
SpinalFlow: An Architecture and Dataflow Tailored

for Spiking Neural Networks

Surya Narayanan

School of Computing

University of Utah

Salt Lake City, USA

surya@cs.utah.edu

Karl Taht

School of Computing

University of Utah

Salt Lake City, USA

taht@cs.utah.edu

Rajeev Balasubramonian

School of Computing

University of Utah

Salt Lake City, USA

rajeev@cs.utah.edu

Edouard Giacomin

Electrical and Computer Engineering

University of Utah

Salt Lake City, USA

edouard.giacomin@utah.edu

Pierre-Emmanuel Gaillardon

Electrical and Computer Engineering

University of Utah

Salt Lake City, USA

pierre-emmanuel.gaillardon@utah.edu

Abstract—Spiking neural networks (SNNs) are expected to
be part of the future AI portfolio, with heavy investment from
industry and government, e.g., IBM TrueNorth, Intel Loihi. While
Artificial Neural Network (ANN) architectures have taken large
strides, few works have targeted SNN hardware efficiency. Our
analysis of SNN baselines shows that at modest spike rates,
SNN implementations exhibit significantly lower efficiency than
accelerators for ANNs. This is primarily because SNN dataflows
must consider neuron potentials for several ticks, introducing a
new data structure and a new dimension to the reuse pattern. We
introduce a novel SNN architecture, SpinalFlow, that processes
a compressed, time-stamped, sorted sequence of input spikes. It
adopts an ordering of computations such that the outputs of a
network layer are also compressed, time-stamped, and sorted. All
relevant computations for a neuron are performed in consecutive
steps to eliminate neuron potential storage overheads. Thus, with
better data reuse, we advance the energy efficiency of SNN
accelerators by an order of magnitude. Even though the temporal
aspect in SNNs prevents the exploitation of some reuse patterns
that are more easily exploited in ANNs, at 4-bit input resolution
and 90% input sparsity, SpinalFlow reduces average energy by
1.8×, compared to a 4-bit Eyeriss baseline. These improvements
are seen for a range of networks and sparsity/resolution levels;
SpinalFlow consumes 5× less energy and 5.4× less time than an
8-bit version of Eyeriss. We thus show that, depending on the level
of observed sparsity, SNN architectures can be competitive with
ANN architectures in terms of latency and energy for inference,
thus lowering the barrier for practical deployment in scenarios
demanding real-time learning.

Index Terms—Accelerators, CNNs, SNNs

I. INTRODUCTION

Inspired by Neuroscience, researchers have explored the

potential of Spiking Neural Networks (SNNs) to achieve

high prediction accuracies for various image and speech

applications [2], [5], [16], [14], [55]. A spiking neuron is

stateful; it maintains a potential based on previously seen

inputs; as binary input spikes are received, the potential is

moved up or down; a binary output spike is produced when

the potential reaches a threshold. Spiking neurons mimic the

operations in biological neurons, in hopes that emulating the

brain will provide very high prediction accuracy at very low

energy [55]. However, silicon implementations of SNNs have

generally lagged behind state-of-the-art silicon implementa-

tions of ANNs. In spite of this, SNN advancements are impor-

tant because of their potential benefits in specific applications.

For example, a Google project shows a small-scale SNN

with sparse temporal codes achieving higher accuracy than

a similar-sized ANN using higher precision [10]. In the short

term, SNNs are expected to be effective and useful in the

following scenarios: (i) when a large/labeled training set is

not available, (ii) when the inputs are expected to deviate

from the training set, (iii) when continual learning [8], [43] is

necessary, and (iv) to establish initial neural network weights

before engaging resource-intensive training approaches [32].

In the long term, researchers need to build on the work of

Comsa et al. [10] and develop new training techniques to

further exploit the information content in relative spike times

so that SNNs can be competitive with the best ANNs under

all circumstances. The future potential of SNNs is also echoed

by the many commercial projects on SNN hardware – IBM

TrueNorth [2], Qualcomm Zeroth [47], Intel Loihi [12].

As Smith lays out in his FCRC’19 keynote [55], much

work remains in developing SNN training methods and ar-

chitectures. In theory, SNNs naturally exhibit high sparsity,

i.e., they can pack the information content of an 8-bit ANN

into the relative timing in a sparse spike train within a modest

time window. This work attempts to realize the low energy

potential of SNNs while overcoming the temporal dimension.

Unfortunately, modern SNN architectures achieve lower

throughputs and higher energy per neuron, compared to ANN

accelerators [13], [27], [12], [2]. This is primarily because

of the temporal aspect in SNNs – inputs are received and

processed across multiple ticks. Not only does this require

more time, it also puts constraints on architecture dataflows

and the data reuse that can be exploited. Further, the dataflow

must also manage reuse for a large data structure unique to

SNNs: neuron potential.

We therefore create a baseline SNN architecture, Spiking-

Eyeriss, that is modeled after a canonical ANN accelerator

Eyeriss. We observe that processing SNNs (both rate-coded,

and temporal-coded) in the traditional way imposes significant

data movement for neuron potentials in every tick. This

problem is exacerbated by the Eyeriss row-stationary dataflow,

in which partial-sums (or neuron potentials) are not fully accu-

mulated before being offloaded to its global buffer. To address

this problem, we introduce a new accelerator, SpinalFlow,

that processes spikes in a compressed, and chronologically

sorted manner in a single time-step (like ANNs). Using row-

stationary dataflow for this approach would lead to non-

trivial sorting overheads; this is addressed by adapting the

dataflow to use an output-stationary model. The proposed

dataflow does require repeated accesses of weights from a

large buffer. This large buffer reduces the compute density of

SpinalFlow, relative to the ANN baseline, for some workloads.

This drawback is alleviated when dealing with low resolution

inputs and sparse spike trains, which is an inherent property

of temporally coded SNNs. The architecture is thus designed

to naturally exploit the expected high sparsity in SNN spike

trains [40], [51]. Relative to the baseline ANN, SpinalFlow

has simpler processing elements, but an additional hardware

merge-sort unit and a large buffer to exploit weight reuse.

The main contributions of this paper are:

• An analysis of the inefficiencies in a baseline SNN

design.

• A representation for spike inputs and outputs that is

compressed, time-stamped, and sorted.

• An SNN architecture and dataflow that is tailored for

this input/output representation and that increases reuse

of neuron potential, input spikes, and weights.

• A 1.8× average energy improvement at 4-b resolution

and 90% sparsity over a 4-bit version of Eyeriss, a 5×

average energy improvement at 4-b resolution and 5.4×

average latency improvement at a sparsity of 90% over

8-bit Eyeriss, a 1.16× average energy improvement at

a sparsity of 90% over an SCNN [46] baseline, and an

order of magnitude energy improvement over the baseline

SNN architecture.

• The paper thus shows that SNN architectures can com-

plete the computations required for inference in similar

time and energy as an ANN architecture. This can sig-

nificantly impact platforms, e.g., those requiring real-time

learning, where SNNs have the potential to achieve higher

accuracies than ANNs.

II. BACKGROUND

Spiking Neurons

A number of projects [2], [28], [5] have attempted to

implement biologically plausible neuron models in hardware.

Many of these hardware projects implement neuron mod-

els that are highly simplified, but that can emulate many

biologically observed neuron behaviors, e.g., the Izhikevich

neurons [44]. The most popular of these simple neuron models

In 1 In 2

Out

In 1

In 2

Out

Time

Neuron Potential

Output spike

Leak
Weight 1 increment

Weight 2 increment
Reset potential

Threshold

Fig. 1: A basic 2-input LLIF spiking neuron. The figure shows

how the neuron potential is incremented when input spikes

are received, how a leak is subtracted when there are no input

spikes, and how an output spike is produced when the potential

crosses the threshold.

…
…

Input Interval

Spike trains for each pixel

White pixel

White pixel

Red pixel

Input Image

Fig. 2: Example of an input image converted into a number of

input spike trains that are fed to a rate-coded SNN (r-SNN).

is the Integrate and Fire model (IF), shown in Figure 1. An

IF neuron is stateful – it retains the value of its (membrane)

potential. This neuron potential reflects inputs that have been

received in the recent past. Inputs are received in the form

of binary spikes. When a spike is received on an input, the

synaptic weight for that input is added to the potential (see

Figure 1). In every tick, a leak is also subtracted from the

potential. When the neuron’s potential eventually reaches a

specified threshold, the neuron produces an output spike of its

own. After the spike, the neuron potential is reset.

