
Compact Leakage-Free Support for Integrity and
Reliability

Meysam Taassori
University of Utah

Salt Lake City, USA

taassori@cs.utah.edu

Rajeev Balasubramonian
University of Utah

Salt Lake City, USA

rajeev@cs.utah.edu

Siddhartha Chhabra
Intel

Hillsboro, USA

siddhartha.chhabra@intel.com

Alaa R. Alameldeen
Intel

Hillsboro, USA

alaa.r.alameldeen@intel.com

Manjula Peddireddy
Intel

Santa Clara, USA

manjula.peddireddy@intel.com

Rajat Agarwal
Intel

Hillsboro, USA

rajat.agarwal@intel.com

Ryan Stutsman
University of Utah

Salt Lake City, USA

stutsman@cs.utah.edu

Abstract—The memory system is vulnerable to a number of
security breaches, e.g., an attacker can interfere with program
execution by disrupting values stored in memory. Modern Intel

R©

Software Guard Extension (SGX) systems already support in-
tegrity trees to detect such malicious behavior. However, in spite
of recent innovations, the bandwidth overhead of integrity+replay
protection is non-trivial; state-of-the-art solutions like Synergy
introduce average slowdowns of 2.3× for memory-intensive
benchmarks. Prior work also implements a tree that is shared by
multiple applications, thus introducing a potential side channel.
In this work, we build on the Synergy and SGX baselines, and
introduce three new techniques. First, we isolate each application
by implementing a separate integrity tree and metadata cache
for each application; this improves metadata cache efficiency and
improves performance by 39%, while eliminating the potential
side channel. Second, we reduce the footprint of the metadata.
Synergy uses a combination of integrity and error correction
metadata to provide low-overhead support for both. We share
error correction metadata across multiple blocks, thus lowering
its footprint (by 16×) while preventing error correction only in
rare corner cases. However, we discover that shared error correc-
tion metadata, even with caching, does not improve performance.
Third, we observe that thanks to its lower footprint, the error
correction metadata can be embedded into the integrity tree. This
reduces the metadata blocks that must be accessed to support
both integrity verification and chipkill reliability. The proposed
Isolated Tree with Embedded Shared Parity (ITESP) yields an
overall performance improvement of 64%, relative to baseline
Synergy.

Index Terms—Memory systems, security, integrity verification

I. INTRODUCTION

The memory system is vulnerable to a wide range of attacks.

One class of memory system attacks, referred to as replay

attacks, tries to modify memory contents, thus disrupting the

victim program’s execution. Such attacks can be carried out

by a compromised OS, by an attacker with physical access to

the hardware, by co-scheduled threads, or by malicious agents

in the supply-chain. It is clear that privileged execution (by a

compromised OS) or a custom memory module can modify

any memory location; even a user-level co-scheduled thread

can modify the victim’s memory space with a row hammer

attack [36], [21]. More recently, it was alleged that malicious

chips in the motherboard have been used to implement a man-

in-the-middle attack that manipulates memory responses and

disrupts how an OS boots up [31]. Given these many attack

possibilities, it is important that a secure system verify the

integrity of data being fetched from external sources. Integrity

verification has therefore also been incorporated into the

Memory Encryption Engine (MEE) used in implementations

of Intel R© Software Guard Extensions (Intel R© SGX) [25], [9],

[12].

Integrity verification incurs a significant performance

penalty. For workloads with small working sets, integrity

verification in MEE can impose a penalty of 1.8×, while

larger workloads can suffer slowdowns of over 5× [40], [29],

[3]. In typical implementations, a data block is verified by

checking its associated message authentication code (MAC).

To prevent the attacker from replaying an older message and

an older MAC, the generation of the MAC involves a version

number or counter. A tree of hash functions is then constructed

over the counters [32], [12] and verified on every access.

Integrity verification (including protection from replay attacks)

therefore imposes the following overheads on every data block

access: fetching the MAC, fetching the counter, and fetching

the integrity tree ancestors of the counter. While some of

these metadata structures can be effectively cached and the

latency hidden with speculation [23], [22], [34], it is the

memory bandwidth overheads of these additional accesses that

contribute to most of the slowdown from integrity verification.

Recent state-of-the-art solutions include VAULT [40], Mor-

phable Counters [33], and Synergy [34]. In particular, Synergy

makes the observation that if the system uses ECC DIMMs, an

integrated solution for reliability and integrity can offer lower

overheads. It places the MAC in the space usually reserved

for ECC. This allows the MAC to be fetched to the processor

without requiring a separate memory transaction. The MAC is

also effective at detecting run-time soft and hard errors with

a very high probability. To correct any discovered errors, a

separate parity field per data block is maintained. While this

parity represents a storage overhead similar to the MAC, it is

only accessed when the corresponding data block is written,

not when the data block is read. Synergy thus helped reduce

the average slowdown from 2.55× in VAULT to 2.3×.
Even though Synergy provided a significant advancement

for memory integrity solutions, it still suffers from the fol-

lowing issues: (i) a single integrity tree protects the entire

physical memory, which leads to inter-application interference,

(ii) every data block write requires a parity update in memory,

and (iii) the parity update requires DRAM write masking

which is not supported on all systems. We dig into each of

these drawbacks next.
Our study first analyzes the nature of metadata overheads

imposed by modern implementations of integrity verification.

When a single integrity tree is constructed for all pages in

physical memory, a node in the integrity tree has descen-

dants that can belong to different applications. We show that

this leads to reduced locality and higher interference in the

metadata cache. We demonstrate in Section III-B that the

shared resources also create potential side channels. We solve

these issues by implementing a separate integrity tree and

metadata cache for each enclave. This requires a new level

of indirection, mapping enclave pages to consecutive leaves

in its tree.
While the above approach yields a lower metadata cache

miss rate, our analysis shows that metadata misses are typically

correlated, i.e., we often incur a miss for both the leaf node

and the MAC, resulting in two memory fetches. To combine

these memory fetches into one, we exploit an opportunity

offered by Synergy. We first reduce the parity overhead in

Synergy by sharing the parity among multiple data blocks in

different memory ranks. This preserves the chipkill protection

of Synergy with very high probability, while reducing the

parity footprint. However, updates to the parity field now

require read-modify-writes, similar to RAID-5. Therefore,

shared parity by itself is not able to improve upon the Synergy

approach. We then observe that with shared parity, its footprint

is small enough that it can be embedded in the integrity tree.

A leaf node in the tree is modified so it handles half as many

counters; this creates enough room to store the shared parity

for the corresponding data blocks. Thus, a single leaf node

fetch provides both counters and parity for a data block. A

neat side effect of our approach is that unlike Synergy, we do

not need DRAM write masking, which is not supported in all

commercially available systems. Our solution thus addresses

all three of the problems we identified in Synergy.
We carry out a detailed exploration of the design space

for the proposed Isolated Tree with Embedded Shared Parity

(ITESP), considering different baselines, address mapping

policies, integrity trees, etc. The primary contributions are:

• We show that an MEE-like shared integrity tree can lead

to inefficiency and leakage in the metadata cache.

• With a new level of indirection, we introduce isolated

trees and metadata caches per enclave to eliminate this

side channel and improve metadata cache hit rate. Such

isolation improves the performance of Synergy by 39%.

• We then augment Synergy with parity sharing and parity

caching. While this significantly reduces metadata stor-

age, it slightly degrades performance because of parity

read-modify-write operations.

• We then design ITESP by including shared parity in

the integrity tree. The unified data structure leads to a

lower penalty for metadata cache misses and boosts the

improvement over Synergy to 64%.

