
Power Efficient Resource Scaling in Partitioned Architectures through Dynamic
Heterogeneity

Naveen Muralimanohar, Karthik Ramani, Rajeev Balasubramonian
School of Computing, University of Utah ∗

{naveen, karthikr, rajeev}@cs.utah.edu

Abstract

The ever increasing demand for high clock speeds and
the desire to exploit abundant transistor budgets have re-
sulted in alarming increases in processor power dissipa-
tion. Partitioned (or clustered) architectures have been pro-
posed in recent years to address scalability concerns in fu-
ture billion-transistor microprocessors. Our analysis shows
that increasing processor resources in a clustered archi-
tecture results in a linear increase in power consumption,
while providing diminishing improvements in single-thread
performance. To preserve high performance to power ra-
tios, we claim that the power consumption of additional
resources should be in proportion to the performance im-
provements they yield. Hence, in this paper, we propose the
implementation of heterogeneous clusters that have varying
delay and power characteristics. A cluster’s performance
and power characteristic is tuned by scaling its frequency
and novel policies dynamically assign frequencies to clus-
ters, while attempting to either meet a fixed power budget or
minimize a metric such as Energy×Delay2 (ED2). By in-
creasing resources in a power-efficient manner, we observe
a 11% improvement in ED2 and a 22.4% average reduc-
tion in peak temperature, when compared to a processor
with homogeneous units. Our proposed processor model
also provides strategies to handle thermal emergencies that
have a relatively low impact on performance.

Keywords: partitioned (clustered) architectures,
Energy × Delay2, temperature, dynamic frequency
scaling.

1 Introduction

Recent technology trends have led to abundant transis-
tor budgets, high clock speeds, and high power densities
in modern microprocessors. Simultaneously, latencies of
on-chip and off-chip storage structures (caches, memories)
have increased relative to logic delays. If architects make
no attempt to hide these long latencies, clock speed im-
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provements do not translate into significant performance
improvements. Long latencies can be tolerated effectively
via a number of strategies, such as out-of-order execution
with a large in-flight instruction window, data prefetching,
etc. However, the quest for instruction-level parallelism
(ILP) often succumbs to the law of diminishing returns.
Once the low-hanging fruit has been picked, transistors al-
located for ILP yield marginal improvements, but expend
significant energy. This paper investigates if abundant tran-
sistor budgets can be exploited without causing inordinate
increases in power density.

Partitioned architectures [2, 6, 7, 12, 20] have been pro-
posed in recent years to allow processor resources to scale
up without impacting clock speed or design complexity.
A partitioned architecture employs small processing cores
(also referred to as clusters) with an interconnect fabric,
and distributes instructions of a single application across
the processing cores. The small size of each core enables
low design complexity and fast clock speeds, and indepen-
dent dependence chains executing on separate clusters en-
able high parallelism. Of course, most applications can-
not be decomposed into perfectly independent dependence
chains. This results in significant amounts of data being
communicated between clusters.

Even though a partitioned architecture is more scalable
than a monolithic architecture, the addition of more re-
sources will eventually yield marginal improvements in ILP
(if at all). On the other hand, the addition of resources in-
evitably leads to a linear increase in power consumption.
Figure 1 shows the improvement in instructions per cycle
(IPC) achieved by adding more clusters. It also shows the
power overhead incurred by adding more clusters (the sim-
ulated processor model and the workload are described in
detail in Section 4). Improvement in IPC is not commen-
surate with the increase in processor power, and aggres-
sive designs with numerous resources can have very poor
Energy×Delay and Energy×Delay2 (ED2) character-
istics. In this paper, we argue that if additional resources are
likely to yield marginal IPC improvements, they must also
incur marginal power overheads. To achieve this goal, we
propose the design of heterogeneous clusters, where differ-
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Figure 1. IPC and Power as number of clusters
increases, normalized to the 1-cluster system

ent clusters are optimized for either performance or power.
Such an approach can entail significant design complex-
ity in a conventional monolithic superscalar architecture.
For example, accommodating different register implemen-
tations within a single register file can pose circuit timing
issues and pipeline scheduling difficulties in a monolithic
superscalar. A partitioned architecture, on the other hand,
is modular enough that the properties of one cluster do not
influence the design of another cluster.

Further, we advocate dynamic heterogeneity – frequency
scaling allows a cluster to dynamically serve as either a
high-performance or low-power cluster. We propose a dy-
namic adaptation policy that takes advantage of program
metrics that estimate the performance potential of addi-
tional resources and selects a cluster configuration with
minimum ED2. We observe ED2 improvements of 11%,
compared to a system comprised of homogeneous clusters.
If the processor must meet a fixed power budget, we observe
that a heterogeneous configuration is often able to maximize
performance while meeting this power budget. By allowing
a cluster to alternate between high and low-power mode, op-
erating temperature on a chip is reduced, leading to lower
leakage power dissipation and fewer thermal emergencies.
Heterogeneous clusters also present the option of handling
a thermal emergency in a manner that minimally impacts
performance.