Spiking neurons have the potential to be hardware-efficient

because inputs and outputs are binary spikes. The spiking

neuron model does not require a multiplier – because the

input is binary, the synaptic weight is simply added to the

potential. Spikes therefore can lead to efficient communication

and computation. This is a key feature of SNNs, but as we

show later, modern SNNs have failed to exploit this advantage.

Because a neuron is designed to respond after observing

spikes over time, an input (say, an image) is provided over an

input interval, e.g., 16 ticks1. Figure 2 shows how each pixel

of an input image is converted into a spike train that extends

1A tick is the minimum unit of time in an SNN. In one tick, a neuron
evaluates its inputs, updates its potential, compares against its threshold, and
produces a spike if necessary.

across an input interval. These spike trains are fed as inputs to

the first layer of neurons. Prior work has primarily used rate

codes, where for example, a red pixel value may be converted

into 8 spikes in 16 ticks, while a blue pixel value may be

converted into 12 spikes in the input interval. A temporal code

converts an input pixel value into a single spike at a specific

time, e.g., a red pixel value results in a single spike in the

8th tick, while a blue pixel value results in a single spike in

the 12th tick. The code also includes stochasticity, e.g., a rate

code may use a Poisson distribution to inject spikes [1].

We refer to rate-coded and temporally-coded SNNs as r-

SNN and t-SNN respectively. Since biological neurons work

at low resolution and because t-SNNs work better at low

resolution, t-SNNs use short input intervals [29], [40], [55].

t-SNNs also exhibit high levels of sparsity, i.e., under 10% of

all neurons produce a spike in an input interval [29], [51].

Spiking neurons are typically trained with a biologically

plausible process called STDP (Spike Timing Dependent Plas-

ticity [17]). This is an unsupervised training method where

each neuron adjusts its weights based on a local process

to estimate a spike’s relevance [13], [52]. To increase ac-

curacy, some recent works have also resorted to supervised

backpropagation-based training for SNNs [16], [15]. The re-

cent work of Comsa et al. [10] also employs this approach to

train a t-SNN to achieve the same accuracy as an ANN.

This is a key point. A t-SNN with its inherent lower

resolution, higher sparsity, and ability to find correlations

in inputs can match the accuracy of an ANN with higher-

resolution operands. But the efficiency advantages of t-SNNs

will not be evident until we improve its dataflow and operand

reuse.

SNN Accelerators

A variety of digital and analog SNN accelerators have been

described in the literature [12], [28], [19], [42], [36], [37],

[56], [2]. IBM’s TrueNorth processor [2] is the most prominent

example of a digital architecture for SNNs. TrueNorth is com-

posed of many tiles, where each tile implements 256 neurons,

each with 256 inputs. In every 1ms tick, a tile processes all

received input spikes and sends any resulting output spikes to

neurons in the next layer. Within a tick, the tile sequentially

walks through every neuron in that tile and every input spike

to perform several updates to each neuron potential. TrueNorth

achieves relatively poor throughput and latency because of its

1 ms tick. It also does not have any parallelism within a tile.

To enable an apples-to-apples comparison with state-of-the-art

ANNs, we design new baseline SNN architectures that borrow

some of the ANN accelerator best practices. This baseline

is described in Section III-A and offers orders of magnitude

better throughput and latency than TrueNorth.

ANN Accelerators

It is worth noting that in contrast to spiking neurons, artifi-

cial neurons rely on dot-product calculations, they do not retain

state across consecutive inputs, and they are typically trained

with supervised back-propagation based stochastic gradient

descent. A number of ANN accelerator designs have been

proposed in recent years [30], [53], [9], [6], [54]. In this

work, we use Eyeriss [7] as a baseline because it captures

many key innovations, it has been implemented in silicon,

and it has many publicly available details/tools. Eyeriss uses a

hierarchy of global buffers and scratchpads/registers scattered

across a grid of processing elements (PEs). It uses a row-

stationary dataflow for its PEs. Each PE processes a row

of computation for some kernels and some input feature

maps, thus exploiting reuse. The partial sums, feature maps,

and kernels then move to an adjacent PE to continue the

computations with high reuse. Such dataflows are a key feature

in most state-of-the-art ANN accelerators, e.g., the Google

TPU [25]. Many ANN accelerators also leverage sparsity in

weights and/or activations [61], [46], [54]. To save energy, a

multiplier/adder in Eyeriss skips its operation if either operand

is zero. Architectures like SCNN [46] can also exploit ANN

sparsity to reduce execution time.

III. UNDERSTANDING SOURCES OF SNN INEFFICIENCY

A. Defining the ANN and SNN Baselines

ANN Baseline

To identify sources of SNN inefficiency, we use the Eyeriss

architecture [7] as an ANN baseline. Eyeriss has the basic

optimizations (dataflow, reuse, ineffectuals) that are widely

adopted in both academic and commercial accelerators [25].

Much of our analysis focuses on an 8-bit version of Eyeriss,

while the SNN models employ a 16-tick input interval and

temporal codes with high sparsity. While the SNN design

has higher sparsity and lower resolution, those advantages

are inherent in the SNN design, i.e., we are not artificially

introducing an accuracy/efficiency trade-off. To further under-

stand the relative merits, we also compare SNNs (with varying

resolutions) to an ANN that engages the accuracy/efficiency

trade-off and operates at low resolution. Note that a 4-bit

Eyeriss has the same input resolution as a 16-tick SNN.

Eyeriss has a grid of processing elements (PEs) that are

fed with inputs/weights and partial sums from a global buffer.

Each PE has a MAC unit and a scratchpad that stores a row

of an input feature map (ifmap), a row of a filter, and partial

sums (psums) for the output feature map (ofmap). Figure 3a

shows the components in a single PE at 8-bit resolution. A PE

can elide a computation to save energy if either input is zero.

Within the 2D grid of PEs, ifmaps are shared diagonally, filters

are shared horizontally, and psums are accumulated vertically.

This is referred to as Row-Stationary dataflow [7].

SNN Baseline

Our SNN baseline, Spiking-Eyeriss, closely follows the

Eyeriss architecture. The resulting PE, shown in Figure 3b

and summarized in Table I, does not have a multiplier unit.

Ifmap scratchpads only have a width of 1 bit. Weights and

partial sums have the same width as the ANN baseline. After

comparing the potential to the threshold, a 1-bit neuron output

is produced; this 1-bit neuron output and the 8-bit neuron

potential must both be saved in the global buffer or in off-

chip DRAM. The 8-bit neuron potentials have to be retained

for the entire input interval.

Fig. 3: (a) PE in Eyeriss [6]. (b) PE in Spiking-Eyeriss.

Components Eyeriss Spiking-Eyeriss

PE Array 12 ×14 12 ×14

ALU per PE 8-b FxP MAC 8-b FxP Add & Cmp

Filter scratchpad 224× 8-b 224× 8-b

psum scratchpad 24×8-b 24×8-b

ifmap scratchpad 12×8-b 12×1-b

Global Memory 54 KB 54 KB

Core frequency 200 MHz 200 MHz

Off-chip memory HBM2 HBM2

TABLE I: Parameters for our ANN (based largely on Eyeriss)

and baseline SNN.

The PE grid in the SNN is more efficient than in the

ANN (no multipliers, ifmap scratchpads are only 1-bit wide).

Even though the inputs to a layer have shrunk in size, the

overall memory requirements in the SNN are higher because

every neuron’s potential must be retained. The architecture is

agnostic to the type of data encoding used (rate or temporal).

As described shortly, this SNN baseline offers significantly

higher throughput/area and throughput/power than the state-

of-the-art SNN architecture, TrueNorth [2].