• We quantify the negligible impact of ITESP on reliability.

We show that it offers the same integrity guarantees

as the baseline. By avoiding write masking, ITESP is

compatible with more systems. We confirm significant

performance and energy improvements for a variety of

system configurations for 31 benchmarks drawn from 3

suites.

II. BACKGROUND

A. Threat Model

We assume a threat model and security guarantee similar

to popular memory security techniques [25], [9], [12]. As in

MEE, a region of memory or an “enclave” is assigned to an

application with confidentiality and integrity guarantees. In

this paper, a guarantee of integrity includes protection from

replay attacks. The application’s enclave is thus protected

from integrity attacks from a compromised OS, from co-

scheduled threads, and from modified hardware components.

The memory controller provides confidentiality with encryp-

tion/decryption when accessing data in the enclave. Integrity

support is more complicated.

Integrity guarantees that the data returned from memory

matches the last write to that location. Integrity of data can be

verified by confirming its MAC. If an attacker has the ability

to precisely control a block, they can engage in a replay attack,

where they feed the processor an earlier valid block/MAC

combination. For software attacks that cause random bit flips,

e.g., row hammer, a MAC per block is enough to provide

integrity protection. Gueron [12] states that the MEE threat

model includes physical attacks where a malicious memory

module can perform a replay attack by precisely returning an

older block/MAC; to defend against such hardware attacks, as

well as similar software attacks, an integrity tree is required.

In addition to integrity support, we introduce defenses

against a limited set of side channels. Co-scheduled appli-

cations on a processor share a number of resources; such

sharing introduces side channels and vulnerabilities, e.g., in

data/instruction caches [45], [20], branch predictors [10],

coherence directories [48]. As we show later, the shared

integrity tree and metadata cache can also be exploited by a

co-scheduled attacker to establish a side channel and leak sen-

sitive information from a victim program; we defend against

this particular side channel. The many other side channels in

the system will have to be defended by other complementary

techniques [30], [46], [48].

B. Integrity Verification

To support integrity, every data block is associated with a

MAC, which is essentially a keyed hash of the data block.

If an attacker tampers with data, the hash on the new block

will likely not match the MAC retrieved from memory. To

prevent replay attacks, where an attacker returns an old version

of data/MAC, every data block is associated with a version

number or counter that is used in the encryption function. An

integrity tree is formed where the counters form the leaves and

every parent node is a hash of the child nodes. To confirm

that a correct counter has been returned from memory, the

ancestor nodes of the counter are fetched until a cache hit is

encountered, and the hashes are confirmed.

We assume a data block size of 64 bytes, a MAC per data

block of 8 bytes, and an ECC per data block of 8 bytes. On

an ECC DIMM, a 64B data fetch is accompanied by the 8B

ECC; the MAC is fetched with a separate memory transaction

that brings in 8 MACs for 8 consecutive data blocks (and its

ECC). Similarly, each node of the integrity tree is 64B (plus

ECC) and requires a separate memory transaction.
SGX uses a different integrity tree organization, called

MEE [12], where the linkage between parent and child node

is formed by hashing the child node and a counter in the

parent node; the hash is then placed in the child node. This

approach offers higher arity and therefore a more compact

tree. VAULT [40] improves upon the MEE integrity tree

organization by decomposing the counter in a node into a

small local counter and a larger shared counter (an idea also

used in the BMT [32]). This further improves the arity of the

tree and shrinks its depth. Morphable Counters [33] observes

locality in counter values and adjusts the shared global counter

value; this keeps the overflow rate low even for few-bit local

counters. The smaller local counter size leads to higher arity. In

our analysis, we assume baselines with integrity trees modeled

after both VAULT and Morphable Counters.

Most prior work has cached parts of these additional data

structures in the LLC or separate caches [22]. The MACs

exhibit limited temporal locality, i.e., if the data block has

a miss in the LLC, its MAC is also likely to miss in a MAC

cache. But the MAC cache can exploit spatial locality because

a single 64-byte entry in the MAC cache accommodates MACs

for eight consecutive cache lines. Similarly, an integrity tree

cache entry also exploits spatial locality. Misses for lower

levels of the tree (leaf nodes) are much more likely than misses

for higher levels.

The key takeaway is that in addition to the data blocks

themselves, two additional data structures have to be managed:

the MAC per block and the integrity tree. When the data block

is not found in the LLC, barring spatial locality opportunities,

there is a high chance that the block’s counter and MAC will

also not be found on-chip, thus requiring two more memory

fetches.

C. Synergy

In the Synergy proposal, Saileshwar et al. [34] observed

that enterprise systems providing integrity guarantees are also

Chip

0

Chip

1

Chip

2

Chip

3

Chip

4

Chip

5

Chip

6

Chip

7

Chip

8

64 bytes of Data
64b

ECC

64b MAC

Chip

0

Chip

1

Chip

2

Chip

3

Chip

4

Chip

5

Chip

6

Chip

7

Chip

8

64 bytes of Data
64b

MAC

Elsewhere in memory

64b parity Elsewhere in memory

Pin 0
Pin 0

Pin 0
Pin 0 Pin 0

Pin 0
Pin 0

Pin 0
Pin 0

XOR

(a) Conventional system

(b) Synergy

Pin0/Beat0, Pin1/Beat0, … Pin7/Beat0

Pin0/Beat1, Pin1/Beat1, … Pin7/Beat1

…

Pin0/Beat7, Pin1/Beat7, … Pin7/Beat7

Fig. 1: Data organization in baseline memory and Synergy.

likely to provide high reliability with ECC DIMMs. Thanks to

the additional storage and bandwidth in such DIMMs, every

64-byte data block transfer is accompanied by 8 bytes of

metadata. Instead of placing ECC in the 8-byte metadata field,

Synergy places the MAC in that field. Figure 1 shows how

data and metadata are organized for a baseline memory system

and for Synergy [34]. In the baseline, the 8-byte metadata field

accompanying every 64-byte data block is responsible for error

detection and correction, while the data block’s 8-byte MAC

is stored elsewhere in memory.

In Synergy, the 8-byte field accompanying every 64-byte

data block stores the MAC. When a block is read, integrity

verification is enough to confirm with a very high probability

that the block is free of soft and hard errors. When an error

does occur, separate metadata stored elsewhere in memory

is required for correction. Synergy implements this as a 64-

bit parity field, as shown in Figure 1. The first parity bit

captures the parity of pin 0 from all DRAM chips in the

rank for the first beat1; the other 63 parity bits similarly

capture other pins and/or other beats. This enables recovery

for up to 8 pins, i.e., recovery is possible for an entire

×8 chip2 failure (chipkill). The correction procedure walks

through every failure possibility until the corrected block has

a matching MAC. While the latency of each correction is high,

its overall impact on performance is negligible given the very

low DRAM error rates [38], [39].

When writing a block, its parity also has to be updated.

This requires a separate write to another memory location.

DDR protocols allow write-masking, i.e., it is possible to only

modify 64-bits of a 64-byte line, but such a transaction requires

that the memory channel be occupied for all 8 beats, as if a

64-byte line is being written. A write in Synergy is therefore

no more efficient than the baseline which also requires an

1A rank is the set of DRAM chips involved in accessing one data block.
DDR memory systems transfer data at both rising and falling edges of the
clock. Each edge is referred to as a beat.

2A ×8 chip has 8 in/out data pins and handles 8 bits on every clock beat.