In summary, this paper presents low-complexity novel
proposals (heterogeneous clusters and dynamic resource al-
location) and detailed evaluations that demonstrate signifi-
cant ED2 and temperature benefits. These innovations are
especially important when single-threaded workloads exe-
cute on aggressive microprocessor designs that yield dimin-
ishing IPC improvements. The paper is organized as fol-
lows. Section 2 reviews our base architecture model. Sec-

tion 3 discusses the design of heterogeneous clusters and
our novel dynamic adaptation policy. Section 4 evaluates
the impact of our proposed techniques on ED2 and tem-
perature. Finally, Section 5 discusses related work and we
conclude in Section 6.

2 The Base Clustered Processor

A variety of architectures have been proposed to exploit
large transistor budgets on a chip [2, 6, 7, 8, 12, 18, 20,
28, 29, 33, 35, 39]. Most proposals partition the archi-
tecture into multiple execution units and allocate instruc-
tions across these clusters, either statically or dynamically.
For our evaluations in this study, we employ a dynami-
cally scheduled clustered architecture. This model has been
shown to work well for many classes of applications with
little or no compiler support.

2.1 The Centralized Front End

As shown in Figure 2, instruction fetch, decode, and
dispatch (register rename) are centralized in our processor
model. During register rename, instructions are assigned
to one of four clusters. The instruction steering heuristic
is based on Canal et al.’s ARMBS algorithm [13] and at-
tempts to minimize load imbalance and inter-cluster com-
munication. For every instruction, we assign weights to
each cluster to determine the cluster that is most likely to
minimize communication and issue-related stalls. Weights
are assigned to a cluster if it produces input operands for
the instruction. Additional weights are assigned if that pro-
ducer has been on the critical path in the past [44]. A cluster
also receives weights depending on the number of free is-
sue queue entries within the cluster. When dispatching load
instructions, more weights are assigned to clusters that are
closest to the data cache. Each instruction is assigned to the
cluster that has the highest weight according to the above
calculations. If that cluster has no free register and issue
queue resources, the instruction is assigned to a neighbor-
ing cluster with available resources.

2.2 The Execution Units

Our clustered architecture employs small computation
units (clusters) that can be easily replicated on the die. Each
cluster consists of a small issue queue, physical register file,
and a limited number of functional units with a single cycle
bypass network among them. The clock speed and design
complexity benefits stem from the small sizes of structures
within each cluster. Dependence chains can execute quickly
if they only access values within a cluster. If an instruction
sources an operand that resides in a remote register file, the
register rename stage inserts a “copy instruction” [13] in
the producing cluster so that the value is moved to the con-
sumer’s register file as soon as it is produced. These regis-
ter value communications happen over longer global wires
and can take up a few cycles. Aggarwal and Franklin [2]
show that a crossbar interconnect performs the best when
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Figure 2. A partitioned architecture model with 4
clusters and a centralized frontend.

connecting a small number of clusters (up to four), while
a hierarchical interconnect performs better for a large num-
ber of clusters. Even though future aggressive systems are
likely to employ many clusters, we expect that the clusters
will be partitioned among multiple threads. Only a subset of
programs show significant IPC benefits by employing more
than four clusters and even this improvement may not war-
rant taking resources away from other threads. In the com-
mon case, we expect that most single-threaded programs
will execute on four clusters and we therefore restrict our-
selves to systems with fewer than four clusters that employ
a crossbar interconnect.

Earlier studies have shown that the performance im-
provement from a distributed cache may not warrant the
implementation complexity [5, 25, 38]. We implement a
centralized cache and load/store queue (LSQ) that are also
accessible through the crossbar router (Figure 2). Load and
store instructions are assigned to clusters, where effective
address computation happens. The effective addresses are
sent to the centralized LSQ and cache. The LSQ checks for
memory dependences before issuing a load and returning
the word back to the requesting cluster.

3 Heterogeneous Clusters

Partitioned or clustered architectures have favorable
scalability properties. As transistor budgets increase, we
can increase the number of clusters while only impact-
ing the complexity of the dispatch stage. A higher num-
ber of clusters enables larger in-flight instruction windows,
thereby potentially boosting ILP. However, as is true with
most ILP techniques, this strategy quickly yields marginal
returns. As Figure 1 showed us, the IPC jump in moving
from one to two clusters is 31%, but the jump in mov-
ing from three to four clusters is only 8%. Additional re-
sources either remain under-utilized or are busy executing
instructions along mis-predicted paths. Unfortunately, the
power overhead of each additional cluster is roughly con-
stant. Moreover, disproportionate utilization rates of dif-
ferent processor structures lead to localized hotspots that
severely degrade chip reliability and trigger thermal emer-
gencies.

3.1 High-Performance (HPC) and Low-Power
Clusters (LPC)

In order to better match the IPC and power curves,
we propose adding resources in a power-efficient manner.
Each resource can toggle between high-performance and
low-power mode, thereby also improving thermal proper-
ties. We employ two different classes of clusters. The first
class of clusters, named the high-performance and high-
power clusters (HPCs), are designed to deliver high per-
formance while consuming significant power. The second
class of clusters, the low-power and low-performance clus-
ters (LPCs), are frequency scaled versions of the HPCs.
They operate at a frequency that is lower than that of the
HPCs by a factor of four. In some cases (thermal emergen-
cies or high inter-cluster communication), we even com-
pletely turn a cluster off by gating its supply voltage. An
important attribute of partitioned architectures is low design
complexity because each cluster can be created by replicat-
ing a single cluster’s design. By incorporating heterogene-
ity, we are not compromising this advantage. Each clus-
ter has an identical design and heterogeneity is provided
through frequency scaling.

