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ABSTRACT
Modern workloads such as neural networks, genomic analysis, and
data analytics exhibit significant data-intensive phases (low com-
pute to byte ratio) and, as such, stand to gain considerably by using
processing-in-memory (PIM) solutions along with more traditional
accelerators. While PIM has been researched extensively, the granu-
larity of computation offload to PIM and the granularity of memory
access arbitration between host and PIM, as well as their implica-
tions, have received relatively little attention. In this work, we first
introduce a taxonomy to study the design space whilst consider-
ing these two aspects. Based on this taxonomy, we observe that
much of PIM research to date has largely relied on coarse-grained
approaches which, we argue, have steep costs (incompatibility with
mainstream memory interfaces, prohibition of concurrent host ac-
cesses, and more). To this end, we believe that better support for
fine-grained approaches is warranted in accelerators coupled with
PIM-enabled memories.

A key challenge in the adoption of fine-grained PIM approaches
is enforcing memory ordering. We discuss how existing memory
ordering primitives (fences) are not only insufficient but their large
overheads render them impractical to support fine-grain computa-
tion offloads and arbitration. To address this challenge, we make the
key observation that the core-centric nature of memory ordering
is unnecessary for PIM computations. We propose a novel light-
weight memory ordering primitive for PIM use cases, 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 ,
which moves away from core-centric ordering enforcement and
considerably reduces the overheads of enforcing correctness. For a
suite of key computations from machine learning, data analytics,
and genomics, we demonstrate that 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 delivers 5.5× to
8.5× speedup over traditional fences.
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1 INTRODUCTION
Many critical workloads today include significant data-intensive
phases (few computations per byte of data) along with compute-
intensive portions. For example, convolutional neural networks
are comprised of both compute-intensive convolutions and data-
intensive computations such as batch normalization [1], feature
map addition [1], and classifier layers [49]. Similarly, genomic anal-
ysis consists of both compute-intensive (string matching) and data-
intensive (sequence filtering [48]) portions. While general-purpose
or domain specific accelerators such as GPU and TPU [24] are
able to tackle the compute-intensive portions of applications, data-
intensive phases remain limited by memory bandwidth.

Processing-in-memory (PIM)1 solutions move compute close to
memory arrays, providing significant memory bandwidth advan-
tage over host2 processors. As such, PIM solutions are uniquely
positioned to speedup data-intensive portions of modern work-
loads. Given modern workloads comprise both data-intensive and
compute-intensive phases as discussed above, it is increasingly im-
portant to couple host accelerators with memory equipped with
compute capability (i.e., PIM).

While many PIM designs have been proposed, two aspects that
have received limited attention are: 1) the granularity of operations
offloaded to PIM, and 2) the interaction between PIM computations
and host memory accesses (i.e., whether host and PIM are allowed
concurrent access tomemory).We believe that carefully considering
these aspects and their tradeoffs helps to better serve the needs of
modern workloads. To this end, we first develop a taxonomy of PIM
designs based on the granularity of offloaded PIM computations and
the granularity of arbitration with host memory accesses. Further,
to consider both of these aspects in tandem, we focus on temporal
(time) granularity as opposed to data granularity.

Based on our taxonomy, we observe that PIM designs spanning
the past several decades [2, 7, 9, 11–13, 15–17, 20, 21, 25, 26, 28, 29,
35, 42, 43, 47] have mostly utilized coarse-grained offload where
the host ships entire computations to memory-side logic as de-
picted in Figure 1. Although such coarse-grain offload provides
simplicity of design, we argue that it has steep costs. First, such
1In this work, we use 𝑃𝐼𝑀 to refer to both in-memory-array and near-memory-array
logic as the proposed work is largely agnostic to this distinction.
2We use the term ℎ𝑜𝑠𝑡 to refer to any processor or accelerator attached, but external,
to PIM-enabled memory module(s).
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Figure 1: Taxonomy of PIM based on temporal coarse-
grained and fine-grained offload (CGO & FGO) and coarse-
grained and fine-grained arbitration (CGA & FGA) for host
memory accesses with examples from the literature.

an approach requires more complex memory-side logic to orches-
trate offloaded computations (e.g., instruction/operation sequencing
within the PIM devices). Second, assuming concurrent memory ac-
cesses from the host, it requires moving the memory controller
to the memory module, along with arbitration between PIM and
host accesses [38]. This is often impractical in commodity systems.
Alternately, prohibiting concurrent memory accesses by host and
PIM computations can lead to drastic reductions in utilization of
the host processor when PIM is heavily used.

Based on the taxonomy, we also identify an emerging class of
PIM designs [3, 14, 32, 34, 39] that perform fine-grained offload,
in a temporal sense, that overcome several shortcomings of the
coarse-grained approach discussed above. First, it keeps the host
processor in charge of orchestrating PIM computation, thus, greatly
simplifying memory-side logic to primarily cater to data-intensive
computations which are most suitable for PIM. Second, it keeps the
memory interface compatible with the fundamentals of existing
memory interfaces even in the presence of PIM. Finally, it allows
the memory controller to schedule PIM commands interleaved with
normal loads/stores, allowing concurrent operation of the host and
PIM.

While the fine-grained approach for PIM is advantageous in
many respects, it does have concomitant challenges. A key chal-
lenge that we focus on in this work is the ordering needed amongst
the fine-grained PIM commands. Existing memory ordering prim-
itives (aka fences) that are used by host computations to enforce
ordering of memory operations have severe overheads [30] and are
often used sparingly by programmers. As such, they are ill-equipped
to efficiently enforce ordering for fine-grained PIM commands.

To address these challenges, we make the key observation in
this work that, unlike existing memory ordering primitives which
are core-centric, the ordering requirement for PIM commands is
memory-centric. Consider a PIM computation where two arrays are
added and stored in a third array. This computation is accomplished
by a sequence of fine-grained PIM commands that read the two
inputs, add them, and write the result back to memory, all of which
need to be ordered with respect to one another for correctness.
Unlike core-centric ordering primitives where values have to be
read at the core before the write can be completed (again at the core),
the ordering requirement for PIM commands has to be enforced at
the PIM unit performing the computation (i.e., at the memory).