Fig. 2: Metadata block utilization while in cache in VAULT

(left Y-axis) and metadata cache hit rate (right Y-axis).

additional 64-bit write for the MAC. Synergy’s improvement

stems from its efficient reads; the MAC is included in the

72 bytes fetched on a block access, and it is used for both

integrity verification and error detection.

The Synergy approach relies on write masking so that only

the parity bits of a modified block can be updated. Some

systems [47], [15] disable write masking for ECC DIMMs,

presumably to allow a class of ECC where the data/ECC code

span multiple beats. Write masking is also disabled in DIMMs

that employ ×4 chips because of restrictions on how DIMM

pins are shared [26]. Thus, while Synergy works correctly and

effectively in theory, it is not compatible with all systems. Our

proposed solution does not require write masking.

D. Motivation

A key drawback in prior work is that they implement a

single integrity tree for all physical pages, leading to inter-

application interference. They also implement separate data

structures for the tree and for MAC/parity, leading to more

memory accesses. We analyze these two drawbacks here.

We first assume a VAULT baseline because it stores both

MAC and tree in the metadata caches. Details of the simulation

methodology are in Section IV. We consider two models here:

(i) Large, where the integrity tree is constructed on the entire

128 GB physical memory and 4 programs are executed with

a shared 64 KB metadata cache, and (ii) Small, where we

assume a single program mapped to 32 GB physical memory

and 16 KB metadata cache.

Figure 2 quantifies how metadata block utilization goes up

significantly as we move from the Large to the Small model.

The left Y-axis shows the hits per metadata block for the

two configurations, while the right Y-axis shows the metadata

cache hit rate for the Large model. On average, we see that

the usefulness of a metadata block is 2.1× lower in the Large

multi-programmed model. This is because of two reasons: less

spatial locality per block because it often includes metadata

from multiple programs, and conflict misses caused by multi-

programmed interference.

Figure 3 shows the nature of metadata accesses triggered

for every data block miss in the LLC. For both models, a

significant fraction of data misses do not trigger any metadata

accesses because of spatial locality. For another significant

fraction (about 30% for both Large and Small) of data misses,

both MAC and counter are not found in the metadata cache,

Fig. 3: Breakdown of metadata access patterns.

i.e., these misses are usually correlated. The distribution of

these correlated misses is a little different in both models.

In Large, the higher levels of the tree experience more misses

because of multi-programmed interference (shown in Case H),

whereas in Small, the leaf node miss is usually accompanied

by a miss for the parent alone (Case G), or parent and

grandparent (Case H) nodes.

We observed similar trends in Synergy as well (not shown

for space reasons). This analysis helps us understand the

two main causes of metadata overheads. The take-home from

Figure 2 is that inter-program interference greatly diminishes

the utility of metadata cache entries. Figure 3 shows that

because of multiple separate metadata structures, data block

misses often require multiple metadata memory accesses.

III. ISOLATED TREE WITH EMBEDDED SHARED PARITY

A. Isolated Metadata

Problem. MEE implements a single integrity tree for its En-

clave Page Cache (EPC) region of physical memory, including

pages from multiple enclaves. This can lead to inefficiency in

the metadata cache because of inter-program conflict misses

and because of reduced spatial locality per node. A second

problem is that shared metadata and resources can be used to

establish a potential side channel between two programs.

Consider the following simple covert channel established

between two programs A and B. Program A can touch a set

of pages, thus bringing their counters into the metadata cache.

When Program B runs, it touches a set of pages such that

their counters displace some of A’s counters from the metadata

cache3. When A runs, it touches the same set of pages again

and uses the access latency to determine the displaced set

of counters. Depending on the fidelity of the measurements,

every such exchange can transmit a few bits of information

between the two programs. In addition to using the shared

metadata cache, the shared tree can also be used to exchange

information. When a local counter in a tree node overflows, the

global counter is updated, and all child nodes have to be read

and re-encrypted. If A and B share counters in a node, A can

issue a series of writes to its block, triggering a local counter

overflow and a re-encryption process for all blocks handled by

that node, including those belonging to B. B detects this action

of A when it tries to access its block and experiences a longer

3Similar to prior attacks [14], this assumes that in a prior setup process, the
two programs have synchronized their timing and identified pages that create
conflicts with each other in the metadata cache.

VIRTUAL PAGE PHYSICAL PAGE LEAF ID

0 592 0

… … …

39 1823 1

… … …

1431 27 2

Baseline integrity tree with

interspersed physical pages

from multiple apps .

Parent nodes and higher cover

pages from multiple apps.

Root

Isolated Integrity Trees per app

Metadata

Cache

4 Metadata

Caches

Fig. 4: Baseline integrity tree and metadata cache for 4 apps

(top). Isolated integrity trees and metadata caches (bottom).

than usual latency because it has to wait for re-encryption to

complete. Thus, a shared tree and shared metadata cache can

both create separate side channels.

Proposed Solution. To address the efficiency and leakage

problems, we propose to implement isolated integrity trees

and metadata caches for each protected enclave in the system.

Figure 4 shows the tree and metadata cache for the baseline

and proposed approaches. The isolated trees only share the

root node that always remains on the processor. In the baseline

system, the physical page number is used to determine the

integrity tree leaf-id for that page. Since physical pages of

different enclaves are inter-mingled, we can no longer use

the physical page number to determine the page’s leaf-id. We

can also not use the virtual page number because an enclave

may be composed of multiple threads with private and shared

pages, both of which can cause different forms of aliasing.

We must therefore explicitly assign leaf-ids to every physical

page within an enclave. This leaf-id assignment process is

rolled into the duties of the memory management unit; when

it assigns a free physical page to an enclave, it also assigns

a free leaf-id to that page, which is then tracked in the page

table and TLB. Since leaf-ids are assigned in the order that

pages are touched, they benefit from the locality exhibited in

their virtual addresses. When pages are reclaimed, the list of

free leaf-ids is also updated. Further, the metadata cache is

partitioned into private metadata caches, one per enclave. The

enclave-id is used to access a specific partition of the metadata

cache.

Depending on the integrity tree implementation and page

interleaving across multiple memory channels, the counters

for the blocks in a physical page may be mapped to multiple

leaf nodes in a tree. The leaf-id is a pointer to the first such

node and the page offset is used to compute the exact location

of a counter for each block in that page.

With this first extension to the baseline, we improve locality

in the metadata cache, while also eliminating two sources of

side channels.

B. Covert Channel Demonstration

In this section, we demonstrate how a shared integrity tree

can be exploited to establish a covert channel between two

colluding processes. As we describe shortly, this approach

can form the basis for a number of attacks. Our experimental

platform uses an SGX v1 Intel R©i5-7500 CPU at 3.4 GHz

and Linux kernel version 4.15.0-54-generic4. Other cache-

and memory-based side-channels are easier to exploit on this

system. This new attack may only become relevant if other

higher-bandwidth side-channels are addressed. Thus, this work

adds to the growing list of known side channels that future

secure processors must attempt to eliminate.

In our setup, the pages of an attacker enclave and victim

enclave are interleaved, i.e., integrity tree nodes (Level 1 and

above [12]) are shared by both enclaves. The attacker enclave

first fills the metadata cache with irrelevant entries, the victim

enclave then executes, followed by the attacker enclave. If

the attacker enclave experiences a low latency, it implies

that several metadata cache hits were encountered, i.e., the

victim enclave touched a number of pages and warmed up

the metadata cache with entries shared by both enclaves. This

establishes a channel between the victim and attacker: a “1”

is transmitted when the victim is memory-intensive and the

attacker experiences low latencies, while a “0” is transmitted

when the victim is non-memory-intensive and the attacker

experiences high latencies. This is demonstrated in Figure 5

and we describe the methodology details below.