We allow each cluster’s clock to be independently con-
trolled, resulting in at least four distinct clock domains. The
clocks may or may not originate from the same source. Ei-
ther way, the interface between clock domains does not im-
pose a significant performance or power overhead [40, 42].
This interface is implemented at the crossbar router. Each
link operates at the frequency of the cluster it is connected
to. The buffers in the router can be read and written at edges
belonging to different clocks. Stall cycles are introduced if
the clock edge that wrote the result is not separated from
the clock edge that attempts to read the result by a mini-
mum synchronization delay. Stalls usually happen only if
the buffer is nearly empty or nearly full. If the clocks origi-
nate from a single source and are integral multiples of each
other (as is the case in our simulations), these synchroniza-
tion delays are rare. If the processor is forced to employ
multiple clock sources due to clock distribution problems,
these synchronization delays are introduced in the base pro-
cessor as well. Even though one of the links may be drain-
ing a buffer only once every four (fast) cycles, the buffer
size is bounded. Each instruction in a cluster can gener-
ate no more than three input data communications and the
number of instructions in a cluster is bounded by its window
size.

Dynamic frequency scaling (DFS) is a well-established
low-overhead technique that is commonly employed in
modern-day microprocessors [17, 21]. Most implementa-
tions allow the processor to continue executing instructions
even as the clock speed is being altered. In our case, we only
toggle between two frequencies (5 GHz and 1.25 GHz) and
a change happens once every few million instructions, on
average. This amounts to a negligible overhead even if we



assume that the processor is stalled for as many as thousand
cycles during a frequency change. Note that some stalls are
introduced because in-flight packets must be routed before
the frequency change can happen. Not doing this could re-
sult in register tags arriving at the wrong time, thereby lead-
ing to scheduling problems. Further, if a cluster is being
turned off, architectural registers in that cluster will have to
be copied elsewhere. We will assume that turning a clus-
ter on and off with power-gating [1] can also happen within
the assumed thousand cycle overhead. In tandem with fre-
quency scaling, voltages can be scaled down as well, al-
lowing significant power savings. However, voltage scaling
has higher overheads and we will restrict ourselves to the
more complexity-effective approach of dynamic frequency
scaling for all of our results. With DFS, each cluster can in-
dependently switch from being an HPC to an LPC, or vice
versa. Next, we will describe how various metrics are con-
sidered in determining the frequency for each cluster.

3.2 Dynamic Adaptation Mechanism

Before devising a resource allocation mechanism that
balances performance benefits and power overheads, we
must define the metric we are attempting to optimize.
Energy × Delay2 or ED2 is commonly acknowledged to
be the most reliable metric while describing both perfor-
mance and power [9, 31]. Not only does it reflect marketing
goals (performance is slightly more important than energy),
it also has favorable theoretical properties. The ED2 equa-
tion can be expressed as follows (α is activity factor, C is
capacitance, f is frequency, and V is voltage):

ED2 = Power × D3 = αCfV 2D3

If we assume a linear relationship between the speed and
voltage of a circuit, we see that the ED2 term is an invariant
when voltage and frequency scaling is applied to the pro-
cessor. Put differently, (ED2)

1

3 or (PD3)
1

3 is a measure
of performance for different processors that are all voltage-
and-frequency scaled so as to consume an equal amount of
power. For example, if V is reduced to 0.9V , then f is re-
duced to 0.9f and D is increased to D/0.9, resulting in the
cancellation of the constant factors. A different metric, such
as ED, may not be robust under such optimizations. With
the ED metric, any processor (A) operating well above the
threshold voltage can be shown to be “better” than any other
processor (B) if it (A) is sufficiently voltage and frequency
scaled. Similarly, ED2 is not susceptible to frequency scal-
ing tricks – ED2 is minimized when the processor operates
at its peak frequency. For all these reasons, our algorithm at-
tempts to optimize the ED2 metric. The linear relationship
between circuit speed and voltage does not always hold in
practice. Therefore, our results also present IPC and power
values, allowing the interested reader to compute other rel-
evant metrics.

Since each cluster can operate as an HPC, an LPC, or
be completely turned off, the processor can be configured

in many interesting ways. Figure 3 shows the ED2 value
for each benchmark program under various fixed configu-
rations. For example, the bars denoted by “3f” refer to a
processor model where three clusters operate at peak fre-
quency while one cluster is turned off, and the bars denoted
by “3f1s” refer to a processor model with three clusters at
peak frequency (fast) and one cluster at 1/4th the peak fre-
quency (slow). For brevity, many of the configurations that
yield uninteresting ED2 values are left out. It is clear that
a single statically chosen design point benefits only a sub-
set of the applications while adversely affecting the perfor-
mance/power characteristics of other applications. For ex-
ample, the processor model with two fast clusters (2f) deliv-
ers low ED2 while executing benchmarks such as gcc and
twolf, but degrades performance significantly for galgel.