We exploit this observation by proposing 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 , a light-
weight memory ordering primitive where ordering is enforced at
the memory controller instead of the core by sending 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡
packets along with PIM instructions to the memory controller. In or-
der to orchestrate PIM computations, the core simply issues a series
of PIM instructions and 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 primitives down the memory
pipe, without stalling. We demonstrate the performance benefits
of moving away from a core-centric enforcement of memory or-
dering using a suite of computations from relevant applications
(machine learning, genomics, data analytics) and streaming bench-
marks. Overall, we make the following contributions:
• We introduce a taxonomy of PIM designs based on the tem-
poral granularity of both offloaded PIM computations and
arbitration with host memory accesses and use it to discuss
characteristics desirable in a PIM design in today’s comput-
ing landscape.
• We make the observation that existing memory ordering
primitives are ill-equipped to support fine-grained PIM de-
signs (a key sub-class within the above taxonomy) as existing
ordering primitives are core-centric.
• To address this challenge, we propose a new lightweight
memory ordering primitive,𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 , which moves away
from core-centric ordering enforcement and considerably
reduces the overheads of enforcing correctness for PIM.
• For a suite of applications (machine learning, data analytics,
genomics) and streaming benchmarks, we demonstrate that
𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 delivers 5.5× to 8.5× improvement over existing
memory ordering primitives.

2 BACKGROUND
We first discuss relevant workloads and GPUs as potential host
accelerators that can be coupled with PIM.

2.1 Data-intensive Phases in Modern
Workloads

Increasing data-centric processing has led to many modern work-
loads having both data-intensive (few computations per byte of
data) and compute-intensive phases. While general purpose and
specialized accelerators can tackle compute-intensive portions, PIM
solutions stand best to speedup data-intensive portions. We discuss
some of these workloads below.

Machine Learning:Workloads such as neural network (DNN,
RNN, etc.) training and inference consist of multiple layers of com-
putation. Layers such a convolutions are often formulated as matrix-
matrix multiplication operations and are compute-intensive. Other
layers such as feature-map addition (e.g., in residual networks [18]),
batch normalization [22], and fully-connected (during inference)
have low compute-to-byte ratios and are data-intensive [1]. Feature-
map addition sums neuron activations of two layers (two vectors)
to feed as input to a third layer (output vector). Batch normal-
ization scales and biases an input vector of neuron activations.
Fully-connected layers in inference perform a series of dot product
operations of a large input activation vector with a large number of
weight vectors. Profiling shows that data-intensive computations
constitute approximately 32% of the training runtime of ResNet50
on current GPU hardware [1].
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Genomic Analysis: Sequence alignment is a key step in ge-
nomic analysis and is performed by aligning small sequences (called
reads) against a reference genome. A read is aligned against the ref-
erence at a set of candidate locations using a dynamic programming
step (compute-intensive). To reduce the set of candidate locations,
a filtering algorithm is used. The filtering algorithm computes sim-
pler operations such as Hamming distance or dot-product at a large
number of candidate locations and is data-intensive. Filtering has
been shown to constitute 65% of sequence alignment runtime [28].

Data Analytics: Data analytics for unstructured data, such as
unlabeled text or images, typically requires two main steps: feature
extraction and clustering. Feature extraction is often performed
using neural networks that provide a feature vector for a word, a
sentence, or an image (compute-intensive convolutions). The fea-
ture vectors obtained from this first step are then used to cluster the
data points within a large dataset using algorithms such as Kmeans
and Histogram. Kmeans and Histogram are data-intensive as they
require sifting through large amount of data with simple computa-
tions (Kmeans: distance from center, Histogram: bin update).

2.2 Host Accelerator - GPU
Several of the modern workloads discussed in Section 2.1 benefit
from having a GPU as the host accelerator (e.g., GPU is preferred
for ML training [4]). As such, the system we evaluate assumes
a GPU coupled with PIM-enabled (Section 4.1) High Bandwidth
Memory (HBM) [23] as our baseline (we discuss further reasons for
this baseline in Section 4.3). However, the ideas and architectural
innovations discussed in the paper are applicable broadly across
other forms of hosts and PIM organizations as well.

A GPU consists of multiple cores, known as Streaming Multipro-
cessors (SMs) or Compute Units (CUs) in NVIDIA and AMD termi-
nology, respectively. Each SM has one or more SIMD units to issue
instructions from a vector of threads called warps or wavefronts.
The GPU SMs issue memory requests through their load/store
(LDST) units. Each SM has a private L1 cache, a texture cache, a
constant cache, a software managed scratchpad, and a shared in-
struction cache. The SMs are connected to a shared L2 cache via
an interconnection network. Each memory channel is associated
with its own L2 slice. There are multiple memory controllers, one
per channel. Physical memory is interleaved at chunk granularity
(e.g., 256B chunks) across memory channels.

3 TAXONOMY OF PIM OFFLOAD AND
ARBITRATION

In this section, we present our taxonomy for PIM designs with a
focus on the temporal granularity of two aspects: (i) offloaded PIM
computations, and (ii) arbitration of PIM computation and host
memory accesses. We also use this taxonomy to discuss character-
istics desirable in a PIM design in today’s computing landscape.
Note that “temporal granularity” refers to the amount of time con-
sumed by an offloaded PIM computation, and not the amount of
data it operates on3. Further note that, as discussed in Section 2,
3While there is some correlation between the temporal granularity of a task and the
amount of data accessed, we note that the relationship is not uniform across PIM
architectures. For example, a temporally fine-grain bitwise operation on an entire
DRAM row may touch several KB of data but still complete within a single row
operation’s worth of time.

Figure 2: (a) Coarse-grained arbitration disallows concur-
rent host and PIM memory accesses, (b) Fine-grained arbi-
tration interleaving of PIM and host memory accesses.

given the heterogeneous nature of modern workloads, we consider
PIM designs coupled with host accelerators which tackle both com-
pute and data-intensive phases. We do not consider designs where
memory is the main compute unit [35, 46] (i.e., no host processor).

3.1 Coarse-grain Offload and Fine-grain
Arbitration

We term designs which ship entire PIM computations to memory-
side logic but allow host and PIM computation to arbitrate for mem-
ory accesses at fine granularity (typically, individual load/stores)
as coarse-grain offload and fine-grain arbitration (CGO/FGA) de-
signs [2, 7, 9, 15, 20, 21, 26, 43]. Such designs require complex
memory-side logic to orchestrate PIM computation. Further, they
enable fine-grain arbitration between PIM and host accesses by
moving memory scheduling from the host to the memory module
using transactional host memory interfaces, often based on the
Hybrid Memory Cube [38]. We note that none of the currently
available mainstream memory interfaces provide the transactional
semantics required by these designs [44].