To enable different page placements within the EPC, we

modify the kernel module to initialize the free list in a

specific order. Upon enclave creation, the requested pages

are then mapped to the specific intended locations within the

EPC. We developed a high resolution timer for SGX to take

measurements. As shown in Figure 5A, the attacker places a

dummy data structure D at one end of the EPC. Accesses to

D are used to clear other relevant entries from the metadata

cache. The attacker has another data structure A, while the

victim has a data structure V . The physical pages of A and V

are interleaved.

Figure 5A shows the latencies experienced by the attacker

when the victim is transmitting 0 (blue line) and 1 (red line).

We take 10 measurements and show the range of measured

latencies. The graph also varies the number of blocks touched

by the victim and attacker on the X axis. By touching more

blocks per measurement, we improve the fidelity of the data

transmission, i.e., the latency ranges are less noisy and do not

overlap, but this also reduces the covert channel bandwidth.

4Performance results are based on testing as of 2/14/2020 and may not
reflect all publicly available security updates. No product can be absolutely
secure. For more complete information about performance and benchmark
results, visit www.intel.com/benchmarks.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

8 16 32 64 128 256 512 1024 2048

M
e

m
o

ry
 l
a

te
n

cy
 (

cy
cl

e
s)

 f
o

r
th

e

a
tt

a
ck

e
r

w
h

e
n

 a
cc

e
ss

in
g

 X
 b

lo
ck

s.

Number of blocks touched by the victim and attacker to transmit 1 bit

Non-Memory-Intensive

Memory-intensive

EPC

Pages for D Interleaved pages for A

and V

Integrity Tree

EPC

Pages for D

Integrity Tree

Pages for A Pages for V

Example attacks where the victim code

betrays the secret through the memory

access pattern. The victim code may

naturally exhibit this leakage or its control

flow may be manipulated as in Spectre v2.

R2 secret

…

Loop R2 times

access EPC memory

(secret revealed by the duration

that victim transmits 1)

R2 secret

…

load [R2]

(secret revealed by the attacker page

that encounters a metadata cache hit)

Level 1

A. B.
C.

Victim transmitting 0

Victim transmitting 1
0

100000

200000

300000

400000

500000

600000

700000

8 16 32 64 128 256 512 1024 2048

M
e

m
o

ry
 l
a

te
n

cy
 (

cy
cl

e
s)

 f
o

r
th

e

a
tt

a
ck

e
r

w
h

e
n

 a
cc

e
ss

in
g

 X
 b

lo
ck

s.

Number of blocks touched by the victim and attacker to transmit 1 bit

Non-mem-intensive

Memory-intensive

Victim transmitting 1

Victim transmitting 0

Fig. 5: Covert channel demonstrated on an SGX v1 system with interleaved (A) or isolated (B) pages for the attacker and

victim enclaves. Two example victim code vulnerabilities (C) are also shown.

We see that by accessing 256 blocks, a reliable channel

with 18 Kbps bandwidth can be established. This channel

demonstrates that the performance of one enclave is affected

by the behavior of the other enclave when they share the

integrity tree and metadata caches.

Figure 5B shows how the red and blue lines effectively

converge when the attacker and victim pages are not inter-

leaved. Of course, this is not perfect isolation because the two

enclaves will share higher level nodes of the tree. Since the

OS is untrusted, we also cannot rely on the OS to isolate

each enclave’s physical pages. The previous section therefore

introduces hardware-managed leaf-ids to implement isolated

trees for each enclave.

The covert channel setup is a demonstration of a leakage

mechanism. To expose secrets, a complete attack must be

developed upon the leakage mechanism, and this attack can

take many forms. For example, malware within a VM can

use the covert channel to exfiltrate secrets to a co-scheduled

VM. Alternatively, a victim program’s memory intensity or

memory access pattern can betray the secret (see examples in

Figure 5C). Similar to the Spectre attacks [20], the attacker

can force such leakage by causing the victim program to

speculatively jump to leaky code after the secret is loaded

in a specific register. In Spectre, the secret value is used as

the address for a load; the resulting data cache miss within the

attacker reveals the cache index and therefore the secret value.

The first example in Figure 5C uses a similar approach, but

the attacker detects a metadata cache hit on a specific page to

learn the secret. The second example in Figure 5C executes a

memory-intensive loop for a duration that is a function of the

secret. The attacker measures the duration that it receives a 1

on its channel to learn the secret.

C. Caching Shared Parity

Problem. In Synergy, the parity field is updated on every write.

This separate data structure incurs a significant overhead in

terms of both memory capacity and memory bandwidth. It

also requires Write Masking.

Parity Cache. A first approach to reducing the write overhead

is to cache the parity fields in an on-chip parity cache. In case

of spatial locality, an entry of the parity cache stores updated

parity fields for consecutive blocks. When a block of parity

fields is evicted from the parity cache, a single block write to

memory can update the parity fields for up to 8 data blocks.

Note that the parity cache is never updated by reads from

memory, i.e., it simply serves as a coalescing write buffer. As

we show later in Section V, adding such a 16 KB parity cache

to Synergy yields an improvement of 3%.

Parity Sharing. In baseline Synergy, there is one 64-bit parity

field for every 64-byte data block. To increase the effectiveness

of the parity cache, we next try to increase the coverage of each

parity field. We XOR the parity fields for N different blocks to

yield one 64-bit parity field for 64N bytes of data. This lowers

the storage overhead for parity and has the potential to improve

its cacheability and degree of coalescing. The N data blocks

sharing a parity field must be from different memory ranks,

i.e., they do not share the same DRAM chip pins. With such

an approach, when a block is read from a rank and an error

is detected, we can correct the error while assuming that the

other N − 1 blocks sharing the parity are error-free. The error

correction fails only when two+ independent errors happen

simultaneously in similar locations of different ranks, which

is a rare event. As we show with a detailed reliability analysis

in Section III-G, even this impact can be mitigated.

Parity Read-Modify-Write. Shared parity has one significant

drawback. Without sharing, the parity field for a data block

being written can be directly computed. With sharing, the

new parity field requires a read-modify-write, similar to how

updates are done in RAID-3/4/5, i.e., the new parity field

depends on the old parity field and the old/new values for

the data block. Therefore, the parity cache must keep track

of how a block’s parity has changed; when the parity cache

entry is evicted, it must read the old parity from memory,

apply the parity diff, and then write the new parity back to

memory. As we show in our results, even the high coverage

of a shared parity cache cannot overcome the penalty of the

parity read-modify-write.

GC

GC

GC

GC

C0 C1 C2 C63 Hash

Hash C0

Hash

Hash

C0 C0 C31 PB0 PB1

C31C0 C1 PB0 PB1 PB2 PB3

C0

C0

PB0

…

…

…

VAULT

ITESP

16-rank sharing

ITESP

8-rank sharing

64-bit Global Counter

64-bit Hash

64-bit Parity Field

6-bit Local Counter

8-bit Local Counter

4-bit Local Counter

Fig. 6: A block of counters in VAULT and ITESP.

D. Embedding Parity in the Integrity Tree

Shared parity requires a read-modify-write and does not

reduce bandwidth overheads. However, shared parity and its

lower footprint have another benefit that we next exploit.

Opportunity. With sharing, the storage overhead for parity

very closely resembles that for the counters. This presents

an opportunity to create an effective combined data structure.

