits. 18 L-Wires can accommodate eight bits of register

tag and ten bits of data. A simplest form of data compaction is employed here

– integer results between 0 and 1023 are eligible for transfer on L-Wires. The

hardware required to detect narrow bit-width data can be easily implemented – the

PowerPC 603 [50] has hardware to detect the number of leading zeros that is then

used to determine the latency for integer multiply. A special case in the transfer

of narrow bit-width data is the communication of a branch mispredict back to the

front-end. This only involves the branch ID that can be easily accommodated on

L-Wires, thereby reducing the branch mispredict penalty.

Other forms of data compaction might also be possible, but is not explored

here. For example, Yang et al. [129] identify that the eight most frequent values in

SPEC95-Int programs account for roughly 50% of all data cache accesses and can

be easily encoded by a few bits.

In order to schedule a wake-up operation at the consuming cluster, the register

tags are sent before the data itself. For a narrow bit-width operand, the tags have

to be sent on L-Wires. Hence, the pipeline requires advance knowledge of whether

the result can be expressed in 10 bits. For the evaluations, the optimistic assump-

tion made is that this information is available early in the pipeline. A realistic

implementation would require inspection of the instruction’s input operands or a

simple predictor. It is confirmed that a predictor with 8K 2-bit saturating counters,

that predicts the occurrence of a narrow bit-width result when the 2-bit counter

value is three, is able to identify 95% of all narrow bit-width results. With such

a high-confidence predictor, only 2% of all results predicted to be narrow have bit

widths greater than 10.

6.3.3 Exploiting PW-Wires

Next, it is examined how PW-Wires can be employed to not only reduce con-

tention in other wires, but also reduce energy consumption. The objective here is
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to identify those data transfers that can tolerate the higher latency of these wires

or to identify situations when the cost of contention on B-Wires offsets its wire

latency advantage. If a data transfer has the choice of using either B-Wires or

PW-Wires, the following three criteria dictate when a transfer can be effected on

the high bandwidth, low energy, high latency PW-Wires:

• If the input operands are already ready in a remote register file at the time

an instruction is dispatched, the operands are transferred to the instruction’s

cluster on PW-Wires. The rationale here is that there is usually a long gap

between instruction dispatch and issue and the long communication latency

for the ready input operand can be tolerated.

• Store data is assigned to PW-Wires. This can slow the program down only if

the store is holding up the commit process or if there is a waiting dependent

load. Both are fairly rare cases and a minimal performance impact from

adopting this policy is noticed.

• The amount of traffic injected into either interconnect in the past N cy-

cles (N=5 in this simulations) is tracked. If the difference between the

traffic in each interconnect exceeds a certain prespecified threshold (10 in

this simulations), subsequent data transfers are steered to the less congested

interconnect.

Thus, by steering noncritical data towards the high-bandwidth energy-efficient

interconnect, little performance degradation is likely to be seen and by steering data

away from the congested interconnect, performance improvements can potentially

be seen. Most importantly, large savings in interconnect energy can be observed.

6.4 Results

6.4.1 Methodology

The simulator is based on Simplescalar-3.0 [26] for the Alpha AXP ISA. Separate

issue queues and physical register files for integer and floating-point streams are
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modeled for each cluster. Contention on the interconnects and for memory hierarchy

resources (ports, banks, buffers, etc.) are modeled in detail. It is assumed that

each cluster has 32 registers (int and fp, each), 15 issue queue entries (int and

fp, each), and one functional unit of each kind. While a large ROB size of 480

is used, in-flight instruction windows are typically much smaller as dispatch gets

stalled as soon as the processor runs out of physical registers or issue queue entries.

The evaluations show results for processor models with four and sixteen clusters.

Important simulation parameters are listed in Table 6.1.

23 of the 26 SPEC-2k programs are used with reference inputs as a benchmark

set 1. Each program was simulated for 100 million instructions over simulation

windows identified by the Simpoint toolkit [107]. Detailed simulation was carried

out for one million instructions to warm up various processor structures before

taking measurements.

1Sixtrack, Facerec, and Perlbmk were not compatible with the simulation infrastructure.

Table 6.1. Simplescalar simulator parameters.