3.2 Coarse-grain Offload and Coarse-grain
Arbitration

Coarse-grain offload and coarse-grain arbitration (CGO/CGA) de-
signs follow offloadmechanisms similar to CGO/FGA designs above,
but they disallow concurrent memory accesses from host and PIM
computations [11–13, 25, 29, 42]. As a result, these designs (de-
picted in Figure 2a) render system memory inaccessible to the host
during PIM computations. This is undesirable in datacenters (and
other multi-use environments) as it can impact QoS guarantees
of all tasks scheduled on the host and adversely affect the achiev-
able utilization of datacenter resources. Further, this approach also
places a lower bound on the minimum computation granularity for
PIM offloads as they must be large enough to justify draining the
host’s memory pipeline prior to launching the PIM computation
and refilling it after completion of PIM execution.
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3.3 Fine-grain Offload and Coarse-grain
Arbitration

PIM designs with fine-grain offload and coarse-grain arbitration
(FGO/CGA) offload PIM computations at fine granularity (typically
temporally equivalent to individual loads/stores) which simplify
the memory-side logic to only support data-intensive computations
and not associated orchestration logic [16, 17, 28, 35, 47]. However,
such designs suffer from the drawbacks of coarse-grain arbitration
as outlined in Section 3.2.

3.4 Fine-grain Offload and Fine-grain
Arbitration

PIM designs with fine-grain offload and fine-grain arbitration
(FGO/FGA) keep memory-side logic devoid of PIM orchestration
overheads and, at the same time, allow fine-grain arbitration of
host and PIM memory accesses (depicted in Figure 2b). While
historically scarce, a few recent research efforts fall into this
class [3, 14, 32, 34, 39]. Furthermore, this approach shows good
versatility, as the designs utilizing this approach span transactional
memory interfaces [3] as well as very minor variations of main-
stream JEDEC memory standards [32, 34].

3.5 Desirable PIM Characteristics
With the above taxonomy in mind, in this work, we observe that
there is significant value in FGO/FGA PIM designs as they truly
enable host and PIM computations to execute concurrently which is
often highly beneficial for modern workloads. Further, they reduce
memory-side logic complexity (no orchestration needed within
memory modules) and also broaden PIM usage by allowing even
small segments of computation to be effectively offloaded to PIM.
In addition, FGO/FGA designs are compatible with mainstream
memory interfaces such as DDR, HBM, GDDR, and LPDDR. As
such, we believe that improving the efficiency of such designs is
warranted.

4 CHALLENGE: ORDERING OF PIM
INSTRUCTIONS

While in Section 3 we discussed the desirability of FGO/FGA PIM
designs, we discuss in this section a key challenge associated with
these designs, which is the focus of this work. To appropriately
highlight this challenge, we first discuss a generic and parame-
terized PIM unit, followed by an example set of fine-grained PIM
operations the PIM unit performs. Finally, we use both of the above
to discuss how existing memory ordering primitives fall short of
efficiently supporting ordering requirements of fine-grained PIM
instructions needed in FGO/FGA designs, thus motivating the need
for an efficient memory ordering primitive geared towards this use
case.

4.1 Generic and Parameterized PIM Compute
Unit

Our proposed work is agnostic to the specific memory-side logic
and is applicable whenever FGO/FGA PIM designs are employed
(more details in Section 4.3). Consequently, in this work, we con-
sider a generic PIM compute unit which processes fine-grained PIM

Figure 3: A generic and and parameterized PIM compute
unit with temporary storage (TS) and SIMD ALU. One or
more such compute units may be placed in multiple loca-
tions per channel to obtain bandwidth multiplication over
host.

commands as depicted in Figure 3. Further, we parameterize this
unit to study a variety of PIM solutions. The PIM unit we consider
consists of a SIMD ALU coupled with temporary storage (labelled
TS in Figure 3). The SIMD nature of the ALU allows effective utiliza-
tion of the high bandwidth typically available to PIM designs, and
the temporary storage buffers operands read from memory or re-
sults to be stored to memory. Note that while Figure 3 shows a PIM
unit that may reside on a 3D-stacked die separate from the memory
arrays, alternatively, the PIM unit may be placed close to the arrays
(e.g., near a memory bank or a memory sub-array) representing a
broad swath of different PIM solutions. Further, specializations and
different cardinalities of the PIM unit can also be considered. De-
pending on the placement and number of units, different bandwidth
multiplication factors over host-available memory bandwidth is
realized collectively by the PIM units. In our evaluations, we sweep
this bandwidth multiplier to study disparate PIM solutions. Fur-
ther, we also study the efficacy of our ideas by varying the size of
temporary storage associated with these PIM units.

4.2 Fine-grained PIM commands
We discuss in this section the nature of fine-grained PIM com-
mands that we consider in this work. As with any memory access
to DRAM, fine grained PIM commands incur precharge and row
activate operations on operand accesses from memory. Further, we
assume data movement operations similar to loads and stores are
used to move data from/to an activated DRAM row to temporary
storage associated with PIM and RISC-like instructions are used to
orchestrate PIM computations.

Consider a simple PIM computation where two vectors (𝑎 and 𝑏)
are added and stored in a third vector (𝑐): 𝑐 [𝑖] = 𝑎[𝑖] + 𝑏 [𝑖]. We
envision the orchestration of such a computation using our generic
PIM compute unit from Section 4.1 by using a sequence of fine-
grained PIM commands as shown in Figure 4. Specifically, it will
first load the input values into temporary storage. However, unlike
normal host loads, these commands achieve higher bandwidth to
the memory associated with the PIM unit (line 2). This is followed
by PIM computation commands (line 5) to add the input operands
together and store the result back to temporary storage. Finally, the
result is stored to memory (𝑣𝑒𝑐𝑡𝑜𝑟 𝑐) (line 7).



OrderLight: Lightweight Memory-Ordering Primitive
for Efficient Fine-Grained PIM Computations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Figure 4: Host PIM kernel and fine-grained commands sent
by the memory controller for the vector_add kernel. The
computation is tiled to handle N operands at a time, such
that the temporary storage size is not exceeded.

Note that based on available temporary storage size, multiple
chunks of input operands can be saved (𝑁 commands, line 2) before
adding them (𝑁 back-to-back compute commands, line 4-5). In the
same vein, several of calculated results could be stored back to
memory as well (𝑁 commands, line 7). Further, based on placement
and cardinality of PIM compute units, several such computations
(across different channels/banks/sub-arrays) can be orchestrated in
parallel.