Note that in all past systems, because of their different sizes,

the two data structures (MAC/parity and counter/tree) are

distinct, and separate memory fetches are required for the

MAC/parity and for the counters/tree.

Counter+Parity. A block of counters in the VAULT baseline,

shown in Figure 6, has a 64-bit shared global counter, 64 6-bit

local counters, and a 64-bit hash. If we reduce the number of

local counters, we can create room for a few parity fields.

Figure 6 shows an example organization that has a 64-bit

shared global counter, 32 8-bit local counters, a 64-bit hash,

and 2 64-bit parity fields. If each parity field is shared by

16 data blocks, this metadata block contains both counter

and parity information for 32 data blocks. Another relevant

organization, also shown in Figure 6, is one with 32 4-bit

local counters and 4 64-bit parity fields, while sharing parity

among 8 blocks.

Such unification of counter and MAC/parity was not pos-

sible in prior systems where the MAC/parity had a larger

overhead than the counters. While parity sharing by itself

was not effective, it enabled a lower parity footprint and the

effective unification of counter and parity metadata, which is

a significant improvement over the Synergy baseline.

Larger Tree. The proposed change only applies to the leaf

level of the tree. One downside is that the total number of

leaf nodes in the tree has doubled. In essence, the tree has a

larger footprint because it also packs in the parity information.

We refer to this larger integrity/parity tree as ITESP. While

this may impact the tree’s cacheability, note that we now only

need a single larger metadata cache per enclave instead of

separate caches per enclave for counters and parity.

Higher Arity Baselines. The proposed organization also

applies to other baselines, e.g., Morphable Counters. Fig-

ure 7 summarizes a Synergy-like baseline with Morphable

Counters (SYN128) and two ITESP designs (ITESP64 and

ITESP128), that introduce a trade-off between local counter

overflow and metadata cacheability, which we quantify in

Section V.

E. Implementation Details

Write Masking. Many systems [26], [47], [15] disable write

masking for various DIMMs, i.e., Synergy cannot be deployed

on all systems. ITESP performs counter/parity reads and

writes at block granularity and does not require write masking.
Controller Complexity. ITESP implements a separate meta-

data cache per enclave. Once shared parity is embedded in

the block of counters, it is fetched into the metadata cache,

updated, and directly written into memory upon eviction.

When a clean data block (as ascertained by the tag access)

is being written, the block must be first read and “subtracted”

out of its parity with an XOR operation. When a dirty data

block is being evicted, it undergoes another XOR operation so

it is “added” to the parity. In short, the parity update requires

XORs involving the data block when it is first modified and

when it is evicted. Isolated trees introduce an additional field

in the page tables and TLBs to track the leaf-id for a physical

page. The OS software that manages the list of free pages

must also manage the list of free leaf-ids within each tree.

A malicious OS cannot introduce a side channel through the

integrity tree because the hardware uses the enclave-id to

isolate each integrity tree.

Storage Overhead. ITESP reduces the storage requirements

for metadata. Table I summarizes the metadata requirements

for Synergy and ITESP. Parity sharing with ITESP is more

helpful for DIMMs with ×16 chips that need a larger parity

for chipkill protection.

Organization Integrity Tree MAC/Parity Total

VAULT 1.6% 12.5% 14.1%
Synergy128, ×8 chips 0.8% 12.5% 13.3%

Synergy128, ×16 chips 0.8% 25% 25.8%
ITESP64 1.6% 0 1.6%
ITESP128 0.8% 0 0.8%

TABLE I: Metadata memory capacity overheads.

Address Mapping. With ITESP, address mapping policies

can noticeably impact performance. This is because the ad-

dress mapping policy impacts row buffer locality, parallelism,

and metadata cache locality. To exploit metadata cache local-

ity, consecutive cache lines must share a global counter and

parity. These consecutive cache lines must also be mapped

to different ranks to enable chipkill. This means that blocks

sharing a row buffer have a stride of N and yield a lower

row buffer hit rate than the baseline. We evaluate these trade-

offs in Section V and find an address mapping policy that

balances these competing forces. In essence, four consecutive

cache blocks are placed in a single bank and row buffer to

promote row buffer hit rates. These four cache blocks must

map to different parities. But since a leaf node may contain

four parities, these blocks can share a leaf node, thus achieving

a high metadata cache hit rate as well.
Metadata Cache Partitions. In this study, we assume that

the metadata cache is uniformly partitioned across a fixed

number of enclaves. To support a dynamic number of enclaves

and varying working sets, additional hardware support similar

to commercially available Cache Allocation Technology [28]

Fig. 7: Different integrity trees with Morphable Counters: (a) SYN128: arity of 128 throughout, (b) ITESP 64: arity of 64 at

leaf level and 128 at other levels, (c) ITESP 128: arity of 128 throughout.

is required. The hardware, in addition to tracking various

metadata per enclave, must also have registers to track the

enclave’s allocated range of metadata cache indices.

F. Security Analysis

The proposed changes have no impact on the system’s

integrity guarantees. Shared parity only has an impact on error

correction capabilities, which is discussed in the next sub-

section. When parity is embedded in the tree, as shown in

Figures 6 and 7, we are only changing the number of counters

per node (and in turn, the number of nodes) or the size of

local counters. Both of these changes impact efficiency, i.e.,

the metadata cache hit rate or the overflow rate, respectively.

The size of the hash is unchanged, while the size of the overall

counter remains in the 66-72 bit range, which negligibly

impacts the hash collision rate.

We will state this more formally here, assuming that

counters with 66-72 bits are equally effective at confirming

hashes. Integrity is verified by confirming the following two

equations: MAC = f(Data, Counter,Key) and Hash =
g(Leafnode, Parentcounter,Key′). Relative to prior work,

ITESP does not make any change to the Data, Counter,

Key, Parentcounter, and Key′ fields. It modifies the or-

ganization of the Leafnode by removing neighbor Counter

elements and adding Parity fields. Because the Leafnode

includes the block’s Counter value (as in the baseline), the

probability of identifying a replay attack is nearly identical

to that of the baseline, i.e., any unexpected/malicious change

to the Counter will result in a highly likely Hash mis-

match. The Parity field within the Leafnode plays no role

in detecting integrity violations; it can be viewed as padding

before the Leafnode is sent through the hash function.

As described earlier, when an integrity tree includes inter-

spersed pages from multiple enclaves, a tree node has counters

influenced by multiple enclaves. When one enclave accesses its

data, a tree node (shared by multiple enclaves) may be brought

to the metadata cache or may have to handle a local counter

overflow. This affects the latency for another enclave that is

also handled by the same node. The latency for an enclave’s

memory access is a function of (i) hits in its metadata cache,

(ii) counter values in its own integrity tree, and (iii) contention

at the memory controller. Isolation of the metadata cache and

tree removes any leakage between enclaves from the first two

sources. A shared memory controller is a separate potential

leakage source (with or without integrity support) and will

have to be eliminated with complementary techniques [44],

[37], [11], [43], [42].

G. Reliability Analysis

Next, we evaluate the impact of shared parity on system

reliability. When multiple blocks share parity, if the blocks are

from the same rank, the parity function will involve multiple

bits from each DRAM chip, thus preventing re-construction

when a chip fails. Therefore, the multiple blocks must be

from different ranks. If we assume that only a single chip

can have an error (either hard or soft) at a time, the supported

reliability is exactly the same as the baseline Synergy. When

errors happen concurrently and independently on at least

two different chips in a single rank, Synergy is unable to

correct that error. The proposed ITESP approach also fails

when errors happen concurrently and independently on at

least two different chips in the entire memory. We are thus

offering weaker reliability than Synergy in the case where at

least two different chips in different ranks have concurrent

and independent errors. Note that the probability of multiple

independent errors is relatively small; further, if there is a

background scrubbing process [35] that detects and corrects

errors every few minutes, the probability of independent errors

happening within a few minutes is even smaller. This is what

we primarily quantify in Table II.