Benchmark Distance L2 L1D Nearly Base
between miss miss optimal Case
branch rate rate ED

2 IPC
mispredicts models (4f)

eon 57 0.14 0.72 3f 1.47
crafty 72 0.7 1.68 2f, 3f 1.12
bzip2 53 2.5 3.5 2f 0.82
gap 65 11.77 0.67 2f 0.90
gcc 103 2.25 3.38 2f 0.75
gzip 129 0.21 6.56 2f 0.73

parser 80 4.35 3.83 2f 0.78
twolf 60 0.31 7.28 2f 0.77
ammp 289 0.79 6.63 4f 1.74
apsi 360 34.8 2.77 4f 1.85

vortex 183 3.521 1.44 4f 1.78
wupwise 170 20.61 2.22 4f 1.92

galgel 356 1.24 7.19 3f, 4f 2.63
mesa 204 5.73 0.63 3f, 4f 2.35
vpr 161 11.74 5.67 2f, 3f 0.51

mgrid 18430 12.29 6.62 4f, 4s 1.43
fma3d 544 22.28 6.48 4s 1.45
equake 506 16.44 17.02 4s 0.6
lucas 1628292 16.67 20.52 4s 0.5
swim 33895 13.76 20.19 4s 1.29

art 97 7.8 41.39 3f1s 0.79
applu 55 23.03 9.76 3f, 4f 1.04
mcf 57 43.25 37.61 4s, 1f3s 0.17

Table 1. Average distance between branch mis-
predicts, L2 and L1D cache miss rates, configura-
tions that yield ED

2 within 5% of the optimal ED
2,

and raw IPC for baseline model with 4 HPCs.

Table 1 shows the average L1 data and L2 cache miss
rates, average distance between branch mispredicts, and the
configurations that yield ED2 within 5% of the lowest ED2

observed among all the statically fixed configurations (re-
ferred to as the optimal ED2 for each benchmark). From
this data, we take note of the following trends. (i) Programs
(lucas, equake, etc.) with high data cache miss rates (≥ 8%
L1D miss rate and ≥ 12% L2 miss rate) benefit from using
more clusters. More clusters imply more registers and issue
queue entries, which in turn imply large in-flight windows
that increase the chances of finding useful work while wait-
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Figure 3. ED
2 metric for different static configurations normalized to baseline system with 4 HPCs.

ing for cache misses. There is usually not enough work to
keep the processor busy for the entire duration of a cache
miss, which implies that the execution units can execute
at low frequencies and still complete their work before the
cache miss returns. (ii) Programs (gcc, bzip2, etc.) with
high branch misprediction rates (average distance between
mispredicts being less than 100 instructions) benefit very
little from large in-flight windows as most instructions in
the window are likely to be on mispredicted paths. Exe-
cuting instructions at a low frequency can severely degrade
performance because it increases the time taken to detect a
branch misprediction.

Clearly, branch mispredictions and cache misses are the
biggest bottlenecks to performance and simply observing
these metrics guides us in detecting the most “efficient” pro-
cessor configuration. Based on the observations above, we
identify the following relationships:

• Low cache miss rates and high branch misprediction
rates: Both factors suggest using small in-flight win-
dows with high frequencies. Minimum ED2 was ob-
served for configurations that employed only two clus-
ters at peak frequency (2f).

• Low cache miss rates and low branch misprediction
rates: Both factors indicate that the program has high
ILP and could be severely degraded if we either re-
duced window size or frequency. The base case orga-
nization with four clusters operating at peak frequency
(4f) yielded minimum ED2.

• High cache miss rates and low branch misprediction
rates: Both factors suggest the use of large windows
and the first factor suggests the use of frequency-scaled
clusters. A configuration such as 1f3s or 4s often yields
the lowest ED2 (4s was selected for our simulations).

• High cache miss rates and high branch misprediction
rates: The two factors make conflicting suggestions

for window size and frequency. Empirically, we ob-
served that the performance penalty of low frequency
and small window size was too high and the lowest
ED2 was observed for configurations that struck a bal-
ance, such as 3f1s.

A small subset of processor configurations are sufficient
to deliver optimal ED2 values for most of the benchmarks.
Of the many different configurations, our dynamic algo-
rithm employs the following four configurations: 4s, 2f, 4f,
3f1s. The reduction in the number of configuration choices
available to the dynamic algorithm helps reduce its com-
plexity. Only for four of the 23 benchmarks (eon, vpr, ap-
plu, mcf) does our heuristic select a configuration with ED2

not within 5% of the optimal ED2.
Many recent studies [4, 6, 19, 22, 23, 26, 37, 45] have ex-

amined algorithms for dynamic processor adaptation. Some
of these algorithms make decisions at subroutine bound-
aries, some make decisions at specific events (cache misses,
full buffers, etc.), while some make decisions at periodic in-
tervals. We found that for our experiments, interval-based
techniques entailed little complexity and reacted appropri-
ately to phase changes. An interval is defined as the time
taken to commit one million instructions (we also evalu-
ate other interval sizes). At the end of every interval, hard-
ware counters that track L1 and L2 cache miss rates and the
number of branch mispredictions are examined. Depending
on whether these counters exceed certain thresholds, one of
the four configurations described above is selected and em-
ployed for the next interval. Since these counters directly
indicate the optimal configuration, there is no need for an
exploration process that profiles many candidate configura-
tions and selects one. Since there is no exploration process,
there is also no need to detect when the program moves to a
new phase with radically different behavior.