4.3 Ordering Requirement for PIM Commands
With the fine-grained PIM offloading that we envision, the host
accelerator (GPU in this work) issues PIM memory instructions
(akin to loads, stores) to accomplish the PIM computation. We refer
to this host executed kernel (GPU parlance) as PIM kernel (Figure 4).
GPUs rely on fine-grain hardware scheduling of many threads
which is particularly useful in issuing PIM memory operations to
several generic PIM compute units that can be placed within the
memory hierarchy. PIM memory instructions issued by the host get
translated into fine-grained PIM commands discussed in Section 4.2
at the memory controller.

As with existing memory instructions, PIM instructions issued
by the host also have ordering requirements. For example, in Fig-
ure 4, loading/fetching 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑎 and 𝑏 should happen before the
computation operation(s), which in turn should happen before the
store operations for 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐 . In conventional host code, this or-
dering is maintained by honoring register dependences. But when
the host offloads this computation to a simple PIM unit executing
fine-grain commands, it loses its ability to enforce these depen-
dences. PIM instructions issued by the host can be re-ordered to
target several performance optimizations. For example, instructions
can get re-ordered within the host pipeline, in the network from

Figure 5: Fence overhead for vector_add kernel.

the host to the memory controller, within the memory controller
transaction queue and more. As such, any required order between
PIM instructions has to be explicitly enforced.

Host computations rely on memory ordering primitives, aka
fences, to ensure ordering of memory instructions. Fences are in-
serted in the host PIM kernel in Figure 4 to ensure ordering for PIM
execution. However, fences are impractical from a performance
point of view and insufficient functionally for fine-grained PIM
operations4. First, fences have considerable performance overheads
and are generally used sparingly and judiciously. Fine-grained PIM
offloading, however, considerably increases the number of needed
fence instructions leading to severe overheads. With more storage,
a larger number of PIM instructions (𝑁 ) can be issued (lines 2, 4,
and 7) before issuing a fence. Note that the size of the temporary
storage (𝑁 ) determines the number of loop iterations required to
complete the task in Figure 4. Each iteration requires 3 fences; if
𝑁 is high, fewer iterations and fences are required. For a range of
values of 𝑁 (as a fraction of row-buffer size), fences can slow down
execution by 4.5× to 25× as depicted in Figure 5 (see Section 6 for
methodology details). Second, for memory instructions which do
not return data to the host (stores), existing fences only ensure
ordering up until the global serialization point (coherence directory
or memory controller) which is insufficient for PIM instructions
as they have to be issued to the memory module by the memory
controller in the desired order for correctness. As such, existing
memory ordering primitives remain a strong impediment to sup-
port of FGO/FGA PIM designs. Addressing this challenge is the key
focus of this work.

5 ORDERLIGHT DESIGN
In this section we discuss our proposed approach to tackle the
challenge of providing efficient memory ordering while enabling
FGO/FGA PIM designs.

5.1 Key Insight: Memory-centric Ordering
Enforcement

In order to design an efficient memory ordering primitive for fine-
grained PIM approaches, we make the key observation that the
4Some CPU implementations offer strongly-ordered uncacheable memory instructions.
However, they suffer from similar deficiencies as fences[19].
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Figure 6: Core and memory pipe in GPU. Modules which re-order are highlighted in blue.

core-centric nature of existing memory ordering primitives is nei-
ther necessary nor sufficient for PIM instructions. Consider a
load instruction followed by a fence instruction. Fence semantics
have to ensure that any subsequent memory instructions happen
after the load is complete. Completion point for load is at the core
(core receives requested data block) and the core incurs wait cycles
to ensure this ordering. In contrast, PIM instructions (e.g., Fetch-
and-Add) are completed at the PIM compute unit. This provides a
unique opportunity to push ordering enforcement for PIM instruc-
tions to the memory controller, thus, freeing the core to issue PIM
instructions without incurring wait cycles. Thus, PIM instructions
need memory-centric ordering enforcement.

Furthermore, existing memory ordering primitives enforce or-
dering until the global serialization point (coherence directory or
memory controller). However, as PIM instructions are completed at
the PIM compute unit, ensuring proper ordering necessitates that
the corresponding PIM commands are issued to memory subject
to the ordering constraints (to avoid re-ordering at the memory
controller). This further makes a case for memory-centric ordering
enforcement.

In essence, the host is aware of register dependences and it is
trying to communicate these dependences to the memory controller
with a lightweight mechanism. Such a lightweight mechanism can
out-perform a baseline where the core is responsible for enforc-
ing fences and inevitably suffers from frequent core←→ memory
latencies.

5.2 OrderLight Overview
To overcome the shortcomings of core-centric memory ordering
primitives and exploit the opportunities of memory-centric order-
ing, we propose the𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 memory ordering primitive. In our
proposed design, in order to express ordering between PIM instruc-
tions, the programmer employs the novel 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 instruction
instead of a regular fence. On encountering this instruction, the core
generates an𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet, which percolates all the way to the
memory controller. The relative ordering of𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet and
PIM instructions is maintained at every step of the memory pipe
until the PIM requests reach the memory controller. This packet is
also preserved by the memory controller in its transaction queue
to enforce ordering amongst PIM commands. Finally, as ordering is

Figure 7: Behavior of fence versus OrderLight: (a) fence
keeps the host (SM in GPU) stalled to enforce ordering,
(b) OrderLight packet ensures ordering at the memory con-
troller by percolating through the memory pipe obviating
stalls at host.

conveyed to and enforced at the memory controller, the core does
not incur any wait cycles and can issue PIM instructions unabated.

We highlight the benefits of an 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 primitive in com-
parison to a fence in Figure 7. We show the ordering of Load and
Fetch-and-Add instructions of the 𝑣𝑒𝑐𝑡𝑜𝑟_𝑎𝑑𝑑 PIM kernel discussed
in Section 4.2. With existing fence primitives, we observe that the
core incurs wait cycles (165 to 245 cycles as depicted in Figure 5)
to ensure the ordering requirement. In contrast, using 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡
instructions, the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packets are delivered in-order to the
memory controller which enforces memory ordering. As such, the
host does not incur wait cycles and can issue PIM instructions with
high throughput.

5.3 Architectural Changes for OrderLight
In the following sections, we describe the architectural changes
needed to realize memory-centric ordering using our proposed
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𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 primitive in the context of GPUs as host accelerators.
Figure 6 depicts a typical GPU architecture along with core and
memory pipe (path from core/SM to memory controller) that we
consider in this work.We first discuss the design changes needed for
our new 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 instruction in the core and then highlight the
changes needed to support the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet in the memory
pipe.