Error detection in ITESP and in baseline Synergy rely on

the same MAC; so error detection capabilities are unaffected.

Since multiple different blocks can hash to the same MAC

(a conflict), there is a small probability of an error going

undetected, leading to silent data corruption (SDC). Since the

SDC rate of ITESP is the same as that of Synergy, we refer

readers to the SDC analysis in the Synergy paper. To eliminate

SDC for the common 1-bit error case, we can employ a 63-bit

MAC and a 1-bit parity.

The analysis below assumes a scrub rate of 1 hour, i.e.,

concurrent independent errors are possible only when they

manifest within the same hour. We base our DRAM failure

rates on the empirical study of Sridharan and Liberty [38].

Case 1: SDC: A corrupted block with matching MAC

during detection. The probability of a MAC conflict is 2−64,

i.e., less than 10−19. A DRAM device has a FIT rate of

66.1 [38]. Assuming 288 DRAM devices in a memory system,

this leads to an SDC rate of 288× 66.1× 2−64, i.e., less than

10−15 in every billion hours of operation. This rate is the same

in both Synergy and ITESP.

Case 2: SDC: A corrupted block with matching MAC

during correction. This happens when independent errors

happen in two devices, the error is detected, and correction

is declared a success because a matching MAC is found. For

Synergy, the rate for a concurrent multi-device error in a rank

is 288 × 8 × 66.12 × 10−9 per billion hours, assuming a 9-

device rank. The probability of a MAC conflict is 9 × 2−64

(since 9 MACs are computed during correction). The SDC rate

would therefore be less than 10−20 in every billion hours of

operation in Synergy. With ITESP, the probability of a multi-

device error scales up linearly with the number of devices

involved in correction. Assuming 288 devices in the memory

system, the SDC rate would be less than 10−18 in every billion

hours of operation.

Case 3: DUE: Multiple valid MACs during single error

correction. When a single device fails, correction should

be possible, but if more than one of the nine MAC checks

succeeds, it is not possible to isolate the erroneous device

and the error goes uncorrected. The rate for this occurrence is

288× 66× 8× 2−64, i.e., less than 10−14 per billion hours of

operation. This is the same for Synergy and ITESP.

Case 4: DUE: Multi-chip error and no matching MACs.

This is the common case during a multi-chip error, where all

9 MAC check attempts fail. The occurrence rate is that of two

independent concurrent errors in the same rank in Synergy, i.e.,

288× 66 × 66 × 10−9
× 8, less than 10−2 per billion hours.

In ITESP, the two independent errors can happen in any two

chips, for an occurrence rate of 288× 66× 66× 10−9
× 287,

less than 1 per billion hours of operation.

Case Synergy ITESP

Case 1: SDC Rate 10−15 10−15

Case 2: SDC Rate 10−20 10−18

Case 3: DUE Rate 10−14 10−14

Case 4: DUE Rate 10−2 1

TABLE II: Summary of SDC and DUE rates per billion hours

for Synergy and ITESP.

Thus, Case 4 is the only noticeable degradation in reliability.

While a single DUE per billion hours of operation for a

memory system is already very low, it would be helpful to

add more features that can reduce the error rate by two orders

of magnitude, in line with that offered by baseline Synergy.

One way to achieve that lower error rate is to trigger a

scrub operation as soon as any error is detected (and likely

corrected). Since every rank is typically accessed within a

micro-second window, a chip-level failure will be detected

within that window, triggering a correction and subsequent

scrub. This would shrink the window for multi-error incidence

from an hour to a few seconds, thus lowering its probability

by three orders of magnitude.

IV. METHODOLOGY

We evaluate our techniques on 31 workloads, including

15 from SPEC2017 [7], 6 from GAP [6], and 10 from

NAS [5]. We use Pin [24] to generate virtual address traces

for these workloads; we use page table dumps to convert

these virtual address traces into physical address traces so

we accurately capture how multi-programmed workloads have

interspersed physical pages in the baseline. For most of

our analysis, we focus on 4-program executions, where we

execute 4 instances of the same program. After fast-forwarding

to the region of interest and warming up the caches, we

collect traces for five million memory reads and writes per

program. The generated traces are fed to USIMM [8], a trace-

based cycle-accurate memory simulator. Tables III and IV

show the specifications of our simulator and our benchmarks,

respectively. We also identify the 15 most memory-intensive

benchmarks in Table IV that are the target of our proposed

techniques. For a 128-arity tree, a local counter overflow

incurs an overhead of 4K cycles. For our energy evaluation,

we use Micron power calculator [1] to estimate the power of

each memory chip. System energy is estimated with similar

assumptions as the Memory Scheduling Championship that

factor in CPU/memory utilization. Most of our results are

for a 4-core system and a single memory channel. We also

show a sensitivity analysis for a number of parameters: core

count, channel count, metadata cache organizations, address

mapping, etc.

Pin Traces 4 cores, filtered by 8MB LLC
Simulation ROB/width 64 entry/4-wide
MAC/parity/counter $ 64KB shared by 4 cores

DDR3 Micron DDR3-1600 [27],
Baseline DRAM 64GB, 1 Channel, 16 ranks

Mem. Rd/Wr Queue 48/48 entries per channel
DRAM tRC = 39, tRCD = 11, tRAS = 28,
timing tFAW = 20, tWR = 12, tRP = 11,

Parameters tRTRS = 2, tCAS = 11, tRTP = 6,
(DRAM cycles) tCCD = 4, tWTR = 6, tRRD = 5,

tREFI = 7.8µs, tRFC = 640 ns

TABLE III: Simulator parameters.

For the baseline, we assume 64 KB for a shared secu-

rity/reliability metadata cache total for 4 cores; ITESP uses

16 KB metadata cache per core; we also perform a sensitivity

analysis for the metadata cache size. Note that prior work has

already shown that separate metadata caches work better than

placing metadata in a larger LLC [34]. In the secure baseline

(VAULT [40]), a 32 KB cache is used to store counters and

integrity tree nodes, while a second 32 KB cache stores the

most recently accessed MACs. In this configuration, reliability

metadata is transferred along with data and stored in the 9th

chip of an ECC DIMM. Baseline Synergy assumes a single

64 KB cache to store most-recently used counters and integrity

tree nodes. When we augment Synergy with a parity cache,

the metadata cache is split into two 32 KB caches, one for

parity and one for counter/tree nodes. The parity cache is not

Fig. 8: Execution time for the secure VAULT baseline, Vault with isolated trees and metadata caches (ITVAULT),

VAULT+Synergy baseline (SYNERGY), VAULT+Synergy with isolation (ITSYNERGY), ITSYNERGY with a parity cache,

ITSYNERGY with shared parity (no parity cache), ITSYNERGY with shared parity and a parity cache, and the proposed

ITESP, all normalized to the non-secure baseline. Assumes 4 cores and 1 memory channel. The benchmarks are organized by

the suite.