Our algorithm is based on the premise that behavior in
the last interval will repeat in the next interval. In the worst
case, a program may exhibit dramatically different behavior



in every successive interval. This can be easily detected as
it would result in configuration changes in every interval.
The operating system can then choose to increase the inter-
val length or shut off the dynamic adaptation mechanism.
It must be noted that our adaptation algorithm simply se-
lects the configuration that is likely to yield minimum ED2

with little regard to the actual performance loss. If signifi-
cant performance losses cannot be tolerated, the adaptation
algorithm will have to be altered and this is discussed in a
later section.

Once an appropriate configuration has been chosen, say
3f1s, the following questions arise: (i) which cluster is as-
signed the low frequency, and (ii) what instructions are as-
signed to the slow cluster? The answer to the first ques-
tion lies in the thermal properties of the processor and is
discussed in the next sub-section. To address the second
question, we attempted a number of steering mechanisms
that take instruction criticality into account. We modeled
per-instruction and branch-confidence based criticality pre-
dictors to identify instructions that are off the critical path
and dispatch them to slow clusters. However, these steer-
ing policies inevitably increased the degree of inter-cluster
communication, often resulting in contention cycles for
other data transfers that were on the program critical path.
Load balance was also affected as critical and non-critical
instructions are rarely in the same ratio as the fast and slow
clusters (3:1 in the case of 3f1s). In spite of our best efforts,
even complex alterations to the steering policy resulted in
minor IPC improvements (if at all) over the base steering
policy that only attempts to balance communication and
load. We will only consider the base steering policy for the
rest of the paper, which implies that some critical instruc-
tions may be executed on the slower clusters.

3.3 Thermal Emergencies

If each cluster operates at peak frequency, the register
files in each cluster often emerge as the hottest spots on the
chip. By allowing each cluster to occasionally operate at a
lower frequency (or be turned off), the operating tempera-
ture at each register file is greatly reduced. If a configuration
such as 3f1s is chosen, a round-robin policy selects the clus-
ter that is frequency-scaled every million cycles. There are
two advantages to a lower operating temperature: (i) The
number of thermal emergencies are reduced. On a thermal
emergency, the processor must take steps to reduce power
dissipation at the hot-spot, often leading to a performance
penalty. (ii) The leakage power dissipation on a chip is an
exponential function of the operating temperature. Even if
thermal emergencies are not triggered, by reducing operat-
ing temperature, we can significantly reduce leakage power.

It is noteworthy that heterogeneous clusters provide in-
teresting options in the event of a thermal emergency. If
all four clusters are operating at peak frequency and a ther-
mal emergency is triggered, a different configuration that
yields a slightly higher ED2 can be invoked. Since this

configuration periodically shuts each cluster off or lowers
its frequency, it can mitigate the thermal emergency without
imposing a significant penalty in performance or ED2. In
Section 4, we show that such a thermal emergency strategy
performs better than approaches for traditional superscalars,
such as global frequency scaling.

3.4 Achieving Maximum Performance for a Fixed
Power Budget

In some microprocessor domains, designers are most
concerned with maximizing performance while staying
within a fixed maximum power budget. Heterogeneous
clusters allow low-overhead run-time flexibility that allows
a processor to meet power budgets for each program. At the
start of program execution, all four clusters operate at peak
frequency. At the end of every million cycle interval, hard-
ware counters that track average power dissipation or activ-
ity are examined. If the average power dissipation is greater
than the power budget, some of the clusters will have to
be either slowed down or turned off. Likewise, if the aver-
age power dissipation is well below the power budget, clus-
ters can be either activated or have their frequency scaled
up. The correlation between cache miss rates, branch mis-
predict rates, and optimal ED2 configurations guides our
adaptation policy again. For programs with frequent branch
mispredicts that exceed the power budget, we choose to turn
clusters off in steps until the power dissipation drops to ac-
ceptable levels. For all other programs, we choose to scale
down the frequencies of clusters in steps until the power
constraint is met.

Our mechanism, by using branch mispredict rates, tries
to seek out configurations that are likely to have competitive
ED2 and meets the power constraint through low-overhead
techniques that scale down frequency or turn a cluster off.
Note that (ED2)

1

3 or (PD3)
1

3 is a measure of performance
for different processors that are all voltage-and-frequency
scaled so as to consume an equal amount of power. By
employing configurations that have near-optimal ED2, the
adaptation mechanism achieves near-optimal performance
at the fixed power budget and does so without employing
the high overhead technique of voltage scaling.