5.3.1 Design Changes in the Core
OrderLight Instruction andOrderLight Packet:Our proposed
work introduces a new 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 instruction which is employed
by the programmer to express memory ordering between PIM in-
structions. An𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 instruction inserts an𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet
into the memory pipe. Figure 8 shows the different fields in an
𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet, with example bit widths. The packet is distin-
guished from normal load/store requests using a 2-bit packet ID. A
channel ID (shown as a 4b field in Figure 8) identifies the memory
channel for which ordering is to be enforced. The next field is an
optional 4b memory-group ID. A memory-group can be a subset of
banks, an HBM stack5, a subset of sub-arrays, etc. Memory-group
ID helps enforce ordering for a particular memory-group only. For
example, if PIM data structures are mapped to one memory-group
and non-PIM data structures are mapped to a different memory-
group, the memory-group ID in the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet informs
the architecture to not constrain non-PIM requests whenever pos-
sible as they need not be ordered. The 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet can be
extended to support ordering across multiple memory-groups (e.g.,
when operating on partial results from two different PIM kernels)
via additional 4b memory-group ID fields. Finally, the fourth field
is the packet number within a channel and memory-group. This
helps the memory-controller to perform sanity checks and collect
statistics.

Figure 8: Different fields in an OrderLight packet.

Operand Collector: The operand collector logic in the core
schedules operand access to a multi-banked register file. It consists
of multiple collector units, each of which collects operands from the
register file for one instruction. After all the operands are buffered,
an instruction is ready to be issued. Each memory instruction is
allocated a collector unit and its register access requests are queued
in an arbitration logic block. The arbitration logic can issue register
accesses out of order to schedule accesses to multiple banks in
parallel.

Fences halt execution before instructions are sent to the operand
collector. However, to avoid instruction reorderingwith𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡
primitive, the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet is issued only after all preceding
PIM requests have left the operand collector. This is achieved by
keeping a count of the number of PIM requests residing in the
operand collector. The count is incremented every time a PIM
5HBM groups vertically-stacked memory dies into groups of 4 referred to as 𝑠𝑡𝑎𝑐𝑘𝑠 ,
somewhat analogous to ranks in DDR memory systems

request is allocated a collector unit and is decremented when
the request is issued. An 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet does not need to go
through the operand collector phase and is issued to the LDST queue
when the count reads zero. Thus, instruction issue is halted by the
𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet for a much shorter period of time in comparison
to normal fences. A separate counter is used for each memory-
channel and memory-group. To reduce the number of counters, an
implementation may limit the number of channels/memory-groups
that can be controlled per SM.

5.3.2 Design Changes in the Memory Pipe
Caches: Caches contribute to reordering due to cache hits for
later requests. A memory request that experiences a cache hit is
serviced faster. However, PIM computation requests are meant to
reach the memory and do not affect the cache. We consider PIM
requests to behave the same way non-temporal loads and stores do.
Thus, these requests bypass the caches and are directed to the main
memory. For L1 cache, the requests move from the LDST queue to
the interconnect network. For L2 cache, the requests move from
the interconnect-to-L2 queue to the L2-to-DRAM queue.

Diverging Paths in theMemory Pipe: The memory pipe may
consist of one or more diverging paths. For example, many archi-
tectures have multiple sub-partitions per L2 slice and separate
input/output queues for each sub-partition. L2 sub-partitions are
often used to cater to different memory-groups within a memory
channel. PIM requests navigated to different sub-partitions may
merge later in the memory pipe out of order.

To maintain ordering through divergent paths, we use a copy-
and-merge technique for the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet, as shown in Fig-
ure 9. When an 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet reaches a divergence point in
the memory pipe, the packet is copied into multiple packets that
traverse each of the relevant memory sub-paths. For example, if a
PIM kernel is issuing PIM requests to a particular memory-group
within a channel, and the requests of the memory-group traverse
through two of four L2 sub-partitions, then the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet
is copied to generate two 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packets, each of which tra-
verses the queues of the relevant sub-partition. The copied packets
are merged at the convergence point in the memory pipe. Any re-
quests that follow the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packets in the different memory
sub-paths aren’t allowed to proceed until all the𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 copies
are merged and the merged packet moves forward.

Figure 9: The copy-and-merge technique used for Or-
derLight packet when divergence is encountered in the
memory pipe.

The copy-and-merge technique is achieved using finite state
machines (FSM) at divergence and convergence points. The FSM
at the divergence point uses information in the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet,
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such as channel ID and memory-group ID, to replicate the packet
on each relevant sub-path. The FSM at the convergence point issues
a merged packet down the pipe once all copies of the packet are
received (number of copies to merge is determined similarly to the
divergence point). Note that path divergence among L2 slices does
not require re-convergence as each L2 slice is associated with one
memory channel with no subsequent merging of paths.

Memory Controller: The memory controller may implement
a unified queue or separate queues for read and write requests. It
also contains a scheduler which tries to balance increased DRAM
efficiency (via techniques such as prioritizing row hits and reducing
read/write turnarounds) and fairness. Commands for scheduled
requests are enqueued in command queues (which may be separate
for each bank), which are then issued to the memorymodule subject
to timing constraints. For separate read and write queues, the copy-
and-merge technique has to be adopted, where two 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡

packets are generated and pushed to each of the queues and get
merged at the scheduler stage of the controller.

The memory controller is allowed to reorder requests in the fol-
lowing cases: (i) requests aren’t separated by an𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet,
or (ii) requests belong to different memory-groups. The scheduler is
augmented with a request counter and an𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 flag for each
PIM memory-group. The counter associated with a memory-group
is incremented when a request to that memory-group is dequeued
by the scheduler and decremented when it is scheduled. When the
scheduler receives an 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet, the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 flag for
the appropriate memory-group is set. Any subsequent request to
that memory-group is not scheduled until the flag is unset. The flag
is unset when the counter for the memory-group is decremented to
zero (i.e., all requests preceding the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 packet have been
scheduled). Once the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 flag is reset, the scheduler is free
to process subsequent requests.

5.4 Programmability
As discussed in Section 4.3, unlike coarse-grain PIM approaches,
programming for fine-grained PIM approaches necessitates the host
to execute a PIM kernel comprising of a stream of PIM instructions.
In the long-term, we envision compile-time software tools that can
automate the generation of PIM instructions based on specially-
annotated regions of code expressing computation to be executed on
PIM units. In the near-term, intrinsics-like low level primitives can
be embedded in high-level code that generate the appropriate fine-
grain PIM instructions when compiled. The fields for an𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡
packet such as channel ID and memory-group ID can be populated
at compile time by exposing the memory organization. Note that
this can also be done in hardware by keeping track of physical
addresses to which prior PIM requests are issued.