SPEC2017 GAP

Name Working
Set (MB)

Name Working
Set (MB)

perlbench 48 bc 12654
gcc 6425 bfs 8179

bwaves 10763 cc 6326
mcf 1760 sssp 1884

cactuBSSN 6476 pr 6530
namd 239 tc 9746
lbm 42 NAS

omnetpp 3210 bt 2.6K
xalancbmk 156 cg 9K

cam4 168 ep 24
deepsjeng 6976 lu 2.7K

imagick 3245 ua 4.2K
fotonik3d 310 is 1K

roms 76 mg 15K
xz 7370 sp 2.7K

ft 137
dc 100

TABLE IV: Benchmark specifications. The 15 most memory-

intensive benchmarks are shown in bold font.

filled by blocks read from memory; it simply stores 64-bit

parities for recently written blocks; this helps coalesce multiple

parity writes into a single parity block write when the block

is evicted from the parity cache; this cache needs 8 valid bits

per block to indicate dirty parity words per block. When a

block is evicted from the parity cache, we use Masked Write

Transfer (MWT) [16] to write only the updated portions back

to the memory. In the proposed ITESP organization, a 16 KB

metadata cache per enclave is used to store metadata blocks

that include both counters and parity.

V. RESULTS

In Section V-A, we first examine performance and en-

ergy improvements for a baseline that integrates the Synergy

and ITESP techniques into an integrity tree modeled after

VAULT [40], i.e., an integrity tree with variable arity (arity of

64 for leaf level, 32 for parent level, and 16 for grandparent

level). We then discuss performance and energy for a baseline

that integrates the Synergy and ITESP techniques into an

integrity tree modeled with Morphable counters [33], i.e., a

tree with even higher arity (64 and 128) and small local

counters susceptible to high overflow rates.

A. ITESP for VAULT and Synergy Baselines

Figure 8 shows the execution time for the most relevant

systems, all normalized against a non-secure baseline. For

completeness, we show results for all 31 benchmarks, but for

most of our discussion, we will report improvements for our

15 most memory-intensive benchmarks, indicated in Table IV.

The integrity trees in this analysis are similar to VAULT, with

arity of 64, 32, and 16 for the three lowest levels. To explain

these results, Figure 9 shows the metadata overhead imposed

by the most relevant models on every memory read and write.

We confirm that similar to prior work, the Synergy baseline is

13.5% better than the VAULT baseline (Figure 8), with 20%

lower metadata overhead (Figure 9). Note that the parity write

traffic in baseline Synergy is high because it isn’t cached.

Fig. 9: Breakdown of data+metadata accesses for each read

and write operation. Averages are reported for the top-15

memory-intensive benchmarks.

Adding isolation to both VAULT and Synergy has a signifi-

cant performance impact, yielding performance improvements

of 46% and 45% respectively. This is primarily because the

metadata cache miss rate and metadata overhead are roughly

halved (2.8 metadata blocks per data miss in Synergy is

reduced to 1.4 with isolation, Figure 9) by avoiding inter-

program interference. We observed that most of the benefit

was because of tree isolation, i.e., it enabled higher-level

tree nodes to capture metadata for a localized set of pages

from one application, instead of scattered pages from multiple

applications. Metadata cache partitioning had a very minor

impact on cache hit rates, but is vital for leakage elimination.

The fifth bar in Figure 8 then incorporates a parity cache in

Isolated Synergy to coalesce parity writes when spatial locality

is observed in the write stream. We observe that such write

coalescing improves performance by 3% because it reduces

the parity write traffic by 49%. We then introduce parity

sharing (the next two bars, without and with a parity cache).

Unfortunately, parity sharing increases execution time because

of the need to perform read-modify-writes on parity; even

with a parity cache, execution time on average is similar to

ITSYNERGY. Parity sharing does improve the effectiveness

of the parity cache; on average, the hit rate of the parity cache

improves from 45% to 60% with sharing across 16 blocks.

Fig. 10: Normalized memory energy (on the left) and normal-

ized average system energy delay product (EDP, on the right)

for the same models described in Figure 8.

Finally, we embed parity information into the tree with

ITESP. This model yields performance that is 64% higher

than the Synergy baseline (execution time reduction of 39%),

19% higher than ITSYNERGY, and 13% higher than ITSYN-

ERGY with a parity cache. As shown in Figure 9, ITESP

eliminates accesses to the separate MAC/parity data structure

(0.46 per read/write in ITSYNERGY), but slightly increases

accesses to the tree data structure (from 0.93 per read/write

in ITSYNERGY to 1.0 in ITESP). Thus, every read/write

memory operation in ITESP either requires (i) no additional

memory accesses (if the leaf node is in the metadata cache),

(ii) one additional memory access (if the leaf node is not in

the metadata cache, but its parents are in the metadata cache),

and (iii) more than one additional memory accesses (if leaf

and its ancestors are not in the metadata cache).

Figure 10 shows memory energy results and system energy

delay product. The memory energy reductions follow the

same trend as the metadata traffic reductions. For the top-

15 benchmarks, ITESP reduces memory energy by 45% and

system EDP by 45%, relative to the Synergy baseline.

B. Sensitivity Analysis

Core Count

To understand the impact of executing a larger number of

applications, Figure 12 summarizes the normalized execution

times, memory energy, and system EDP for Synergy, and for

ITESP, with 4 and 8 copies of the program. We execute

the 4-core model with a single memory channel, while the

8-core model uses two memory channels. We observe that

the baseline Synergy has a higher slowdown with higher core

count even with more memory channels. This is primarily

because of higher metadata cache misses from a greater

degree of inter-program interference. The improvements from

ITESP are therefore higher in the 8-core case. For the top-15

benchmarks, the performance improvement, memory energy

reduction, and system EDP reduction go from 64%, 44%, 44%

with 4 cores to 82%, 48%, and 73% with 8 cores, respectively.

Size of Metadata cache

Figure 13 depicts a similar sensitivity analysis for the

metadata cache size per core. Larger metadata caches improve

the key metrics for all configurations by similar amounts. With

larger metadata caches, memory accesses are slightly lower,

thus slightly reducing the benefits of ITESP. In terms of per-

formance, the improvement with ITESP is 59% with 32 KB

Fig. 11: Normalized execution time (incl. local counter overflows) for Synergy and Morphable Counters (Synergy128),

Synergy128 with Isolation, and ITESP with Morphable Counters (ITESP 64 and ITESP 128). Assumes 8 cores with 2

channels.

Fig. 12: Execution time, memory energy, and system EDP for

a 4-core model with 1 channel and an 8-core model with 2

channels, normalized against a non-secure baseline.

Fig. 13: Execution time, memory energy, and system EDP for

various metadata cache sizes, normalized against a non-secure

baseline. The bars represent averages over top-15 memory-

intensive benchmarks.

metadata caches per core, and 52% with 64 KB metadata

caches. Note that metadata caches in commercial systems are

typically small; another perspective is that innovations like

ITESP are helpful in achieving high performance levels with

limited metadata cache space.

C. Address Mapping Policies

We next explore the design space of address mapping

policies. Because parity is shared by blocks in different ranks,

how consecutive blocks are interleaved can impact metadata

cache miss rates and row buffer hit rates. Below, we identify

address mapping policies that can balance the two. Figure 14

summarizes 4 relevant address mapping policies. Figure 15

summarizes the performance improvement, metadata cache

miss rate, and row buffer hit rate for ITESP for each of

these address mapping policies (for top-15 benchmarks). The

performance improvement is relative to Synergy, with its best

address mapping policy.

Fig. 14: Address mapping policies for a 1-channel config.