In our analysis, we employ Tick Batching, where the PEs

work on all ticks of the input interval for a layer before moving

on to the next layer. In tick batching, the reuse distance for

membrane potential is short and with appropriate tiling, the

membrane potentials can be primarily accessed out of the

global buffer. Meanwhile, the output spike train from a layer

is likely too large to fit in the global buffer and may have to

be saved in off-chip DRAM. We have analyzed other forms of

batching, e.g., processing all layers before examining the next

tick, and concluded that tick batching leads to overall lower

data movement.

B. Evaluation Parameters

To evaluate Eyeriss and Spiking-Eyeriss, we developed an

energy/performance model that captures the latencies, energy,

and throughput for different networks. The model takes in

the layer specifications as input, and outputs the number of

accesses to different registers, scratchpads, buffers, and off-

chip memory. Based on these statistics, and the average energy

per operation, we calculate the energy per layer. The model

uses analytical equations to capture the dataflow of Eyeriss

ResNet 33 convolutional layers, 1 FC layer
MobileNet 13 PWC and 13 DWC layers

STDP-Net 2 conv layered network from [29]

SC-A 3x3x64x64, 1 layer, Synthetic
SC-B 3x3x512x512, 1 layer, Synthetic

DWC-A 3x3x1x64, 1 layer, Synthetic
DWC-B 3x3x1x512, 1 layer, Synthetic

PWC-A 1x1x64x64, 1 layer, Synthetic
PWC-B 1x1x512x512, 1 layer, Synthetic

FC-A 4096x4096, 1 layer, Synthetic
FC-B 1024x1024, 1 layer, Synthetic

Sparsity 60%, 90%, 98%

Resolution 8b, 6b, 4b, 3b, 2b

TABLE II: Workloads, degree of sparsity, and resolution. SC

- Standard Conv, DWC - Depth-Wise separable Conv, PWC -

Point-Wise separable Conv. The SNN network from [29] will

be referred to as STDP-Net for the rest of the paper.

(and Spiking-Eyeriss) based on layer dimensions and how they

map to the PE array. This mapping and resource contention

ultimately dictate PE utilization and performance. Note that

our analysis models the zero-gating technique of Eyeriss where

filter scratchpad and ALUs are gated when a zero-valued input

activation is encountered.

Table II summarizes the evaluated networks and the input

image sizes. We consider a range of synthetic single-layer

networks to understand how the architectures impact each

type of network topology. We also consider three full-fledged

networks [21], [22], [29] (ResNet, MobileNet, and STDP-

Net) that incorporate a number of varied layers. Previous re-

search [18], [23] has shown that the visual cortex is organized

as a cascade of simple and complex cells structured similar to

a CNN.

We implement and synthesize the processing elements of

both Eyeriss and Spiking-Eyeriss using 28 nm FDSOI tech-

nology node. First, we modeled the behavior of the PEs in

verilog and synthesized it using Synopsys Design Compiler.

We then used Innovus for the backend flow in order to get

accurate post layout metrics (area, delay and power) by taking

the parasitics into account. To model the global buffer, we

use CACTI [41] and scale the output from 32 nm to 28 nm

technology. To reduce the number of variables in our study,

we do not attempt memory compression, but simply assume

a low-energy HBM-like memory interface at 4 pJ/bit [45].

Based on the above methodology, we calculate an average

energy per operation for all components. This is combined

with the number of operations for each component to generate

the overall energy consumption for each layer. Table I has

details on each accelerator component. The primary metrics,

while keeping area roughly the same, are: energy per inference,

and latency per inference.

C. Analysis of Spiking Eyeriss

We first try to estimate the efficiency gap between our

baseline SNN and ANN. We consider the impact of rate coding

(r-SNN), temporal coding (t-SNN), sparsity, and resolution on

SNN energy. Figures 4 and 5 show the energy consumed by

r-SNN and t-SNN respectively on Spiking-Eyeriss. All data

points are normalized against an ANN operating at resolution

of 8 bits and its typical activation sparsity of 60%, i.e., 60%

of activations are zero.

Fig. 4: Energy consumed per inference by r-SNN on Spiking-

Eyeriss normalized to Eyeriss. Sp60, Sp90, and Sp98 refers to

60%, 90%, and 98% sparsity respectively.

Fig. 5: Energy consumed per inference by t-SNN on Spiking-

Eyeriss normalized to Eyeriss.

At high resolution and low sparsity, Spiking-Eyeriss con-

sumes an order of magnitude more energy than Eyeriss. This

is because of the need to repeatedly update neuron potential

and fetch a weight multiple times across the input interval.

For sparse inputs, Spiking-Eyeriss and Eyeriss can avoid

filter reads and partial-sum updates. Because t-SNNs encode

non-zero inputs with a single spike, they consume less energy

than r-SNNs. The difference is 1.63×, 1.03×, 1.08×, and

1.004× at 8bSp60, 8bSp98, 2bSp60, and 2bSp98 respectively,

i.e., as one might expect, the gap shrinks when spike activity is

low. More noteworthy is the “crossover point”, when the SNN

energy falls below that of the baseline Eyeriss. For r-SNN and

t-SNN, this happens at 3bSp90 and 3bSp60 respectively. This

quantifies the sparsity and resolution required for an SNN

to overcome its inherent disadvantage of managing neuron

potentials across many ticks and spikes.

Summary. The Spiking Eyeriss baseline has a peak through-

put/area of 70 GOps/s/mm2, which is 519× higher than that

of TrueNorth. Truenorth is a design optimized for high levels

of spike sparsity, and therefore low leakage and low energy

per neuron, so its peak throughput/watt is comparable to that

of Spiking Eyeriss with temporal codes and 90% sparsity. In

spite of this throughput advancement relative to TrueNorth,

there is a wide gap between the ANN and SNN baselines.

The performance gap (16×) is because of the need to process

all (16) ticks in the input interval. In terms of energy, we see

that temporal coding is clearly superior. While a large fraction

of prior SNN work has focused on rate coding, we note here

that algorithmic advances in temporal coding are required so

that its inherent energy efficiency can be leveraged. For the rest

of the study, we will focus on the t-SNN with tick batching.

However, this SNN baseline with 90% sparsity and 16-tick

intervals consumes 2× more energy per inference than the

ANN because of its repeated accesses to neuron potential and

filter weights. We next devise techniques to shrink this gap.

IV. PROPOSED SNN ARCHITECTURE: SPINALFLOW

Our analysis has shown that the key drawback in our

baseline SNN is the need to iteratively process (say) 16 ticks

for every input interval, which in turn takes more time and

requires many accesses to the memory hierarchy to update

neuron potential and read filter weights. While the row-

stationary dataflow of Eyeriss is highly efficient for ANNs,

we must devise a new dataflow that caters to the temporal

aspects and new reuse patterns exhibited by SNNs. We refer

to this new architecture as SpinalFlow.

Fig. 6: A spine in a CONV layer.

Terminology. Before we start, Figure 6 is a quick summary

of the terms we’ll use in our description. We first discuss the

operations in a CONV layer. Figure 6 shows a layer with

C ifmaps each of dimension H×W. Each of the K R×S×C

kernels is convolved with the entire ifmap to produce K

ofmaps. When the first kernel is applied to the first receptive

field, i.e., the first R×S×C grid in the ifmap, the first neuron

in the first ofmap is produced (the darker region in the 1st

ofmap). Likewise, when K kernels are applied to this same

grid of inputs, the 1st neuron in all the ofmaps are generated

as shown by the dark region in Figure 6. We refer to these K

neurons as a spine. In our discussions, we assume the value of

K to be 128. The computation is ordered such that we produce

the first spine of the ofmaps, followed by a shift of the input

receptive field to produce the second spine, and so on.

Hardware Organization. We use an array of 128 PEs. Each

PE has an accumulator (register and adder) and a comparator.

Each PE is responsible for producing a neuron in an ofmap

spine. Figure 7 shows the first step, where the PEs are

responsible for the first spine of the ofmaps; PE-1 produces

the first neuron for ofmap-1, PE-2 produces the first neuron

for ofmap-2, and so on. Similar to our baselines, these PEs are

fed by a global buffer that stores kernel weights. The PEs use

a form of output stationary dataflow, i.e., PE-1 is dedicated

to work on the first neuron for ofmap-1 till all its inputs are

processed. Over the next many cycles, the PEs will receive all

the spikes in their input receptive field for their input interval.