Fetch queue size 64
Branch predictor comb. of bimodal and 2-level

Bimodal predictor size 16K
Level 1 predictor 16K entries, history 12
Level 2 predictor 16K entries

BTB size 16K sets, 2-way
Branch mispredict penalty at least 12 cycles

Fetch width 8 (across up to 2 basic blocks)
Issue queue size 15 per cluster (int and fp, each)
Register file size 32 per cluster (int and fp, each)

Integer ALUs/mult-div 1/1 per cluster
FP ALUs/mult-div 1/1 per cluster

L1 I-cache 32KB 2-way
Memory latency 300 cycles for the first block

L1 D-cache 32KB 4-way set-associative
L2 unified cache 8MB 8-way, 30 cycles

6 cycles, 4-way word-interleaved
I and D TLB 128 entries, 8KB page size
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6.4.2 Latency and Energy Estimates

It is started by assuming that W-Wires have the minimum allowed width and

spacing for the selected metal layer. Then a PW-Wire is designed by reducing the

size and number of repeaters. According to the methodology discussed in Chapter 2,

roughly 70% of interconnect energy can be saved at 45nm technology while incurring

a 20% delay penalty. The B-Wires is designed such that each wire has twice as

much metal area as a PW-Wire and its delay is lower by a factor of 1.5. The delay

constraints were able to be met by keeping the width the same as a W-Wire and

only increasing wire spacing. This strategy also helps us reduce the power consumed

in B-Wires. Finally, L-Wires were designed by increasing the width and spacing

of W-Wires by a factor of 8. Based on the analysis of Banerjee et al. [14, 87],

it is computed that at 45nm technology, RL = 0.125RW , CL = 0.8CW , giving us

the result that DelayL = 0.3DelayW = 0.25DelayPW . If L-Wires is implemented

instead as transmission lines, the improvement in wire delay will be much more.

Chang et al. [31] report that at 180nm technology, a transmission line is faster than

an RC-based repeated wire of the same width by a factor of 4/3. This gap may

widen at future technologies. For the purposes of the evaluation, it is restricted

to RC-based models, but note that performance and energy improvements can be

higher if transmission lines become a cost-effective option.

It is assumed that communication with neighbors through the crossbar takes

three cycles for PW-Wires. Based on the relative latency estimates above, B-

Wires and L-Wires are 1.5 times and 4 times faster than PW-Wires, corresponding

to inter-cluster communication latencies of two cycles and one cycle, respectively.

When examining a 16-cluster system with a hierarchical interconnect, the latency

for a hop on the ring interconnect for PW-Wires, B-Wires, and L-Wires are assumed

to be 6, 4, and 2 cycles. The various wire parameters are summarized in Table 6.2.

It is assumed that all transfers are fully pipelined. The energy estimates for 45nm

are derived from the analysis described by Banerjee et al. [14, 87]. Relative dynamic

and leakage energy values are listed in Table 6.2. Different wire width and spacing

cause energy differences in W-, B-, and L-Wires, while smaller and fewer repeaters
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Table 6.2. Wire delay and relative energy parameters for each RC-based wire.

WIRE RELATIVE CROSSBAR RING HOP RELATIVE RELATIVE
IMPLEMENTATION DELAY LATENCY LATENCY LEAKAGE DYNAMIC

W-WIRES 1.0 1.00 1.00
PW-WIRES 1.2 3 CYCLES 6 CYCLES 0.30 0.30
B-WIRES 0.8 2 CYCLES 4 CYCLES 0.55 0.58
L-WIRES 0.3 1 CYCLE 2 CYCLES 0.79 0.84

cause a 70% energy decrease between W-Wires and PW-Wires. Chang et al. [31]

report a factor of three reduction in energy consumption by employing transmission

line technology. Thus, low-bandwidth transfers effected on L-Wires can not only

improve performance, but also reduce energy consumption. For the evaluations,

were restriced to RC-based L-Wires.

This analysis does not model the power consumed within the schedulers for the

inter-cluster network. Heterogeneity will likely result in negligible power overhead

in the schedulers while comparing networks with equal issue bandwidth.

6.4.3 Behavior of L-Wires

It is first examined how L-Wires enable the optimizations described in Sec-

tion 6.3. Figure 6.2 shows IPCs for SPEC2k programs for two 4-cluster systems.