4 Results
4.1 Methodology

Our simulator is based on SimpleScalar-3.0 [11] for the
Alpha ISA. The cycle accurate simulator has been extended
with a power model based on Wattch [10] to compute power
for the entire processor, including clusters, interconnect,
caches, and the centralized front-end. Leakage power for
the caches and the register files follows a methodology sim-
ilar to HotLeakage [46]. HotLeakage extends the Butts-
Sohi leakage power model based on the BSIM3 [34] data
and calculates leakage currents dynamically from tempera-
ture and voltage changes due to operating conditions. For



Fetch queue size 64 Fetch width 8 (across up to 2 basic blocks)
Branch predictor comb. of bimodal and 2-level Bimodal predictor size 16K
Level 1 predictor 16K entries, history 12 Level 2 predictor 16K entries

BTB size 16K sets, 2-way Branch mispredict penalty at least 12 cycles
Issue queue size 30 per cluster (int and fp, each) Register file size 64 per cluster (int and fp, each)

Integer ALUs/mult-div 1/1 per cluster FP ALUs/mult-div 1/1 per cluster
L1 I-cache 32KB 2-way Memory latency 300 cycles for the first block
L1 D-cache 32KB 4-way set-associative, L2 unified cache 8MB 8-way, 30 cycles

6 cycles, 4-way word-interleaved I and D TLB 128 entries, 8KB page size
Frequency 5 GHz Initial Temperature 70 C

Convection resistance 0.8 K/W Heatsink thickness 6.9 mm
Maximum temperature 85 C Vdd 1.1 V

Load/Store queue 240 entries

Table 2. Simulator parameters.

all other functional units, leakage power is calculated based
on the formula derived by curve fitting with ITRS data [3].

Separate integer and floating point issue queues and reg-
ister files are modeled for each cluster. Each of the clusters
is assumed to have 64 registers (Int and FP, each), 30 issue
queue entries (Int and FP, each) and one functional unit of
each kind. Contention on the interconnects and for memory
hierarchy resources (ports, banks, buffers, etc.) are modeled
in detail. Inter-cluster communication through the crossbar
incurs a two cycle delay (in addition to contention cycles)
when all links are operating at peak frequency. This de-
lay grows to five cycles if one of the clusters is operating
as an LPC and to eight cycles if both clusters are operat-
ing as LPCs. For all processor models in this study, when
frequency scaling is applied to clusters, the processor front-
end continues to execute at peak frequency.

We use the Hotspot-2.0 [43] model to extend our Wattch-
based simulator for sensing temperature of various units
at 100K cycle intervals. This model exploits the duality
between heat and electricity to model the temperature of
the processor at a functional unit granularity. The average
power of each of the units over recent cycles is supplied to
the model to calculate the current temperature of the func-
tional units from a known initial temperature. Heat removal
is done via airflow by convection using an equivalent ther-
mal resistance of 0.8K/W and an ambient temperature of 40
C is assumed. The floorplan layout of the processor models
the four clusters along with the front end and follows the
procedure indicated in [43]. At the beginning of the simula-
tion, we assume that the processor has been operating for a
long time, dissipating nominal dynamic and leakage power
at an operating temperature of 70 C.

All important simulation parameters are shown in Table
2. For the 4-cluster system operating at peak frequency, our
power models show an average processor power dissipation
of 113W at 90nm technology, with each cluster accounting
for approximately 17W, and leakage power accounting for
20W over the entire processor.

We use 23 of the 26 SPEC-2k programs with reference
inputs as a benchmark set (the remaining three benchmark
programs were not compatible with our simulator). Each

program was simulated for 100 million instructions over
simulation windows identified by the SimPoint toolset [41].
The raw IPCs for each program for the base case are listed
in Table 1.

4.2 ED2 Analysis

We begin by showing ED2 improvements that can be
achieved by employing the dynamic adaptation mechanism
that tunes processor resources to suit application needs. The
base case is a high performance model that employs four
HPCs. The dynamic processor model examines L1 and
L2 cache miss and branch misprediction counters in ev-
ery interval to select the configuration for the next inter-
val. Section 3.2 has already discussed the strong correlation
between these metrics and the ED2-optimal configuration.
For our experiments, we assume an interval size of one mil-
lion instructions. The thresholds for L1 and L2 cache miss
rates is 8% and 12%, respectively, while the threshold for
the branch misprediction counter is 1 in every 100 com-
mitted instructions. Figure 4a shows the IPC degradation
and the power savings obtained with the dynamic model as
compared to the base processor model. Overall, we observe
a power saving of 15% and a performance degradation of
only 2%. In certain cases, as in gap, employing two clusters
provides a slight performance improvement (less than 2%)
that can be attributed to a reduction in inter-cluster commu-
nication and contention cycles. Most programs (17 of the
23 benchmarks) encountered fewer than five configuration
transitions over the course of the execution of the program.
The other programs contain many different program phases
during their execution as a result of which the cache miss
rates and the branch misprediction rates vary significantly.
For example, art incurs as many as 91 phase transitions over
the execution of the program. These frequent transistions
cause the ED2 to be slightly sub-optimal, but the overall
ED2 is much lower than that for the base case for most of
these programs. As pointed out in Section 3.2, applu is one
of the programs that is not handled by our heuristic and it
yields an ED2 value that is higher than that of the base case.
Overall, the ED2 values achieved by the dynamic mecha-
nism are very similar to that of the optimal configurations
shown for each benchmark in Figure 3.
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Figure 5. Peak operating temperatures reached
by the base processor model and the dynamically
adaptive processor model