The Input Buffer provides these input spikes. The example

in Figure 7 shows that the input spikes are chronologically

sorted: < 1, 17 >,< 2, 1926 >,< 3, 75 >,< 3, 460 > . . .,
i.e., input 17 has a spike in tick-1, input 1926 has a spike in

tick-2, input 75 has a spike in tick-3. Note that in our example,

the receptive field has a size of 2K, and every neuron in that

receptive field can only spike at most once in its input interval

(temporal code), so the input buffer can have up to 2K entries.

128 PEs also require that the global buffer feed 128 different

weight values, therefore demanding a wider bus than in the

baseline. We later factor this in our evaluation.

PE 110

PE 128

PE 1

PE 2

…
…

Send weights to

increment neuron

potentials

Working on 1st neuron of 1st ofmap

Working on 1st neuron of 2nd ofmap

Working on 1st neuron of 128th ofmap

110th ofmap produces

a spike in tick-1

<1,110> output queue

1st spine of ofmaps

Working on 1

Working on 1

<1,17>, <2,1926>, <3,75>, <3,460>, …

Fetch 17th row of kernel weights

Chronologically sorted spikes in this

input interval in this receptive field

Input buffer

Global buffer

Fig. 7: Example: Step1, Cycle 1.

Step 1: Cycle 1. Step 1 produces the first spine in the ofmaps;

producing this first spine can take up to 2K cycles. In the first

cycle (shown in Figure 7), we examine the first entry in the

input buffer. It represents a spike in input 17 in tick 1. Each

of the PEs’ neuron potential must be incremented by their

corresponding kernel weight. We therefore read a row of 128

weights from the global buffer, corresponding to the 17th entry

of all 128 kernels. Each PE receives one of these 128 weights

and the weight is added to the neuron potential. The neuron

potential is compared to its threshold. In our example, PE-110

has exceeded its threshold in tick-1, so it produces a spike

< 1, 110 > that is placed in its output buffer. After producing

its spike, PE-110 idles for the rest of the input interval because

a neuron can only produce one spike in its input interval.

PE 73

PE 128

PE 1

PE 2

…
…

Send weights to

increment neuron

potentials

Working on 1st neuron of 1st ofmap

Working on 1st neuron of 2nd ofmap

Working on 1st neuron of 128th ofmap

73rd ofmap produces a

spike in tick-2

<1,110>, <2,73> output queue

1st spine of ofmaps

Working on 1

Working on 1

<2,1926>, <3,75>, <3,460>, …

Fetch 1926th row of kernel weights

Chronologically sorted spikes in this

input interval in this receptive field

Input buffer

Global buffer

Fig. 8: Example: Step1, Cycle 2. Step 1 continues until all

receptive field entries (up to 2K) have been processed.

Step 1: Cycle 2. In the next cycle, the next spike in the

input buffer is processed (shown in Figure 8). This happens

to be input 1926 spiking in tick 2. The row of 128 weights

corresponding to input 1926 are read from the global buffer

and fed to the PEs. Another set of neuron potential increments

is performed at the PEs. PE-73 produces a spike and idles.

The output buffer is appended with this new spike at tick-

2: < 2, 73 >. We see that the spikes in the output buffer are

naturally sorted, i.e., the first spine of the ofmaps is represented

as a list of chronologically sorted spikes.

End of Step 1. The process repeats for up to 2K cycles until all

spikes in the input buffer have been processed. Since some of

the neurons in the previous layer may not have spiked in their

input interval, the actual processing time can be variable and

much less than the worst-case 2K cycles. In our evaluation, we

assume the worst case, and leave the exploitation of activation

sparsity for future work. The output buffer now contains up

to 128 chronologically sorted output spikes, corresponding to

a spine of the ofmaps. In practice, each spine will have less

than 128 entries (since several neurons may never spike in

an input interval). This spine is then written into the global

buffer (see Figure 10) and will be used later as input to the

next convolutional layer.

Starting Step 2. We are now ready to move to step 2, where

the PEs are responsible for computing the 2nd spine of their

ofmaps. The PEs reset their neuron potentials to zero. Before

we start step 2, we must shift the receptive field and create a

new input buffer with sorted spikes within the new receptive

field. Note that the previous layer produced sorted spines of

its ofmaps, which now serve as sorted ifmap spines for the

current layer. To create the sorted receptive field, we must

first read 16 of these ifmap spines from the global buffer into

16 ifmap spine buffers. As shown in Figure 10, these 16 pre-

Fig. 9: (a) SpinalFlow architecture. (b) SpinalFlow PE details. (c) Pseudocode of SpinalFlow dataflow

<1,110>, <2,73> … <254, 26> output queue

1st spine of ofmaps

Merge sort with a

tree of comparators

Global buffer

ifmap spine

buffers

Spine 1

Spine 16

… …

Next chronological spike in

the input receptive field

1. Record the first spine of the ofmaps

2. Get ready to process the second spine of the ofmaps

Fig. 10: Example: End of Step 1 and set-up before Step 2.

sorted 128-entry spines can be merge-sorted to produce the

sorted 2K entries that represent the input receptive field. The

16 ifmap spine buffers and the merge-sort unit have replaced

the conceptual sorted input buffer that we showed in earlier

figures. The merge-sort unit is simply a tree of comparators

that, in every cycle, picks the smallest entry among the heads

of each ifmap spine buffer. Depending on the spine that

produced that entry, an offset is added so the correct row

of weights is accessed. To initiate every step, 16 cycles are

required to populate the ifmap spine buffers. This is a small

overhead for convolutions since the step requires hundreds of

cycles of computations.

Summary. With this spine-oriented output-stationary dataflow,

the proposed SpinalFlow architecture no longer suffers from

the drawbacks in our baselines. Because we are using tem-

poral codes and because we sequentially walk through time-

stamped spikes, we need exactly as many computations as

the ANN baseline, i.e., we are no longer penalized by the

multi-tick input interval. Creating the compact sorted list

of time-stamped spikes is trivial because of how spikes are

produced by the previous layer. The architecture can yield

speedups with activation sparsity with zero change, while for

a similar performance effect, an ANN requires more invasive

changes [46], [3]. By using an output stationary dataflow, a

neuron is mapped to its PE for the entire input interval. The PE

initializes its neuron potential accumulator to zero, increments

it as spikes are received, produces a spike when the threshold is

crossed, and discards the neuron potential before moving on to

the next neuron. We are thus eliminating separate storage and

data movement for neuron potential. Note that our dataflow

focuses on maximizing neuron potential reuse and parallelism

across a spine because of the need to sequentially process

each tick; Eyeriss on the other hand optimizes a combination

of reuse of inputs, kernels, partial sums.

Hardware Details. We observed that provisioning SpinalFlow

with as many resources as Eyeriss led to a sub-optimal design.

We therefore provide as many resources as required for the

common case observed in our dataflow.

We use 128 PEs in our design because the number of feature

maps per layer in large convolutional networks is often a

multiple of 128. The overall architecture of SpinalFlow is

shown in Figure 9a, and the details of one PE are shown

in Figure 9b. The pseudo-code for our dataflow is shown in

figure 9c. Each PE in our design is much simpler than the PE

in Eyeriss. Since we are no longer processing an entire row at

a time (the row-stationary dataflow of Eyeriss), the PE does

not require large scratchpads. Such scratchpads occupy half

the core area in Eyeriss, so this is a significant saving.

The SpinalFlow global buffer from earlier figures is split

into a Filter Buffer and Input Buffer. While Eyeriss retains

most of its weights in scratchpads, SpinalFlow retains its

weights in a Filter Buffer. This buffer has to store all the

weights in a receptive field for several filters because any of

those weights may be required in a step. To accommodate

some of the large convolutions in our workloads, we employ

a 576 KB Filter Buffer organized into 32 banks, with a row

width of 128 bytes (providing 128 1-byte weights at a time).

In order to feed weights to 128 PEs in a cycle, the Filter

Buffer needs an output bus width of 1024 bits. Depending on

the type of layer being executed, bank assignment for weights

and feature maps can be configured.

The inputs are received from a 9 KB Input Buffer, which

stores the neuron ids and spike times for multiple spines.