The first is the baseline organization that has only one interconnect layer comprised

entirely of B-Wires. Each link to a cluster can transfer 72 bits of data and

tag in each direction, while the link to the data cache can transfer 144 bits in

each direction. In the second 4-cluster system shown in Figure 6.2, the baseline

interconnect is augmented with another metal layer that is comprised entirely of

L-Wires. Each link to a cluster can transfer 18 bits of data and tag in each

direction and the link to the cache can transfer 36 bits in each direction. The

L-Wires are employed to send the LS bits of a load or store effective address,

for the transfer of narrow bit-width data, and for the transfer of branch mispredict

signals. It is seen that overall performance improves by only 4.2%, while comparing
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Figure 6.2. IPCs for the baseline 4-cluster partitioned architecture employing one
layer of B-Wires and for a partitioned architecture employing one layer of B-Wires
and one layer of L-Wires. The L-Wires transmit narrow bit-width data, branch
mispredict signals, and LS bits of load/store addresses.

the arithmetic mean (AM) of IPCs2. It is observed that the novel cache pipeline,

the transfer of narrow bit-width operands, and the transfer of branch mispredict

signals, contributed equally to the performance improvement. In this particular

processor model, the transfer on L-Wires can save at most a single cycle, yielding a

modest performance improvement. Considering that the proposed pipeline entails

nontrivial complexity to determine operand bit-widths and compare multiple tags

at the LSQ, it is believed that the performance improvement is likely not worth

the design effort. However, as listed below, there may be other scenarios where

L-Wires can yield significant benefits.

If future technology points are more wire constrained, the latency gap between

B-Wires and L-Wires widens. If latencies that are twice as much as those listed in

2The AM of IPCs represents a workload where every program executes for an equal number
of cycles [60].
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Table 6.2 is assumed, the performance improvement by adding an interconnect layer

comprised of L-Wires is 7.1%. As transistor budgets increase, high-performance

processors may employ as many as 16 clusters. Such an aggressive architecture can

not only improve thread-level parallelism (TLP), but it can also improve single-

thread performance for high-ILP programs. For the base processor model with a

single interconnect layer comprised of B-Wires, the improvement in single-thread

IPC by moving from 4 to 16 clusters for the 23 SPEC-2k programs is 17%. Again,

the single-thread performance improvement in moving from 4 to 16 clusters likely

does not warrant the complexity increase. However, if processors are going to

employ many computational units for TLP extraction, the complexity entailed in

allowing a single thread to span across 16 clusters may be tolerable. For such a

wire-delay-constrained 16-cluster system, the performance improvement by adding

a metal layer with L-Wires is 7.4%. As the subsequent tables shall show, there

are other processor and interconnect models where the addition of an L-Wire

interconnect layer can improve performance by more than 10%. It is possible that

the novel cache pipeline may yield higher benefits for ISAs with fewer registers that

may have more loads and stores. Only 14% of all register traffic on the inter-cluster

network are comprised of integers between 0 and 1023. More complex encoding

schemes might be required to take additional benefit of L-Wires. It is also possible

that there are other mechanisms to exploit low-latency low-bandwidth wires that

may be more complexity-effective. For example, such wires can be employed to

fetch critical words from the L2 or L3.

6.4.4 Heterogeneous Interconnect Choices

The above evaluation shows performance improvements by the addition of a

metal layer comprised entirely of L-Wires. This helps gauge the potential of

L-Wires to reduce the cost of long wire latencies, but is not a fair comparison

because of the difference in the number of metal layers. In this subsection, it

is attempted to evaluate the best use of available metal area. It is started by

evaluating processor models that only have enough metal area per link to each
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cluster to accommodate either 144 B-Wires, or 288 PW-Wires, or 36 L-Wires (the

link to the data cache has twice this metal area). Our base processor (Model − I)

that effects one transfer in and out of each cluster on B-Wires is an example of such

a processor model. The processors that have twice and thrice as much metal area

are then examined, allowing more interesting combinations of heterogeneous wires.

Table 6.3 summarizes the performance and energy characteristics of interesting

heterogeneous interconnect organizations for a system with four clusters. All values

in Table 6.3 except IPC are normalized with respect to the values for Model − I.

ED2 is computed by taking the product of total processor energy and the square of

the number of cycles to execute 100M instructions. Total processor energy assumes

that interconnect energy accounts for 10% of total chip energy in Model − I and

that leakage and dynamic energy are in the ratio 3:7 for Model − I. Table 6.3 also

shows ED2 when assuming that interconnect energy accounts for 20% of total chip

energy.