In a GPU-like host processor with many cores, hardware con-
texts, and concurrent threads, a subset of the cores or hardware
contexts can be set aside for executing the PIM kernel. Further, to
reduce the need for synchronization among host software warps,
the control of each PIM unit (or a set of PIM units) can be lim-
ited to a single host warp. In other words, each PIM unit receives
PIM instructions from a single host warp, avoiding the need for
synchronization among multiple host warps in orchestrating PIM
computation. We utilize such a model in our evaluations.

As with any PIM computation, FGO/FGA requires keeping data
in different levels of the memory hierarchy coherent. For example,
dirty data (of PIM operands) should be flushed to the main memory
before PIM computation on that data is invoked, and data updated
by PIM computation should be invalidated in the host’s caches. Both
of these aspects are orthogonal to the granularity of PIM offload-
ing and arbitration, and is similar to previous PIM research. The
application could issue (selective) cache flushes before launching
a PIM kernel to ensure a consistent view of memory or the PIM
architecture may support such functionalities as part of the PIM
instructions.

This work assumes a hierarchical/scoped, relaxed consistency
model like current GPUs. PIM operations are similar to system-
scope but have even stronger requirements as the operations need
to go all the way out to DRAM, not just the level of memory that
is visible to all units of the system (i.e., the memory controller
or a global coherence point). Thus, 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 fits within the
scoped/hierarchical consistency model with no changes that af-
fect the non-PIM operations of the system.

6 METHODOLOGY
We use GPGPU-Sim [5] to evaluate the performance impact of our
proposed 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 primitive when used with a GPU host. The
GPU micro-architecture and the memory parameters assumed in
this work are summarized in Table 1.

GPU Parameters
GPU Model: Volta Titan V

Number of SMs: 80 Core Frequency: 1200 MHz
L1 Data Size: 32 KB Shared Memory Size: 96 KB

L2 Size: 3 MB L2 Queue Size: 64
Memory Scheduler: FRFCFS R/W Queue Size: 64
Interconnect to 120 cycles L2 to DRAM 100 cycles
L2 latency: scheduler latency:

Memory Parameters
Memory Model: HBM

Memory Channels: 16 DRAM Bus Width: 32B
Banks per Channel: 16 Memory Frequency: 850 MHz
Memory Timing: CCD=1:RRD=3:RCDW=9:RAS=28:RP=12:

(in cycles) CL=12:WL=2:CDLR=3:WR=10:CCDL=2:WTP=9
Table 1: Simulator details.

Workloads: PIM is useful for data-intensive applications which
have low compute-to-memory ratio. As such, we first analyze
the behavior of 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 and fence using the stream bench-
mark [37] which is representative of many kernels in GPGPU
applications such as feature_map addition, scalar_product, acti-
vation_functions, etc. Next, we evaluate the performance improve-
ment due to 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 on a set of GPGPU kernels in machine
learning, data analytics, and genomic applications, discussed in
Section 2. Table 2 shows a summary of our workload suite which
represents a range of different compute-to-memory ratios.

Modelling PIM kernels: For our evaluation, we write PIM ker-
nel (CUDA code) for each workload so as to mimic the sequence of
PIM instructions, similar to the pseudo-code shown in Figure 4. As
with any PIM architecture, writing the code requires knowledge of
the memory organization, such as the interleaving granularity of
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Kernels Description Compute: More than one
Memory data structure
Ratio accessed?

Stream Benchmark
Scale a[i] = scalar*a[i] 1:1 No
Copy b[i] = a[i] 0:2 Yes
Daxpy b[i] = b[i] + scalar*a[i] 2:2 Yes
Triad c[i] = a[i] + scalar*b[i] 2:3 Yes
Add c[i] = a[i] + b[i] 1:3 Yes

Other Workloads
BN_Fwd [22] Batch Normalization 7:3 Yes

Forward Phase
BN_Bwd [22] Batch Normalization 14:6 Yes

Backward Phase
FC [31] Fully Connected 2:1 No

KMeans [8] KMeans Clustering 10:1 No
SVM [40] Support Vector Machine 2.5:2 Yes
Hist [41] Histogram 3:2 Yes

Gen_Fil [28] Genomic Sequence 3:1 No
Filtering (GRIM Algo)

Table 2: Summary of workloads.

physical memory across channels, size of PIM temporary storage
(Section 4.1), etc.

The PIM kernels use one warp per memory channel and utilize
the SIMT parallelism to generate N PIM instructions in parallel
(lines 2, 5, and 8 in Figure 4). Our evaluation shows that using one
SM per two warps is sufficient to execute the PIM kernel (8 SMs
for 16 memory channels), thereby apportioning sufficient SMs to
run compute-bound kernels in parallel. We use non-temporal store
instructions to mimic PIM instructions. Similar to most fine-grained
PIM instructions, non-temporal stores bypass the host caches and
avoid allocating the lines in the caches. We assume that the GPU
driver allocates large pages for the PIM data structures and ensure
that all of the operands needed for a PIM computation align within
the memory regions associated with each PIM unit.

Baseline Limitations:The baseline fence functionality is imple-
mented to ensure that memory requests are issued to the memory
before proceeding with subsequent instructions. There is limited
scope in hiding the fence latency with higher parallelism. This is
because multiple warps sending instructions to the same PIM unit
would require warp-level synchronization to have a deterministic
instruction order (otherwise we are at the mercy of the warp sched-
uler). This software synchronization would enforce only one warp
talking to one PIM unit at any point in time.

The downside of using a fence is that independent non-PIM
instructions following the fence will be blocked. Although PIM ker-
nels are mostly a sequence of fine-grained PIM instructions, there
may be a few independent instructions (e.g., address calculation
for operands). Note that such instructions are rare (PIM kernels
may use PIM instructions with offset from a base address) and exe-
cuted in the GPU core within a few cycles. Thus, executing such
instructions when the core is idling on a fence does not help.

Since fence instructions keep the core idle, multiple PIM warps
can be executed per SM via context switching. Our observations
show up to eight warps can be executed per SM, thereby requir-
ing two SMs to send commands to 16 channels. Note that more
compute is needed (up to eight SMs) to support the high command
throughput facilitated by OrderLight.