Components Eyeriss-1K 8b(4b) SpinalFlow 8b(4b)

PEs 168 128
ALU/PE 8b (4b) MAC 8b(4b) Add, Cmp

Filt scratchpad 224× 8b (4b) 1× 8b (4b)
psum/Vmem spad 24×8b (4b) 1×8b (4b)
ifmap scratchpad 12×8b (4b) 1×8b (4b) (shared)

Global Buffer 54 (27) KB 585 (292.5) KB
GLB bus-width 448(224)-psum, 1024(512)-filt,

448(224)-filt,112(56)-ifmap 8(4)-spike
Core frequency 200 MHz 200 MHz

DRAM B/W 30 GB/sec 30 GB/sec

PEs A/P 0.353(0.1412)/515.5 0.024(0.012)/51.5
Min find A/P - 0.002(0.00092)/1
Inp Buff A/P - 0.069(0.0088)/4.3
GLB/FB A/P 0.715(0.21)/48.7 1.99(0.78)/105.6

Total A/P 1.068(0.35)/564.2 2.09(0.801)/162.4

TABLE III: Architecture specifications of SpinalFlow and

Eyeriss-1K. FB- Filter Buffer, GLB - Global Buffer, B/W -

Bandwidth, A - Area in mm2, P - Power in mW

The spines for the input receptive field are fed to a Min

Finder circuit (a tree of comparators) that identifies the next

chronological spike and uses that neuron id to read a row

of weights from the Filter Buffer. The PE array output is

marshalled into an output queue that is eventually written to

off-chip memory.

To evaluate the power and area of the processing elements

and Min Finder, we adopt the same synthesis and SPICE

methodology described in Section III-B. To model the Input

and Filter SRAM buffers, we use CACTI [41]. Area and power

estimates are summarized in Table III. We do not add the

other exotic SNN features that can be found in TrueNorth

(leak, stochasticity, various operation modes). We leave this

for future work and note that the PEs account for a small

fraction of chip area. Note that SpinalFlow seamlessly handles

sparsity, which is an important feature in SNNs, i.e., a neuron

that doesn’t spike does not consume any resource bandwidth.

Other Networks. For small networks, where an input spike is

seen by fewer than 128 neurons in the next layer, the PEs

will be under-utilized. This is the uncommon case in our

workloads. For larger networks, the computation has to be

decomposed to work on 128 output feature maps at a time.

The filter buffer has been sized large enough to accommodate

all weights for 128 filters in our large convolutional layers.

Once the filter buffer is loaded, it is reused several times to

completely process the corresponding output feature maps.

The demands of a fully-connected network are different.

Typically, the input receptive field is large. The spikes in this

receptive field have to be chronologically sorted beforehand,

with potentially multiple hierarchical passes over the Min-

Finder circuit (which can only handle 16 128-entry spines

at a time). The sorted list is then reused for a large set of

output neurons. At a time, the PEs can process 128 output

neurons. The entire input spike train for these 128 output

neurons is processed before we move to the next 128 output

neurons. Similar to most accelerators like Eyeriss and TPU, a

fully-connected layer exhibits no weight reuse and is typically

limited by the memory bandwidth required to fetch weights.

Based on the input spike, a set of weights is fetched from

memory, fed to the PEs, and then discarded. The only way

to improve weight reuse and PE utilization is with batching,

e.g., process 100 images at a time. In an SNN, such image

batching is only effective if all the weights for the layer can be

retained on the chip at a time (since each image in the batch

has to fetch weights corresponding to its next input spike). We

evaluate this in the next section.

V. RESULTS

A. SpinalFlow vs. Eyeriss.

Energy Comparison.

Figure 11 shows the energy per inference of SpinalFlow

for synthetic conv layers normalized to Eyeriss. The early

analysis assumes 8-b resolution and 60% activation sparsity

for Eyeriss; we later also consider lower-resolution versions

of Eyeriss. Along the X-axis, we vary SNN sparsity and reso-

lution for SNN activations and weights. Even at 8b resolution

and 60% sparsity, for most synthetic workloads, SpinalFlow

consumes less energy than Eyeriss. This is mainly because

of the way SpinalFlow handles sparsity. Figure 12 shows the

energy breakdown of different components in Eyeriss and

SpinalFlow. The filter buffer and scratchpads are the dominant

energy contributors in SpinalFlow and Eyeriss respectively.

In SpinalFlow, no access is made to the filter buffer (which

contributes 88% of total energy) whenever a zero-valued

activation is encountered. Due to this, energy of SpinalFlow

scales well with sparsity. Eyeriss on the other hand has to

access its GLB and ifmap-spad (together contribute 44% of

total energy), irrespective of activation sparsity. Therefore,

the gap between SpinalFlow and Eyeriss grows as sparsity

increases. Figure 11 also shows that SpinalFlow is sub-optimal

when handling DWC layers. This is because ofmaps in DWC

do not share inputs, so the 128-wide PEs and buffer fetches

are severely under-utilized.

Fig. 11: Energy/inference of SpinalFlow normalized to an 8-bit
Eyeriss with 60% sparsity. Sp60, Sp90, and Sp98 refers to 60%, 90%
and 98% sparsity for the SNN.

Figure 13 shows the energy/inference of SpinalFlow relative

to Eyeriss for our three full workloads. MobileNet is a

combination of 13 DWC and 13 PWC layers. Even though

SpinalFlow is inefficient at processing DWC layers at high

Fig. 12: Energy/inference of ResNet at 8b resolution and 60%
sparsity. (a) On Eyeriss, (b) On SpinalFlow. ifmap, filt and psum
refers to corresponding scratch-pads in Eyeriss PE.

resolution, it is overall more energy-efficient than Eyeriss for

MobileNet because the DWC layers account for only 3% of

execution time. The energy savings are generally higher for

the other two workloads. Unlike Spiking-Eyeriss, SpinalFlow

is more energy-efficient than Eyeriss at nearly all evaluated

sparsity/resolution points. At 4-bit resolution and 90% sparsity,

on average for the three full workloads, SpinalFlow consumes

5× less energy than the Eyeriss baseline.

Note that SNNs naturally exhibit high sparsity [51]. Prior

work [29] shows that t-SNNs trained with STDP can achieve

significantly higher sparsity at lower input resolutions than

ANNs. While ANNs are unlikely to exhibit higher levels of

sparsity than that already shown in prior work and assumed

in our ANN baseline, ANNs can certainly operate at lower

resolution with lower accuracy (discussed in Section VI-B).

We next evaluate how SpinalFlow energy compares against

Eyeriss at lower resolutions.

Fig. 13: Energy per inference for SpinalFlow for full work-

loads, normalized to 8bSp60 Eyeriss.

Effect of Low Resolution.

Figure 14 plots the energy per inference of our synthetic

workloads on SpinalFlow – unlike earlier graphs that nor-

malize against an 8-bit Eyeriss baseline, the data here is

normalized against an Eyeriss baseline with the same reso-

lution as SpinalFlow. The ANN sparsity is 60% throughout.

In general, the SpinalFlow improvement is a little lower at

lower resolutions – note how the left to right trend is slightly

increasing in Figure 14, whereas it was clearly decreasing

in Figure 11. This is primarily because the flip-flops in the

baseline Eyeriss PE scale down better than the SRAM filter

buffer in SpinalFlow. This pattern is also oberved with full

workloads shown in Figure 15. At 4-bit resolution and 90%

sparsity, on average, SpinalFlow consumes 1.8× less energy

than a 4-bit Eyeriss baseline.

Fig. 14: Energy/inference of SpinalFlow, normalized to an

Eyeriss baseline with the same resolution as SpinalFlow. Note

that sparsity of Eyeriss is fixed at 60%.

Fig. 15: Energy/inference of SpinalFlow for full workloads,

normalized to an Eyeriss baseline with the same resolution as

SpinalFlow.