First processor models that employ as much metal area as Model − I are

examined. The only alternative interconnect choice that makes sense is one that

employs 288 PW-Wires for each link to a cluster (Model − II). A heterogeneous

interconnect that consumes 1.5 times as much metal area as Model−I is also evolu-

Table 6.3. Heterogeneous interconnect energy and performance for 4-cluster
systems. All values (except IPC) are normalized with respect to Model−I. ED2 is
computed by multiplying total processor energy by square of executed cycles. 10%
and 20% refer to the contribution of interconnect energy to total processor energy
in Model − I.

Description Relative Relative Relative Relative Relative Relative
Model of each link Metal IPC interconnect interconnect Processor ED

2
ED

2

Area dyn-energy lkg-energy Energy (10%) (10%) (20%)
Model − I 144 B-Wires 1.0 0.95 100 100 100 100 100
Model − II 288 PW-Wires 1.0 0.92 52 112 97 103.4 100.2
Model − III 144 PW-Wires, 36 L-Wires 1.5 0.96 61 90 97 95.0 92.1
Model − IV 288 B-Wires 2.0 0.98 99 194 103 96.6 99.2
Model − V 144 B-Wires, 288 PW-Wires 2.0 0.97 83 204 102 97.8 99.6
Model − V I 288 PW-Wires, 36 L-Wires 2.0 0.97 61 141 99 94.4 93.0
Model − V II 144 B-Wires, 36 L-Wires 2.0 0.99 105 130 101 93.3 94.5
Model − V III 432 B-Wires 3.0 0.99 99 289 106 97.2 102.4
Model − IX 288 B-Wires, 36 L-Wires 3.0 1.01 105 222 104 92.0 95.5
Model − X 144 B-Wires, 288 PW-Wires, 3.0 1.00 82 233 103 92.7 95.1

36 L-Wires
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ated by employing 144 PW-Wires and 36 L-Wires to each cluster (Model − III).

From Table 6.3, it is observed that only employing slower PW-Wires (Model− II)

degrades IPC and increases ED2, in spite of the increased bandwidth. Model−III

with PW-Wires and L-Wires allows a combination of high performance and low en-

ergy. Most transfers happen on PW-Wires, resulting in 30% savings in interconnect

energy dissipation, while L-Wires enable the optimizations described in Section 6.3

and boost performance back up to that with the baseline interconnect (Model−I).

Thus, in terms of overall processor ED2, the heterogeneous interconnect allows a

5% improvement, although at an area cost.

Next, processor models that have twice as much metal area per link as Model−I

are evaluated. Model − IV accommodates 288 B-Wires in each link to a cluster,

while Model−V represents a heterogeneous interconnect that employs 144 B-Wires

and 288 PW-Wires. In Model− V , data is assigned to PW-Wires according to the

criteria discussed in Section 6.3. The higher latency of PW-Wires causes only a

slight performance degradation of 1% compared to Model − IV . This is partly

because the criteria are effective at identifying latency insensitive data transfers

and partly because PW-Wires reduce overall contention by 14%. 36% of all data

transfers happen on energy-efficient wires, leading to energy savings when compared

with Model − IV . Model − V I improves on energy and ED2 by sending all

of its traffic on PW-Wires and using L-Wires to offset the performance penalty.

Finally, Model − V II represents the high-performance option in this class, by

employing B-Wires and L-Wires, yielding a decrease in ED2 in spite of an increase

in overall energy consumption. Thus, the interconnects with the best ED2 employ

combinations of different wires and not a homogeneous set of wires.

Finally, interesting designs that have enough area per link to a cluster to

accommodate 432 B-Wires (Model − V III) are evaluated. The high-performance

option in this class (Model − IX) employs 288 B-Wires and 36 L-Wires, while the

low-power option (Model−X) accommodates B-, PW-, and L- wires. While there

is little performance benefit to be derived from having thrice as much metal area
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as Model− I, it is interesting to note that heterogeneous interconnects continue to

yield the best ED2 values.

The evaluation is repeated on a 16-cluster system that is likely to be more

sensitive to interconnect design choices. Table 6.4 summarizes the IPC, processor

energy, and ED2 values while assuming that interconnect energy accounts for

20% of total processor energy. Up to 11% reductions in ED2 can be observed

by employing heterogeneous interconnects.