Figure 4b summarizes performance, power, and ED2 for
different configurations, averaged across the benchmark set
(averages are taken such that every program executes for an
equal number of cycles [27]) and normalized with respect
to the base processor model with four fast clusters. None of
the configurations exceed the performance of the base pro-
cessor. Similarly, all of the studied configurations consume
much lower power than the base case. The model with four
slow clusters (4s) consumes the least power but also incurs
a performance penalty of nearly 40%. All static configura-
tions have a higher ED2 than the base case. The bars for the
ideal processor model show results if the ED2-optimal con-
figuration for each benchmark is picked by an oracle from
a large set of configurations. The dynamic mechanism’s
behavior is very close to this ideal scenario (ED2 improve-
ment of 11%, compared to 12% for the ideal case).

4.3 Temperature Analysis

The dynamic mechanism selects a configuration that is
likely to optimize ED2. Even though temperature reduc-
tion was not a priority in this mechanism, a configuration
optimized for ED2 can also reduce operating temperature,
compared to the base processor. Figure 5 compares the peak
temperatures reached by our dynamically adaptive proces-
sor model and the base processor model (no thermal emer-
gency threshold was set). The graph leaves out programs
that had the same peak temperature in both cases (note
that the dynamic mechanism executes nearly half the pro-
grams with four HPCs). Overall, across these programs, we
observe a 22.4% reduction in peak operating temperature.
For benchmarks that employ four LPCs, this reduction was
48%. For bechmarks that employ two HPCs, clusters alter-
nate between executing at peak frequency and being shut
off. By allowing each cluster to periodically cool down, we
observed an average reduction of 7.5% in peak temperature
for these programs.

A subset of the benchmarks reach peak temperatures that
are high enough to trigger thermal emergencies. The peak
temperature corresponds to the temperature of the hottest
block on the micro-architectural floorplan. The use of het-
erogeneous clusters on a thermal emergency allows the pro-
gram to have tolerable performance penalties while lower-
ing the operating temperature. For example, the program
vortex reaches a peak temperature of 93 C without any ther-
mal management in both the base model and the dynamic
processor model (that employs four HPCs for minimum
ED2). While a baseline model would scale the frequency of
the entire processor, heterogeneity allows us to operate with
three HPCs and alternate the clusters between executing at
peak frequency and being switched off. This strategy incurs
a performance loss of 5.6%, when compared against the
baseline processor model employing no thermal manage-
ment. When the base case employs thermal management by
scaling the frequency of all four clusters, we observe a per-



Benchmark Configuration with Benchmark Configuration with
best performance best performance
for power ≤ 80 W for power ≤ 80 W

ammp 3s1f applu 2c
art 2f2s bzip2 3s1f

crafty 3s1f eon 3s1f
equake 2f2s fma3d 2f2s
galgel 3s1f gap 3s1f

gcc 2c gzip 2c
lucas 2f2s mcf 2f2s
mesa 3s1f mgrid 2f2s
parser 3s1f swim 2f2s
twolf 2c vortex 3s1f
vpr 2c wupwise 3s1f
apsi 2c

Table 3. Best static configurations for a fixed power budget.

formance degradation of 8.5% (with respect to the base case
with no thermal management). On an average, for bench-
marks that reach thermal emergencies, our proposed pro-
cessor model performs 7.5% better than the base processor
model, when both employ thermal emergency management
strategies.

4.4 Fixed Power Budget

If a processor is to operate within a fixed power budget,
we can scale its voltage and frequency until the power con-
straint is met. Voltage scaling has its limitations in future
technologies as overheads increase and acceptable voltage
margins shrink. If we restrict ourselves to frequency scal-
ing or turning off individual clusters, we observe that het-
erogeneity often yields the optimal performance for a given
power budget. Table 3 shows the static configuration that
delivers the best performance for a fixed power budget of
80W. Similar results are observed for different power bud-
gets. Clearly, a single static configuration is not sufficient
to deliver the best performance for all benchmarks. Com-
pared to a configuration that employs frequency scaling for
all four clusters (4s), the dynamic algorithm described in
Section 3.4 provides 23% improved performance.

4.5 Sensitivity Analysis

All through this study, we have assumed that the LPCs
execute at one-fourth the frequency of the HPCs. Figure 6
tracks the IPC, power, and ED2 characteristics for pro-
cessor models with varying LPC frequencies, all normal-
ized with respect to the base case. In all configurations, a
dynamic processor configuration provides ED2 improve-
ments, with the highest improvement seen when the fre-
quency of the LPC is one-fourth the HPC frequency. As we
increase the frequency of the LPCs, we obtain performance
improvements and corresponding increases in power dissi-
pation. By tuning the frequency of the LPCs, we can arrive
at different points in the power-performance curve, while
still achieving ED2 benefits. We also found that the use of
voltage scaling further increases our overall ED2 improve-
ments, but it has not been employed for any of the presented
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dynamic mechanism for different LPC frequencies

results because of the associated non-trivial overheads.