Latency Comparison. Latency/inference of SpinalFlow nor-

malized to Eyeriss (8-b resolution and 60% activation sparsity)

is shown in Figure 16. We model two versions of Eyeriss,

one with 1K global buffer wires (similar to SpinalFlow) and

another with 72 (similar to original Eyeriss). Note that in

SpinalFlow, latency changes only with the degree of sparsity,

and not with resolution. While DWC is an exception because

of its low utilization, the other workloads in SpinalFlow are

competitive with Eyeriss at 0% sparsity because they have

comparable compute and utilization. At high sparsity levels,

SpinalFlow is orders of magnitude faster than Eyeriss because

the execution time is a function of the spike train size; at

90% sparsity, the speedup is 5.4× on average for our three

full workloads. When dealing with sparse inputs, our baseline

Eyeriss already saves energy by gating the ALU, but it does

not save time by jumping to the next computation. Accel-

erators like SCNN [46] are able to save time when dealing

with sparse inputs. SCNN adds index generation logic and a

crossbar network to achieve this and offers a 2.7× performance

improvement for the typical sparsity observed in ANNs. Thus,

even with a better baseline like SCNN, SpinalFlow offers a

significant speedup [51], [29].

Fig. 16: Latency per inference of SpinalFlow with respect to

Eyeriss (a) with 72 GLB links and (b) with 1024 GLB links.

B. SpinalFlow vs. Spiking-Eyeriss

Fig. 17: SpinalFlow energy per inference normalized to

Spiking-Eyeriss for synthetic conv workloads.

Figure 17 shows the energy per inference of SpinalFlow nor-

malized to that of Spiking-Eyeriss at corresponding resolution

and degree of sparsity. As both architectures are executing

t-SNNs, the computation overhead will be similar for all

design points. Recall that unlike SpinalFlow, Spiking-Eyeriss

processes spikes tick-by-tick, and incurs significant off-chip

and GLB overhead. 70% of the on-chip energy and 64% of

the total energy of t-SNNs at 8b resolution is due to GLB

accesses and off-chip accesses respectively. This results in

Spiking-Eyeriss consuming an average of 35× more energy

than SpinalFlow at 8b resolution. Once input resolution is

decreased, the overhead of off-chip and GLB accesses reduce

significantly and hence the improvement of SpinalFlow over

Spiking-Eyeriss reduces as well. For similar reasons, the

relative efficiency of SpinalFlow improves at higher degrees

of sparsity. Figure 18 shows a similar trend on our three

workloads. At 4-bit resolution and 90% sparsity, all three

workloads on SpinalFlow consume roughly 5× lower energy

than Spiking-Eyeriss. Spiking-Eyeriss processes inputs tick-

by-tick, and hence is 2
resolution times slower than Eyeriss.

It is therefore multiple orders of magnitude slower than

SpinalFlow.

Fig. 18: SpinalFlow energy per inference normalized to

Spiking-Eyeriss for full network workloads

C. Fully-Connected Layers

For fully-connected networks with a batch size of 1, the

execution is entirely dominated by the bottleneck in fetching

weights from DRAM, which accounts for 90% of the total

system energy in both SpinalFlow and Eyeriss. If we assume

that 200 inputs are batched, then SpinalFlow is an order of

magnitude more efficient than baseline Eyeriss. This is because

baseline Eyeriss has a relatively small on-chip storage capac-

ity, requiring multiple DRAM accesses for either activations

or weights (depending on the chosen dataflow). However, if

we were to augment Eyeriss with substantial on-chip buffer

capacity (similar to that of SpinalFlow) and a dataflow to

maximize weight reuse, the energy bottleneck again shifts

to the other microarchitectural components in Eyeriss and

SpinalFlow.

Fig. 19: Energy per Inference of the synthetic fully connected

workloads for SpinalFlow normalized to Eyeriss.

We observe similar trends as for convolutional layers.

Figure 19 shows the energy of SpinalFlow with respect to

Eyeriss for executing workloads FC-A and FC-B at a batch

size of 200. At 0% sparsity, SpinalFlow consumes 20% more

energy than Eyeriss, whereas at a higher sparsity level of 90%

and at 4b resolution, SpinalFlow consumes 0.3× of the energy

consumed by Eyeriss.

D. Scalability Study

Fig. 20: Energy per inference for ResNet on SpinalFlow,

normalized to Eyeriss, as a function of the number of PEs

in SpinalFlow.

Next, we analyze the scalability of SpinalFlow as the

number of PEs and, correspondingly, the size of the weight

buffer are varied. Figure 20 shows the change in energy per

inference as the PEs (and the weight buffer) are increased

from 32 (144 KB) to 512 (2.25 MB) for ResNet. Increasing

the compute and storage resources increases the efficiency,

but with diminishing returns beyond 128 PEs. This is because

few layers use more than 256 feature maps, and weight buffer

energy increases significantly. Similar results were observed

for other workloads as well.

Fig. 21: Compute density (GOPS/mm2) of SpinalFlow nor-

malized to Eyeriss and its area as the number of PEs is varied.

Figure 21 shows the throughput-per-area for our three work-

loads and SpinalFlow area as the PE count (and buffer size)

are varied. Because of the large weight buffer in SpinalFlow,

it does not fare as well as Eyeriss in throughput-per-area in

many cases. This effect can be alleviated by using fewer PEs

and smaller buffers.

E. SpinalFlow vs. SCNN

As a sensitivity analysis, we also compare SpinalFlow

to SCNN [46], an ANN accelerator that exploits sparsity.

We model SCNN at 8-bit resolution and with 8 PEs (128

MAC units) for an iso-ALU comparison. We make favorable

assumptions for SCNN – we do not model the computation

and storage overheads of meta-data (indices), and the crossbar

that connects MACs with the accumulator buffer. We model

the accumulator buffer with 2 banks instead of 32 due to lim-

itations with Cacti. For ResNet, SpinalFlow at 60% activation

sparsity consumes 1.02× less energy than SCNN, whereas

at 90% activation sparsity, it consumes 1.16× less energy

than SCNN. While we assume a similar buffer organization

as in the original SCNN work, we expect that a sweep of

different buffer hierarchies may reveal more energy-efficient

SCNN design points.

VI. RE-VISITING THE SNN VS. ANN DEBATE

There remains a healthy debate within the community about

the merits of SNNs and ANNs. These issues have been dis-

cussed in keynotes at ASPLOS 2014 (Gehlhaar [19]), HPCA

2015 (Modha [39]), ISCA 2015 (Temam [57]), ASPLOS

2016 (Williams [59]), and FCRC 2019 (Smith [55]). In this

section, we summarize the current state of this debate, given

our findings. In particular, our analysis is among the first to

demarcate when an SNN is a better or worse choice than an

ANN.

A. Comparing SNN vs. ANN Efficiency

A couple of papers have analyzed SNN vs. ANN efficiency.

A MICRO 2015 paper by Du et al. [13] attempted a head-to-

head comparison of ANN and SNN hardware. They compare

a two-layer ANN (100 neurons in the first layer and 10

neurons in the second layer) against a one-layer SNN (300

neurons) on the MNIST workload for digit recognition. The

architecture models assume some dedicated hardware per

neuron, an approach that does not scale up to large networks.

For this limited comparison, the authors conclude that ANNs

and SNNs have similar per-neuron area and power overheads.

A more recent paper by Khacef et al. [27] improves upon

this prior work with more efficient and more accurate neuron

models, but draws similar conclusions for a limited set of

networks and dataflows. Our analysis of larger/diverse net-

works and architectures shows that data reuse is a key factor;

with baseline dataflows, we show (contrary to prior work) that

SNNs are an order of magnitude worse than ANNs in most key

metrics. The execution time is 2resolution higher and energy is

35× higher at high resolution and 2× higher at low resolution.

With our new dataflow, for smaller input intervals, where t-

SNNs are expected to perform best [55], SNNs consume 5×

lower energy. SNN and ANN energy efficiency are almost on

par even for large input intervals. When networks exhibit high

sparsity, also expected for t-SNNs [51], [55], SNN execution

time and energy improve significantly. The comparison is more

nuanced if ANNs are also allowed to lower resolution; this is

an approach that is known to significantly lower accuracy [11],

[26], [48], [62]. With this approach, as shown in Figures 14

and 15, ANNs and SNNs are comparable in terms of energy;

the nature of the network and the degree of sparsity determines

the winning architecture.