Evaluation Metrics: In the results section, we use two new
metrics: (i) PIM Command Bandwidth (GigaCommands/s or GC/s),
which represents the number of PIM commands sent to the memory
per second, and (ii) PIM Data Bandwidth (GB/s), which represents
the bandwidth at which PIM processes data within the memory
module. Note that the PIM Data Bandwidth reflects the product of
PIM command bandwidth and the bandwidth multiplication factor
(BMF) over host bandwidth. PIM Command Bandwidth highlights
the gains using 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 in the throughput of sending PIM com-
mands, which in turn provides gains in PIM Data Bandwidth.

7 RESULTS
In this section, we first discuss benefits of using 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 for
stream kernels, followed by its benefits for a suite of key computa-
tions from modern applications.

7.1 OrderLight Speedups for Stream
Benchmark

Figure 10a shows the improvement in PIM command bandwidth and
data bandwidth for four different temporary storage (𝑇𝑆) sizes for
each of the stream kernels when using fence versus the𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡
primitive (with a BMF of 16). Figure 10b shows a similar comparison
but for execution time and the number of stall cycles at the core.

7.1.1 Improved Command Bandwidth
Ordering primitives slow down the rate at which PIM commands
are sent to the memory modules due to ordering constraints which
in turn limits PIM benefits. As such, we study the improvement in
command bandwidth that 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 achieves over existing fence
primitives. To do so, we use the Add kernel as an exemplar of other
kernels we study.

The Add kernel is representative of the 𝑣𝑒𝑐𝑡𝑜𝑟_𝑎𝑑𝑑 kernel shown
in Figure 4. We observe that the command bandwidth when using
the 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 primitive is on average 2.6× higher than when
using the fence primitive. This is largely due to elimination of the
stall cycles induced by the fence at the core because of which the
memory controller is also starved from issuing PIM commands.

Effect of Temporary Storage (𝑇𝑆) near PIM Unit: The size
of 𝑇𝑆 associated with a PIM compute unit dictates two important
factors which influence the command bandwidth and we vary this
parameter to study its effect.

First, it dictates the number of ordering primitives that are nec-
essary. The larger the 𝑇𝑆 size, the greater the number of PIM in-
structions that can be sent before issuing an ordering primitive;
when copying data from memory to 𝑇𝑆 prior to performing com-
putation on that data, no ordering is necessary among multiple
independent copy commands. Ordering is only required at the end
of the copy commands before computation is performed on the
data now in 𝑇𝑆 . The decreasing number of fences with increasing
𝑇𝑆 size improves the command bandwidth for fences as evident
in Figure 10a. This factor has negligible impact on 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 as
it does not pay a significant penalty of wait cycles at the core per
𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 instruction.

Second, 𝑇𝑆 also dictates the peak achievable command band-
width. This is so, as it dictates the DRAM locality. Consider again
the Add kernel. It accesses three different vectors, 𝑎, 𝑏, and 𝑐 , each
of which get mapped to a different DRAM row due to the memory
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Figure 10: Comparison of fence versus 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 for stream benchmarks using the following metrics: (a) PIM command
bandwidth (linear scale) and data bandwidth (log scale), and (b) execution time and the number of stall cycles at the core.

Figure 11: DRAM timing for opening the DRAM row for
vector 𝑝, sending 8 write requests (equivalent to PIM com-
mands), followed by opening the row for vector 𝑞.

mapping policy. The kernel issues a series of instructions to one vec-
tor before switching to the next vector (Figure 4). Figure 11 shows
the timing constraints for a similar example that writes two vectors
(𝑝 and 𝑞). For a 𝑇𝑆 sized to hold 256B of data from 𝑝 , the memory
controller can issue 8 row-hit accesses (32B each) for vector 𝑝 before
switching to a different row for vector𝑞, within a period of 44 cycles.
The latency of opening and closing a row (𝑡𝑅𝐶𝐷𝑊 + 𝑡𝑊𝑇𝑃 + 𝑡𝑅𝑃 )
limits the command bandwidth. The achievable peak command
bandwidth in this case is 2.3 GC/s (8/44 * peak). We observe in Fig-
ure 10a that, while the command bandwidth achieved with fences
is far below that of peak, 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 comes close to this peak (2.1
GC/s).

Effect of the Number of Memory Operands: An equally im-
portant factor that also affects peak command bandwidth is the
number of operands read or written from/to memory by a compu-
tation as different operands typically map to different DRAM rows.

As an example, Scale benchmark only works on a single DRAM row
in comparison to Add benchmark which works on three DRAM
rows. Consequently, the overheads of row open/close is much lower
for the Scale benchmark, increasing its achievable peak command
bandwidth. Further, as Scale only works on a single DRAM row,𝑇𝑆
(and its size) is immaterial for this benchmark.

Overall, across kernels, 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 considerably improves the
command bandwidth realized for PIM commands and often reaches
peak command bandwidth possible.

7.1.2 Improved Data bandwidth
Figure 10a also shows the data bandwidth offered by PIM. Recall
that, memory bandwidth available for PIM compute units is often
much higher than that available to the host and is the key benefit
of PIM. We see that the data bandwidth with 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 is higher
than the peak external data bandwidth of the memory module (405
GB/s) by 4.3× on average and outperforms the data bandwidth with
fence by 3.8×.

7.1.3 Improved PIM Speedup over Host
Figure 10b shows that the use of fences slows down PIM execution
drastically to show little to no benefits over GPU execution (green
bars in the graph). PIM execution with fences shows improvement
over GPU only when using larger𝑇𝑆 (1/4 or 1/2 of row-buffer) by 2×
to 3.4×. On the other hand, 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 consistently outperforms
GPU execution time for every 𝑇𝑆 size by 3.5× to 7.4× on average.

The key reason for improved PIM speedups is attributed to re-
duced stall cycles at the core in sending PIM instructions which in
turn leads to improved command bandwidth. This is depicted in
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Figure 12: Improvement in execution time with the OrderLight primitive over fence for a set of data-intensive computations
in GPGPU applications. The graph also plots the number of ordering primitives issued per PIM instruction for each kernel.

Figure 13: Comparison of fence versus OrderLight using dif-
ferent Bandwidth Multiplication Factor for the Add kernel.

Figure 10b which shows that the number of stall cycles for the two
different primitives closely resemble the plot for execution time.
When using 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 , the number of stall cycles decreases with
bigger 𝑇𝑆 because the memory controller can issue commands at a
faster rate, thereby decreasing backward pressure on queues in the
memory pipe.