In Figure 4a, we had seen that the proposed dynamic
algorithm incurs a maximum performance loss of around
8% for eon and 7% for applu. In some cases, designers
may want to impose the constraint that ED2 be improved
while limiting performance loss. Tuning the LPC frequency
(above) is one strategy to limit performance loss. We can
also tune the algorithm to limit the maximum performance
loss to a certain value by choosing conservative configura-
tions at the cost of relatively higher power dissipation. For
example, for benchmarks with high branch misprediction
rates, we can choose to employ three HPCs instead of two
HPCs. Likewise, for benchmarks that have a high cache
miss frequency, we can employ LPCs that have frequencies
that are one-half the HPC frequency. With these new poli-
cies, the maximum performance loss for any program was
2.5% (applu). The overall performance loss was less than
1%, but the ED2 saving was only 7%. The above analysis
demonstrates the robustness of the dynamic mechanism in
adapting itself to varying performance and power require-



ments.
We also examined the sensitivity of our results as a func-

tion of interval length (for making configuration decisions).
If frequency change overheads were ignored, we found that
ED2 improvements were approximately constant even if
the interval size was reduced to 10K instructions. For an
interval size of 1K instructions, the cache miss and branch
misprediction measurements are noisy, leading to frequent
selections of sub-optimal configurations. While a smaller
interval length may allow us to capture the behavior of
smaller phases, we found this benefit to be minimal. A large
interval length helps amortize the overheads of changing the
frequency of a cluster or turning a cluster off.

5 Related Work

Commercial manufacturers have developed processors
capable of voltage and frequency scaling [17, 21]. Intel’s
XScale [17] processor employs this dynamic scaling tech-
nique in applications with real-time constraints, thereby im-
proving battery life. Frequency and voltage scaling has also
been employed within specific domains of a processor, such
as in the MCD processor proposed by Semeraro et al. [40].
Interval-based strategies for global frequency scaling for
real-time and multimedia applications have been proposed
by Pering et al. [36]. Childers et al. [16] propose trading
IPC for clock frequency. In their study, high IPC programs
run at low frequencies and low IPC programs run at high
frequencies.

The primary goal of our study is efficient utilization of
transistor budgets, where ED2 is the metric for efficiency.
The temperature side-effects of our proposal are similar
in spirit to the “cluster hopping” proposal of Chaparro et
al. [14], where parts of the back end are shut down to reduce
peak temperatures. That study does not explore the effect
of operating clusters at lower frequencies. Chen et al. [15]
propose a clustered architecture that combines a high-ILP
low-frequency core with a low-ILP high-frequency core.
The authors demonstrate that such an approach can better
match the ILP needs of programs and improve performance.
Our hypothesis is that identical cores combined with fre-
quency scaling have lower design complexity, provide sig-
nificant ED2 improvements, and reduce operating temper-
atures. Morad et al. [32] employ an asymmetric chip multi-
processor in which different threads of a program are as-
signed to cores of varying complexity. Kumar et al. [30] de-
sign a chip multi-processor with heterogeneous cores to ex-
ecute multi-programmed workloads. Programs are assigned
to cores of varying complexity based on their ILP require-
ments. Ghiasi et al. [24] implement a scheduler that exam-
ines the execution characteristics of a program and assigns
it to a processor that matches its needs. The above stud-
ies demonstrate that heterogeneity has favorable energy and
energy-delay properties when executing independent pro-
grams on multi-processor systems.

6 Conclusions
Future billion transistor architectures are capable of high

performance, but suffer from extremely high power densi-
ties. This paper advocates power aware resource scaling in
an effort to achieve high performance while reducing power
and operating temperature. The paper makes the following
key contributions:

• A heterogeneous architecture that leverages the mod-
ularity of a partitioned architecture and preserves the
low design complexity of a partitioned architecture by
employing frequency scaling to provide heterogeneity

• A dynamic adaptation policy that exploits information
on cache miss rates and branch prediction accuracy to
predict an ED2-optimal configuration

• A mechanism that switches the frequency of a cluster
at periodic intervals to lower operating temperatures
and a thermal emergency handling mechanism that im-
poses minimal performance penalties

Based on our evaluations, we draw the following major
quantitative conclusions:

• Heterogeneity, combined with our dynamic adaptation
policy, reduces ED2 by 11% (power saving of 15%
and performance penalty of 2%).

• Benchmark programs that employ four LPCs show an
average 48% reduction in operating temperature. The
same number for programs that employ two HPCs is
7.5%.

• By scaling individual clusters on a thermal emergency,
our dynamic algorithm performs 7.5% better than the
base case that scales the operating frequency of all
clusters on a thermal emergency.

The proposed innovations introduce very little design
complexity. Our results demonstrate that heterogeneity
has the potential to improve single-thread performance in
a power-efficient manner. While this paper focuses on
single-thread behavior on a clustered architecture, the gen-
eral ideas can also apply to multi-threaded workloads on
chip multi-processors (CMPs). Multiple threads of a sin-
gle application that execute on different cores of a CMP
are analogous to dependence chains executing on clusters.
For future work, we will explore the potential of intelligent
thread assignment to cores within an asymmetric CMP. We
will also examine other techniques to introduce heterogene-
ity within clusters or cores, such as the use of simple in-
order pipelines.
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