B. Discussion of Prediction Accuracy

The improved dataflow in this paper only improves effi-

ciency (time and energy), and we quantify the relationship

between efficiency and sparsity/resolution. The new dataflow

has no impact on accuracy. But since accuracy is a primary

consideration in the SNN vs. ANN debate, for completeness,

we articulate the conditions under which SNNs or ANNs may

be superior.

First, consider a use-case where labeled datasets are avail-

able for supervised training on GPU/TPU clusters. This is

the scenario where ANNs with back-propagation based SGD

represent the state-of-the-art. A number of studies have shown

that r-SNNs can borrow such weights and achieve similar

accuracies as ANNs [27], [13], [15], [16], [50]. This is

primarily because an r-SNN neuron can emulate the behavior

of an ANN. On the other hand, t-SNN training has received

less attention and t-SNNs generally have lower accuracies. We

summarize some of these key results in Table IV. Given that

t-SNNs are more efficient in terms of time and energy on

SpinalFlow, t-SNN training is an area that demands future

investment, a point also made by Smith [55]. The work of

Comsa et al. [10] shows an example t-SNN operating at low

resolution and high sparsity that matches the accuracy of an

ANN. With further advances along these lines, t-SNNs may

be able to achieve higher accuracies and lower energy than

high- and low-res ANNs. Note that low resolution has typically

been a significant handicap for ANNs in terms of accuracy,

but this is not the case for SNNs [29]. For a more complete

summary of the trade-off space, we also show the impact of

low-resolution ANNs on accuracy in Table IV, e.g., note that

a 4-bit ANN can reduce accuracy by 2.9% (for AlexNet on

ImageNet [62]).

A second use case is one where continual learning is

required. The ability of STDP to efficiently perform online

training allows SNNs to react faster when new inputs are

encountered, e.g., new landscapes during disaster recovery or

new accents during speech processing. Note that in such use

cases, curated, pre-processed, and labeled datasets are often

not available. The training may also have to be performed at

low energy on an edge device, e.g., a rover handling disaster

recovery. The area of continual learning [8] is an emerging

one with a limited amount of literature. ANNs trained with

SGD suffer from the concept of catastrophic forgetting [38],

[49] when they are sequentially trained on two datasets, i.e.,

SGD’s global error minimization tends to perturb all network

parameters to react to the new dataset [20], [35], [31], [4]. On

the other hand, STDP does not require labeled datasets and its

localized training can naturally earmark a subset of neurons for

the new dataset, while not perturbing the rest of the model [4].

For such use cases, SNN/STDP is a clear winner and can

exploit the new dataflows to significantly reduce execution

time and energy.

Workload ANN Accuracy SNN Accuracy

MNIST 99.8% [58] r-SNN(SGD): 99.59% [33]
1-bit res: 99.04% [11] r-SNN(STDP+SGD): 99.28% [32]

t-SNN (SGD): 97.96% [10]
t-SNN (STDP): 98.4% [29]

CIFAR10 92.38% [50] r-SNN: 90.53% [60]
1-bit res: 88.6% [11]

AlexNet on 55.9% [62], [24] r-SNN: 51.8% [24]
ImageNet 1-bit res: 44.2% [48]

2-bit res: 49.8% [62]
4-bit res: 53.0% [62]

VGG on 70.52% [51] r-SNN: 69.96% [51]
ImageNet

ResNet on 70.69% [51] r-SNN: 65.47% [51]
ImageNet

TABLE IV: Accuracy comparison with supervised training on

labeled datasets.

VII. CONCLUSIONS

Our work first shows that the baseline SNN architecture,

Spiking Eyeriss, is severely penalized by repeated accesses to

neuron potential and filter weights as ticks are sequentially

processed in the input interval. The Spiking-Eyeriss design

consumes 2× more energy than baseline Eyeriss, even at high

sparsity and low resolution. It is also 2
resolution times slower

than Eyeriss. We then devised a new architecture and dataflow

that increases data reuse and is tailored for the high sparsity

that is expected in future SNNs.

The resulting SpinalFlow design improves energy efficiency

by 5× over Eyeriss and by 1.8× over a 4-bit version of

Eyeriss. It consumes less energy than Eyeriss at most evaluated

sparsity/resolution points. The new designs are effective for

a range of convolutional layers, and even more effective for

memory-constrained fully-connected layers. In terms of per-

formance, SpinalFlow is faster than Eyeriss by 5.4×, when as-

suming a sparsity level of 90%. Because SpinalFlow’s weight

accesses are less regular, it needs a larger buffer for weights,

and yields lower throughput/mm2 than Eyeriss for some

workloads. The new architecture also greatly improves the en-

ergy, latency, and throughput for accelerators, like TrueNorth,

that will be used to simulate brain models [34], [2]. We thus

show that for large neural networks, reuse management and

sparsity exploitation are key in determining SNN vs. ANN

relative efficiency.

Our results also serve as a useful guideline for researchers

developing SNNs for various use cases. Our analysis quantifies

the scenarios (resolution, sparsity, network topology) under

which SNNs can surpass the energy efficiency of ANNs. We

highlight the need to develop accurate training models for t-

SNNs because it results in higher sparsity levels and lower

energy per inference.

VIII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for many helpful sug-

gestions. This work was supported in parts by NSF grant CNS-

1718834, Google, and NSF CAREER award 1751064.

REFERENCES

[1] K. Ahmed, A. Shrestha, Q. Qiu, and Q. Wu, “Probabilistic Inference Us-
ing Stochastic Spiking Neural Networks on a Neurosynaptic Processor,”
in Proceedings of IJCNN, 2015.

[2] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba,
M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and
D. Modha, “TrueNorth: Design and Tool Flow of a 65mW 1 Million
Neuron Programmable Neurosynaptic Chip,” IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems, vol. 34(10), 2015.

[3] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. Jerger, and
A. Moshovos, “Cnvlutin: Zero-Neuron-Free Deep Convolutional Neural
Network Computing,” in Proceedings of ISCA-43, 2016.

[4] J. M. Allred and K. Roy, “Stimulating STDP to Exploit Locality for
Lifelong Learning without Catastrophic Forgetting,” in arXiv preprint

arXiv:1902.03187, 2019.

[5] B. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. Chandrasekaran,
J. Bussat, R. Alvarez-Icaza, J. Arthur, P. Merolla, and K. Boahen,
“Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale
Neural Simulations,” Proceedings of the IEEE, vol. 102(5), 2014.

[6] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” IEEE Journal of Solid-State Circuits, no. 52(1), 2016.

[7] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,” in
Proceedings of ISCA-43, 2016.

[8] Z. Chen and B. Liu, Lifelong Machine Learning. Morgan & Claypool,
2018.

[9] P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang,
and Y. Xie, “PRIME: A Novel Processing-In-Memory Architecture
for Neural Network Computation in ReRAM-based Main Memory,” in
Proceedings of ISCA-43, 2016.

[10] I. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo, and
J. Alakuijala, “Temporal Coding in Spiking Neural Networks with Alpha
Synaptic Function,” arXiv preprint arXiv:1907.13223v2, 2019.

[11] M. Courbariaux and Y. Bengio, “BinaryNet: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or -1,” 2016,
arXiv preprint 1602.02830.

[12] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A Neuromorphic
Manycore Processor with On-Chip Learning,” IEEE Micro-38, 2018.

[13] Z. Du, D. Rubin, Y. Chen, L. He, T. Chen, L. Zhang, C. Wu,
and O. Temam, “Neuromorphic Accelerators: A Comparison Between
Neuroscience and Machine-Learning Approaches,” in Proceedings of

MICRO-48, 2015.

[14] J. E.Smith, “Space-Time Algebra: A Model for Neocortical Computa-
tion,” in Proceedings of ISCA, 2018.

[15] S. Esser, R. Appuswamy, P. Merolla, J. Arthur, and D. Modha,
“Backpropagation for Energy-Efficient Neuromorphic Computing,” in
Proceedings of NIPS, 2015.

[16] S. Esser, P. Meroll, J.V.Arthur, A.S.Cassidy, R.Appuswamy, A. An-
dreopoulos, D. Berg, J. McKinstry, T.Melano, D. Barch, C. Nolfo,
P. Datta, A. Amir, B. Taba, M. Flickner, and D. Modha, “Convolu-
tional Networks for Fast, Energy-Efficient Neuromorphic Computing,”
in arXiv, 2016.