7.1.4 Speedups for Varied PIM Solutions
As discussed in Section 4.1, by varying placement and cardinality
of PIM compute units, we can study benefits of 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 for
varied PIM solutions. We study three different BMF (bandwidth
multiplication factor) for PIM over host in Figure 13 using the
Add kernel. We observe in this figure that 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 consistently
performs better than fence by 1.9× to 3.1×. In fact, the performance
with fence is worse or comparable to GPU execution in 8 of the
12 cases, whereas 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 provides improvement over GPU in
10 of the 12 cases. This is because, with decreasing BMF, a greater
number of PIM commands has to be sent to the memory to perform
the same job, which increases the burden with fence.

7.2 Speedups for Data-Intensive Applications
Figure 12 shows the performance improvement with 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡

primitive over fence for a set of important data-intensive com-
putations from GPGPU applications. We observe that 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡
provides 5.5× to 8.5× improvement in execution time over the fence

primitive for the suite of computations evaluated, and consider-
ably improves PIM speedups over host as compared to the fence
primitive.

From Table 2 we see that FC and Kmeans access only one data
structure per computation, which is why they experience more row
locality than the other kernels. For the same reason, they show
little variability in performance with different 𝑇𝑆 size when using
the𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 primitive. Gen_Fil issues irregular PIM requests on
128-B data granularity (1/16th of RB). This is why Gen_Fil shows
no variability with bigger 𝑇𝑆 size for both fence and 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡
primitives.

We observe that FC, Kmeans, and Gen_Fill kernels show high
improvement in execution time with 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 even for bigger
𝑇𝑆 size. As shown in Figure 12, the number of ordering primitives
issued per PIM instruction decreases with increase in 𝑇𝑆 size at
a much slower rate for these kernels in comparison to the other
kernels (rate of decrease: FC: 33%, Kmeans: 22%, Gen_Fil: 0%, Others:
50%). This is because of the computation structure of these kernels.
Thus, a lot more ordering primitives are issued even for bigger 𝑇𝑆
sizes, which hurts the performance when using fences.

8 RELATEDWORK
In this section, we briefly discuss some FGO/FGA PIM designs
from the literature and also contrast 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 with fences for
persistent memory ordering which, at a high-level, appear related.

8.1 Fine-grain Offload and Fine-grain
Arbitration PIM

Although alternate (i.e., non-FGO/FGA) PIM designs have merits as
discussed in Section 3, FGO/FGA PIM designs are particularly suited
for modern workloads with compute and data-intensive phases.
These designs are also compatible with mainstream memory inter-
faces. These and other characteristics discussed in Section 3.5 make
them particularly desirable in the current computing landscape.
Consequently, we focus on research works which fall under this
sub-class here.

FIMDRAM [32] and Lee et al. [34] focus on designing a PIM
architecture for machine learning that can be finely interleaved
with commodity DRAM command behaviors. Other works have
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used PIM operations using slight variants of existing DRAM op-
erations [14, 45] or instruction-granularity offload of application-
specific operations to PIM [3, 39]. However, these efforts focus on
the PIM architectures and do not address the requirements for effi-
cient host-side control of PIM, which is our focus in this work. As
a result, 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 is applicable for these (and more) FGO/FGA
PIM designs and stands to complement them by providing efficient
PIM operation ordering capabilities.

Kim et al. [27] use sequence numbers to order the sequence in
which PIM operands are processed. However, this requires complex
deadlock prevention logic such as credit-based buffer management.
Additionally, the latency of sending credit reservation requests from
SMs and receiving acknowledgments may reduce the PIM command
bandwidth. This approach also requires a fair bit of buffering at the
memory which can be expensive when adding PIM to a commodity
DRAM. 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 on the other hand uses lightweight packets
which make the implementation simpler, does not cause deadlocks,
and can be implemented on existing DRAM interfaces that do not
have credit/op ID semantics.

8.2 Memory Ordering for Persistence
A key differentiating factor for memory ordering guarantees needed
for FGO/FGA PIM designs compared to existing fences is that the
order has to be enforced at the PIM units, and not at the processor
cores. At a high-level, systems with persistent, non-volatile mem-
ory (NVM) also require that writes "at memory" appear to have
occurred in the specified order to ensure recoverability of persistent
data structures. Research works such as Delegated Persist Order-
ing (DPO) [30] track core-centric constructs such as intra-thread
and inter-thread dependencies, coherence traffic, etc. using persist
buffers and bloom filters in traditional CPUs to offload epochs of
persistent writes to the NVM controller. However, DPO and sev-
eral such proposals in this domain [10, 36] rely on enforcing this
order in a core-centric fashion which is both overly constrained
and unnecessary for PIM.

9 CONCLUSION
With crucial applications exhibiting both compute and data-
intensive phases, it is imperative that accelerators be coupled with
PIM-enabled solutions. To that end, in this work we first introduced
a taxonomy to better understand the design space of an acceler-
ator (e.g., a GPU) interacting with PIM-enabled memory when
considering the temporal granularity of both computation offloads
to near-memory logic and arbitration of PIM and host memory
accesses. Based on this taxonomy, we observe that prior PIM pro-
posals largely focus on coarse-grain approaches which can have
steep costs. On the other hand, while fine-grain PIM approaches
avoid these costs, a key impediment to realizing them is support
for efficient memory ordering primitives for fine-grained PIM in-
structions. As such, we propose a novel memory-centric ordering
primitive, 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 , which overcomes the shortcomings of tra-
ditional core-centric memory ordering primitives such as fences.
Evaluations based on key computations from several application
domains show that 𝑂𝑟𝑑𝑒𝑟𝐿𝑖𝑔ℎ𝑡 delivers 5.5× to 8.5× speedup over
traditional fences.

The innovations discussed in the paper are broadly applicable
to other hosts, including out-of-order (OoO) CPUs. Even though
OoO cores can hide memory access latencies via ILP/MLP, fence
overheads can still be in the order of 100 cycles [6]. OoO cores have
renaming units and reservation stations, where ordering should
be maintained similar to Operand Collector in GPUs. Network-
on-Chip (NoCs) between different levels of the cache hierarchy
may unorder PIM requests – ideas related to path divergence are
applicable here.

FGO/FGA based PIM architectures are relatively new. Recent
papers [32–34] explore the device aspect of such architectures. This
paper explores the systems aspect of such architectures from the
host’s perspective. We believe future work will explore efficiently
utilizing such PIM primitives (programmability, co-scheduling, com-
pilers, etc).
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