In summary, our results indicate that heterogeneous wires have the potential

to improve performance and energy characteristics, as compared to a baseline

approach that employs homogeneous wires. Overall processor ED2 reductions of

up to 8% for 4-cluster systems and 11% for 16-cluster systems is seen by employing

energy-efficient and low-latency wires. As previously discussed, the improvements

can be higher in specific processor models or if transmission line technology becomes

feasible.

There are clearly some nontrivial costs associated with the implementation of

a heterogeneous interconnect, such as pipeline modifications, demultiplexing in the

send buffers, logic to identify narrow bit-widths and network load imbalance, etc.

Table 6.4. Heterogeneous interconnect energy and performance for 16-cluster
systems where interconnect energy contributes 20% of total processor energy in
Model − I. All values (except IPC) are normalized with respect to Model − I.

Description Relative Relative
Model of each link IPC Processor ED

2

Energy (20%) (20%)
Model − I 144 B-Wires 1.11 100 100
Model − II 288 PW-Wires 1.05 94 105.3
Model − III 144 PW-Wires, 36 L-Wires 1.11 94 93.6
Model − IV 288 B-Wires 1.18 105 93.1
Model − V 144 B-Wires, 288 PW-Wires 1.15 104 96.5
Model − V I 288 PW-Wires, 36 L-Wires 1.13 97 93.2
Model − V II 144 B-Wires, 36 L-Wires 1.19 102 88.7
Model − V III 432 B-Wires 1.19 111 96.2
Model − IX 288 B-Wires, 36 L-Wires 1.22 107 88.7
Model − X 144 B-Wires, 288 PW-Wires, 1.19 106 91.9

36 L-Wires
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The above results demonstrate the high potential of such an approach, necessitating

a more careful examination of whether these overheads are tolerable.

6.5 Related Work

Here, other related work that has not already been cited in context is mentioned.

Austin and Sohi [8] propose mechanisms to overlap cache indexing with effective

address calculation. These mechanisms differ from the proposed cache pipeline in

the following two major aspects: (i) they serve to hide the cost of deep pipelines and

arithmetic computations, not wire delays, (ii) they employ prediction techniques.

A recent study by Citron [35] examines entropy within data being transmitted on

wires and identifies opportunities for compression. The author suggests that if most

traffic can be compressed, the number of wires can scale down, allowing each wire to

be fatter. Unlike this proposal, the author employs a single interconnect to transfer

all data and not a hybrid interconnect with different latency/bandwidth/power

characteristics. A study by Loh [77] exploits narrow bitwidths to execute multiple

instructions on a single 64-bit datapath. Performance improves because the effective

issue width increases in some cycles. Brooks and Martonosi [25] show that in a

64-bit architecture, roughly 50% of all integer ALU operations in SPEC95-Int have

both operands with bit-widths less than 16 bits. In their study, this property was

exploited to reduce power consumption in integer ALUs.

The recent paper by Beckmann and Wood [20] on Transmission Line Caches is

the only study that exploits low latency transmission lines at the microarchitectural

level. Taylor et al. [113] define the inter-cluster communication fabric as a Scalar

Operand Network and provide a detailed analysis of the properties of such a network

and the effect of these properties on ILP extraction. Wang et al. [122] examine

power consumed within on-chip interconnects, with a focus on the design of router

microarchitectures. No prior architectural work has examined trade-offs in wire

characteristics and the design of microarchitectures to exploit a variety of wire

implementations. Thus, to the best of the knowledge, this is the first proposal of

wire management at the microarchitectural level.
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6.6 Summary

The design of the inter-cluster interconnect has a significant impact on overall

processor energy and performance. A single wire implementation is unable to

simultaneously meet the high bandwidth, low-latency, and low-energy requirements

of such an interconnect. A heterogeneous interconnect that consists of wires with

different properties can better meet the varying demands of inter-cluster traffic.

The chapter discusses three key contributions:

• It is shown that a low-latency low-bandwidth network can be effectively used

to hide inter-cluster wire latencies and improve performance.

• It is shown that a high-bandwidth low-energy network and an instruction

assignment heuristic are effective at reducing contention cycles and total

processor energy.

• A comprehensive evaluation of different combinations of heterogeneous in-

terconnects is carried out and shows that by selecting the right combination

of wires, total processor ED2 can be reduced by up to 11%, compared to a

baseline processor with homogeneous interconnects.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The dissertation proposes microarchitectural wire management and demon-

strates that exposing wire properties to architects has the potential to improve both

performance and power characteristics of future processors. In Chapter 2, it is first

shown that a number of different wire implementations are possible in a network.