[17] D. Feldman, “The Spike Timing Dependence of Plasticity,” Neuron, no.
75(4), 2012.

[18] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition,” pp. 267–
285, 1982.

[19] J. Gehlhaar, “Neuromorphic Processing: A New Frontier in Scaling
Computer Architecture,” 2014, keynote at ASPLOS.

[20] I. J. Goodfellow, M. Mirza, and e. a. Da Xiao, “An empirical Investi-
gation of Catastrophic Forgetting in Gradient-Based Neural Networks,”
in arXiv preprint arXiv:1312.6211, 2015.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” arXiv preprint arXiv:1512.03385, 2015.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications,” arXiv preprint

arXiv:1704.04861, 2017.

[23] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” The Journal of

physiology, vol. 160, no. 1, pp. 106–154, 1962.

[24] E. Hunsberger and C. Eliasmith, “Training Spiking Deep Networks for
Neuromorphic Hardware,” in arXiv preprint arXiv:1611.05141, 2016.

[25] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in Proceedings of

ISCA-44, 2017.

[26] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N. Jerger, R. Urtasun,
and A. Moshovos, “Reduced-Precision Strategies for Bounded Memory
in Deep Neural Nets,” 2016, arXiv preprint 1511.05236v4.

[27] L. Khacef, N. Abderrahmane, and B. Miramond, “Confronting machine-
learning with neuroscience for neuromorphic architectures design,” in
2018 International Joint Conference on Neural Networks (IJCNN), 2018.

[28] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and
S. B. Furber, “SpiNNaker: Mapping Neural Networks onto a Massively-
Parallel Chip Multiprocessor,” in Proceedings of IJCNN, 2008.

[29] S. Kheradpisheh, M. Ganjtabesh, S. Thrope, and T. Masquelier, “STDP-
based spiking deep neural networks for object recognition,” arXiv

preprint arXiv:1611.01421v1, 2016.
[30] D. Kim, J. H. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,

“Neurocube: A Programmable Digital Neuromorphic Architecture with
High-Density 3D Memory,” in Proceedings of ISCA-43, 2016.

[31] J. Kirkpatrick, R. Pascanu, and e. a. Neil Rabinowitz, “Overcoming
Catastrophic Forgetting in Neural Netowkrs,” in Proceedings of national

academy of sciences 114.13, 2017.

[32] C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training Deep Spiking
Convolutional Neural Networks with STDP-Based Unsupervised Pre-
Training Followed by Supervised Fine-Tuning,” Frontiers in Neuro-

science, vol. 12, 2018.

[33] C. Lee, S. S. Sarwar, and K. Roy, “Enabling Spike-based Backprop-
agation in State-of-the-art Deep Neural Network Architectures,” arXiv

preprint arXiv:1903.06379, 2019.

[34] D. Lee, G. Lee, D. Kwon, S. Lee, Y. Kim, and J. Kim, “Flexon: A
Flexible Digital Neuron for Efficient Spiking Neural Network Simula-
tions,” in Proceedings of the 45th Annual International Symposium on

Computer Architecture. IEEE Press, 2018, pp. 275–288.

[35] S.-W. Lee, J.-H. Kim, and e. a. Jaehyun Jun, “Overcoming Catastrophic
Forgetting by Incremental Moment Matching,” in Advances in neural

information processing systems, 2017.

[36] B. Liu, Y. Chen, B. Wysocki, and T. Huang, “Reconfigurable Neuro-
morphic Computing System with Memristor-Based Synapse Design,”
Neural Processing Letters, no. 41(2), 2015.

[37] C. Liu, B. Yan, C. Yang, L. Song, Z. Li, and B. Liu, “A Spiking
Neuromorphic Design with Resistive Crossbar,” in Proceedings of DAC,
2015.

[38] M. McCloskey and N. J. Cohen, “Catastrophic Interference in Connec-
tionist Networks: The Sequential Learning Problem,” in Psychology of

learning and motivation, Vol. 24. Academic Press, 1989.

[39] D. Modha, “A New Architecture for Brain-Inspired Computing,” 2015,
keynote at HPCA.

[40] H. Mostafa, “Supervised learning based on temporal coding in
spiking neural networks,” CoRR, vol. abs/1606.08165, 2016. [Online].
Available: http://arxiv.org/abs/1606.08165

[41] N. Muralimanohar et al., “CACTI 6.0: A Tool to Understand Large
Caches,” University of Utah, Tech. Rep., 2007.

[42] S. Narayanan, A. Shafiee, and R. Balasubramonian, “INXS: Bridging
the Throughput and Energy Gap for Spiking Neural Networks,” in
Proceedings of IJCNN, 2017.

[43] National Science Foundation, “NSF Real-Time Machine Learning Solic-
itation,” 2019, https://www.nsf.gov/pubs/2019/nsf19566/nsf19566.htm.

[44] A. Nere, A. Hashmi, M. Lipasti, and G. Tononi, “Bridging the Semantic
Gap: Emulating Biological Neuronal Behaviors with Simple Digital
Neurons,” in Proceedings of HPCA-19, 2013.

[45] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. Keckler,
and W. Dally, “Fine-Grained DRAM: Energy-Efficient DRAM for
Extreme Bandwidth Systems,” in Proceedings of MICRO, 2017.

[46] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. Keckler, and W. Dally, “SCNN: An Accelerator
for Compressed-Sparse Convolutional Neural Networks,” 2017.

[47] Qualcomm, “Introducing Qualcomm Zeroth Processors: Brain-Inspired
Computing,” 2013, https://www.qualcomm.com/news/onq/2013/10/10/
introducing-qualcomm-zeroth-processors-brain-inspired-computing.

[48] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,”
CoRR, vol. abs/1603.05279, 2016.

[49] R. Ratcliff, “Connectionist Models of Recognition Memory: Constraints
Imposed by Learning and Forgetting Functions,” in Psychological review

97.2, 1990.
[50] B. Rueckauer, I.-A. Lungu, Y. Hu, and M. Pfeiffer, “Theory and Tools for

the Conversion of Analog to Spiking Convolutional Neural Networks,”
arXiv preprint arXiv:1612.04052, 2016.

[51] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going Deeper in
Spiking Neural Networks: VGG and Residual Architectures,” Frontiers

in Neuroscience, vol. 13, 2019.
[52] J. Seo, B. Brezzo, Y. Liu, B. Parker, S. Esser, R. Montoye, B. Rajendran,

J. Tierno, L. Chang, D. Modha, and D. Friedman, “A 45nm CMOS Neu-
romorphic Chip with a Scalable Architecture for Learning in Networks
of Spiking Neurons,” in Proceedings of CICC, 2011.

[53] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. Strachan,
M. Hu, R. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural
Network Accelerator with In-Situ Analog Arithmetic in Crossbars,” in
Proceedings of ISCA, 2016.

[54] S.Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and W. Dally,
“EIE: Efficient Inference Engine on Compressed Deep Neural Network,”
in Proceedings of ISCA, 2016.

[55] J. Smith, “A Roadmap for Reverse-Architecting the Brain’s Neocortex,”
2019, keynote at FCRC, https://iscaconf.org/isca2019/slides/JE Smith
keynote.pdf.

[56] T. Tang, L. Xia, B. Li, R. Luo, Y. Chen, Y. Wang, and H. Yang,
“Spiking Neural Network with RRAM: Can We Use It for Real-World
Application?” in Proceedings of DATE, 2015.

[57] O. Temam, “Hardware Neural Networks: From Inflated Expectations to
Plateau of Productivity,” 2015, keynote at FCRC.

[58] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization
of Neural Networks using DropConnect,” Proceedings of International

Conference on Machine Learning - 30, 2013.
[59] S. Williams, “Brain Inspired Computing,” 2016, keynote at ASPLOS.
[60] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct Training

for Spiking Neural Networks: Faster, Larger, Better,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp.
1311–1318.

[61] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International

Symposium on. IEEE, 2016, pp. 1–12.
[62] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-

Net: Training Low Bitwidth Convolutional Neural Networks with Low
Bitwidth Gradients,” arXiv preprint arXiv:1606.06160v2, 2016.