For example, by tuning the wire width and spacing, wires with varying latency

and bandwidth properties can be designed. Similarly, by tuning repeater size and

spacing, wires with varying latency and energy properties can be designed. Further,

as interconnect technology develops, transmission lines may become a commercial

reality, enabling very low latency for very low-bandwidth communication. Data

transfers on the on-chip network also have different requirements – some transfers

benefit from a low latency network, others benefit from a high bandwidth network,

and yet others are latency insensitive. To take advantage of VLSI techniques and to

better match interconnect design to communication requirements, a heterogeneous

interconnect is proposed, where every link consists of wires that are optimized for

either latency, energy, or bandwidth. In the subsequent chapters, novel mechanisms

are discussed that can take advantage of these interconnect choices to improve

performance and reduce energy consumption of on-chip caches. In Chapter 3,

the role of interconnects in designing large caches is demonstrated. With the

insights gained from Chapter 3, Chapter 4, and Chapter 5, the techniques to

exploit heterogeneous interconnections to improve cache performance and reduce

inter-core communication overhead is discussed. Chapter 6 focuses on accelerating

L1 accesses in a clustered architecture. Thus, the dissertation studies every aspect



115

of communication happening within a cache hierarchy and proposes techniques to

improve their efficiency.

• Cache Design Methodology

In Chapter 3, a novel methodology is proposed that identifies a cache organization

that strikes the right balance between network parameters and bank parameters.

It is shown that a combined design space exploration of bank and network param-

eters yields an organization that performs 114% better in terms of performance

and consumes 50% less power compared to traditional models. This is the first

body of work that highlights the role of interconnect parameters in cache access

and demonstrates the importance of comprehensive interconnect-bank design

space exploration in estimating cache parameters. Following the success of this

approach, to facilitate future architecture research on memory hierarchy design,

an open source cache modeling tool called CACTI with new network parameters

is significantly enhanced and incorporated in this methodology to model large

caches. This work appeared in MICRO 2007 [92].

• Architecting Interconnection Network for Large Caches

Future processors are capable of having large level 2 or level 3 caches. While

large caches are effective in reducing cache miss rates, the interconnect overhead

associated with large structures severely limits the performance benefit of large

caches. In Chapter 4, three novel pipelining techniques to address this problem

and improve cache performance are proposed. All the proposed optimizations

are based on four key observations: 1) In a typical cache access, a major portion

of the access requires just a few lower order bits to complete their operation.

The remaining higher order bits are used only during the final tag match. Hence,

within a single address request, a subset of address bits is more latency critical

compared to the rest of the address. 2) For a majority of the cache accesses, a

partial tag match that employs a subset of tag bits is sufficient to predict the state

of a cache block. 3) On-chip routers employed in a NUCA cache model introduce

a nontrivial overhead in terms of both delay and power for cache accesses. 4)
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Address and data networks have different requirements: the address network

requires low-latency while the data network needs more bandwidth.

The first optimization, early-lookup, leverages the fast but low-bandwidth wires to

send the critical lower order bits to initiate the lookup while the rest of the address

transfer happens in parallel. The second optimization, aggressive-lookup, extends

the above technique by exploiting the accuracy of partial tag match to eliminate

the need for the full address transfer. To further optimize the low-latency wiring

in the address network, a novel hybrid topology is proposed; instead of a grid

network, multiple shared buses are connected through point-to-point links. This

not only reduces router overhead, but also takes advantage of the ability of the

low-latency wires to travel longer distances in a single cycle, and continues to

support the relatively low bandwidth demands of the address network. Thus,

the hybrid model introduces three forms of heterogeneity: (i) different types of

wires are used in address and data networks, (ii) different topologies are used for

address and data networks, (iii) the address network uses different architectures.

The evaluation of these ideas has appeared in ISCA ’07 [91].

• Heterogeneous Interconnect for Coherence Traffic

Chip multiprocessors have an added complexity of maintaining coherence among

different L1 or L2 caches. Coherence operations entail frequent communication

between different caches and these messages have diverse need in terms of latency

and bandwidth. In Chapter 5, the opportunities are identified to improve per-

formance and reduce power by exploiting hop imbalances in coherence messages

and carefully mapping the coherence traffic to a heterogeneous network. This

work appeared in ISCA 2006 [32].

• Heterogeneous Interconnect for Clustered Architectures

In Chapter 6, the techniques to improve L1 cache access speed and reduce inter-

cluster communication overhead is discussed. The proposed optimizations not

only improved performance but also reduced power consumption leading to a
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significant improvement in ED2. The evaluation of heterogeneous interconnect

in clustered architectures appeared in HPCA 2005 [13].

Thus, microarchitectural wire management is applied to four different scenarios,

all pertaining to wire-limited cache access within future multi-cores. These

results show that this approach has the potential to greatly improve power

and performance characteristics of future processors with minimal increases in

complexity. This gives great confidence in the thesis statement and it is believed

that architecture design will benefit greatly if wire properties are within its

control.

7.1 Impact of the Dissertation

Since the work on heterogeneous interconnect is published, a number of other

groups have also considered this technology [48, 94, 102, 105]. Rochecouste et

al. [105] proposed a new partition scheme for clustered architectures and employed

L-wires to accelerate media benchmarks. Nagpal et al. [94] proposed a schedul-

ing algorithm that leverages heterogeneous interconnect to reduce communication

overhead in clustered architecture. Flores et al. [48] employed an interconnect that

consists of just L-wires and PW-wires and proposed “Reply partitioning” technique

to improve communication efficiency. Ramani et al. [102] studied the application of

the heterogeneous interconnect in a graphics processor. CACTI 6.0 has been widely

used by many leading research groups to evaluate proposals related to on-chip

caches and interconnection networks.

7.2 Future Work

• Interconnection Network for Many-Core Processors

The efficient execution of multithreaded programs on future multi-cores will

require fast inter-core communication. The current work can be extended to

explore the potential of upcoming interconnect technologies such as optical in-

terconnects, on-chip wireless data transmission, and variants of differential sig-

naling in addressing the challenges of future many-core processors. For example,
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low-swing wires are traditionally projected as a powerful medium for very low

power data transfers. However, a wide spectrum of low-swing wires with various

power/delay characteristics are possible by adjusting the drive voltage of the

low-swing driver. This gives a unique opportunity to dynamically adapt the

interconnection network to handle burst traffic, alleviate contention issues, and

fine tune routing mechanisms based on the workload behavior.

• Cache Hierarchy

As per industry projections, Moore’s law will continue to hold at least for the

next decade. Processors with hundreds of processing cores on a single die are just

a few years away. Other promising technologies such as 3D stacking enable us to

have multiple megabytes of on-chip caches with the possibility of dedicating an

entire die for on-chip storage. With all the inter-core communications happening

through the cache hierarchy, the design of an optimal cache organization is crucial

to the success of many-core processors.

Cache hierarchy design for next generation processors still remains an open

issue. Workloads with a small working set favor a deep cache hierarchy with

private L2 caches while parallel programs with large footprints prefer shallow

cache model with a large shared cache. A systematic tool to identify an optimal

cache hierarchy depth and interconnect topology will be invaluable to future

architecture research.

An inherent trade-off exists between the cost of coherence operations and the

complexity of interconnection network. A shallow cache model needs a number of

on-chip routers to connect various banks. However, the energy and performance

cost of coherence operations are relatively small. On the other hand, a deep

cache hierarchy with a shared cache in the last level requires very few banks

and hence, fewer on-chip routers. However, every coherence operation should

traverse multiple levels of caches leading to a high performance and power cost.

Proper analysis of this trade-off can shed light on the design of cache models for

next generation processors. To better suit the program behavior and to maximize
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performance, as an extension to the framework, it may also be possible to consider

reconfiguration of cache models at runtime.

• Interconnect Aware Transactional Memory

The evolution of multi-core has put significant onus on compilers and program

developers. Traditional parallel programming techniques are too complex for

ubiquitous adoption. At the same time, the success of future CMPs greatly

depends on the ability to develop massively parallel programs. Transactional

Memory (TM) that gives the notion of atomic execution of critical section to

programmers without necessarily serializing the code is a promising step towards

simplifying the job for developers. The past few years have seen a number of

proposals from various research groups on different flavors of Hardware Trans-

actional Memory (HTM). It may be possible to leverage interconnect technolo-

gies to address the limitations of existing HTMs and reduce the overhead of

hardware transactions. Seamless integration and reconfiguration of caches and

HTM buffers, novel network topologies for fast inter buffer communications, novel

interconnection networks that dynamically adjust to the transaction needs are

some of the interesting areas to explore.
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