Fig. 15: Impact of address mapping policies on performance,

metadata cache miss rate, and row buffer hit rate (assuming

4 cores and 1 channel).

The first policy, Column, places consecutive cache lines in

a single row buffer. It therefore yields a high row buffer hit

rate. But because these consecutive cache lines are mapped

to different shared parity blocks in ITESP, they suffer from a

high metadata cache miss rate, i.e., the address mapping policy

that was best for Synergy is highly sub-optimal for ITESP.

The Rank address mapping policy places consecutive cache

lines in different ranks; it thus lowers metadata cache miss

rate in ITESP, but also offers a very low row buffer hit rate.

To alleviate these problems, we introduce the 2-row buffer

hit and 4-row buffer hit policies. In the latter, 4 consecutive

cache lines are placed in the same row buffer, thus promoting

row buffer hit rates. Even though these 4 consecutive cache

lines map to different shared parities, because a leaf node

has 4 different shared parities, they can map to a single leaf

node. Such a mapping therefore promotes row buffer hit rates

without compromising metadata cache miss rate.

D. ITESP with Morphable Counter Baseline

Finally, we show that ITESP is also compatible with

innovations [33] that exploit counter value locality to increase

tree arity. Recall the three configurations described in Figure 7,

one (SYN128) that resembles a Synergy-like baseline with

Morphable Counters, and two (ITESP 64 and ITESP 128) that

integrate ITESP and Morphable Counters. Figure 11 quantifies

the execution time impacts of these models for an 8-core 2-

channel configuration. These results also include the overheads

incurred when dealing with local counter overflows, given

the small sizes for local counters. This is estimated with a

separate long Pin-based simulation that does not model per-

cycle effects, but models counter values. The overflow rate is

directly related to the local counter size – 2 bits for ITESP

128, 3 bits for Synergy, and 5 bits for ITESP 64. We see that

ITESP 64 is the best organization by a small margin, i.e., its

lower overflow rate overcomes its lower metadata cacheability.

It achieves an improvement of 27% over Synergy, 12.4% over

ITSynergy, and 1.4% over ITESP 128. With higher arity trees,

most metadata cache misses are localized to the leaf nodes

of the tree. This reduces the benefit from isolation (which

primarily targets interference in higher levels of the tree),

but increases the benefit from embedded shared parity (which

targets the organization of the leaf node).

VI. RELATED WORK

Memory Integrity Verification. We have already discussed

state-of-the-art integrity verification techniques in Section II:

BMT, MEE, VAULT, Synergy, Morphable Counters. The work

of Lehman et al. [22] analyzes different caching strategies

for integrity metadata. Two works, InvisiMem [2] and Obfus-

Mem [4], show how memory devices with logic capabilities

can lower the overheads for both integrity verification and

oblivious RAM.

Memory Reliability. Multiple works, e.g., [50], [19], [17],

[41], have constructed codes for chipkill that improve perfor-

mance, energy, and capacity metrics. Some of these works [41]

use parity and RAID-like approaches for error correction.

ECC-parity [18] shares the ECC bits among different channels

to reduce the power and capacity overhead of a reliable

memory system. Multi-ECC [17] provides chipkill for an ECC

DIMM by leveraging a shared checksum.

Unified Reliability and Integrity. In addition to Synergy,

IVEC [13] offers a combined solution for both integrity and

chipkill. Unlike Synergy that exploits an ECC DIMM, IVEC

supports chipkill for non-ECC DIMMs. Integrity trees for per-

sistent memory systems must correctly recover metadata after

crashes – Osiris [49] and Anubis [51] show how encryption

counters and integrity tree nodes can be recovered at low cost,

e.g., using ECC to sanity check encryption counters.

VII. CONCLUSIONS

This work first isolates each enclave’s integrity tree to

reduce negative interference and eliminate two potential side

channels. We then build on Synergy by observing that par-

ities can be shared by multiple blocks, thus bringing parity

overhead on par with counter overhead. This enables placing

both parity and counters in a single node of the integrity tree.

Isolation improves performance of Synergy by 39% and the

unified data structure boosts this improvement to 64%. Parity

sharing has a negligible impact on reliability, primarily causing

new DUEs in the unlikely event of independent memory chip

failure in different ranks within a short window. The proposed

approach does not require write masking and therefore offers

broader system compatibility.

VIII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for many helpful sug-

gestions. This work was supported in parts by NSF grant CNS-

1718834 and Intel. We thank Anton Burtsev and Karl Taht for

their help with timing measurements on SGX.

REFERENCES

[1] “Micron System Power Calculator,” http://www.micron.com/products/
support/power-calc.

[2] S. Aga and S. Narayanasamy, “InvisiMem: Smart Memory for Trusted
Computing,” in International Symposium on Computer Architecture,
2017.

[3] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell et al., “SCONE:
Secure Linux Containers with Intel SGX.” in OSDI, 2016, pp. 689–703.

[4] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “ObfusMem: A Low-
Overhead Access Obfuscation for Trusted Memories,” in International

Symposium on Computer Architecture, 2017.
[5] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,

R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Si-
mon, and V. V. andd S. Weeretunga, “The NAS Parallel Benchmarks,”
International Journal of Supercomputer Applications, vol. 5, no. 3, pp.
63–73, Fall 1994.

[6] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP Benchmark
Suite,” arXiv, 2015.

[7] J. Bucek, K. Lange, and J. V. Kistowski, “SPEC CPU2017: Next-
Generation Compute Benchmark,” in ACM/SPEC International Confer-

ence on Performance Engineering, 2018.
[8] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,

A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “USIMM: the Utah
SImulated Memory Module,” University of Utah, Tech. Rep., 2012,
UUCS-12-002.

[9] V. Costan and S. Devadas, “Intel SGX Explained,” 2016, https://eprint.
iacr.org/2016/086.pdf.

[10] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev, “Branch-
Scope: A New Side-Channel Attack on Directional Branch Predictor,”
in Proceedings of ASPLOS, 2018.

[11] A. Ferraiuolo, Y. Wang, D. Zhang, A. C. Myers, and G. E. Suh, “Lattice
Priority Scheduling: Low-Overhead Timing Channel Protection for a
Shared Memory Controller,” in Proceedings of HPCA, 2016.

[12] S. Gueron, “A Memory Encryption Engine Suitable for General Purpose
Processors,” in Proceedings of IACR, 2016.

[13] R. Huang and G. Suh, “IVEC: Off-Chip Memory Integrity Protection
for Both Security and Reliability,” in Proceedings of ISCA, 2010.

[14] C. Hunger, M. Kazdagli, A. Rawat, S. Vishwanath, A. Dimakis, and
M. Tiwari, “Understanding Contention-driven Covert Channels and
Using Them for Defense,” in Proceedings of HPCA, 2015.

[15] Intel, “HBM Interface Intel FPGA IP User Guide,”
2019. [Online]. Available: https://www.intel.com/content/www/us/en/
programmable/documentation/mhi1462215825912.html

[16] JEDEC, “Masked Write Transfer,” https://www.jedec.org/standards-
documents/dictionary/terms/masked-write-transfer-mwt.

[17] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar, “Low-Power,
Low-storage-overhead Chipkill Correct via Multi-line Error Correction,”
in Proceedings of SC, 2013.

[18] X. Jian and R. Kumar, “ECC Parity: A Technique for Efficient Memory
Error Resilience for Multi-Channel Memory Systems,” in Proceedings

of SC, 2014.

[19] J. Kim, M. Sullivan, and M. Erez, “Bamboo ECC: Strong, Safe, and
Flexible Codes for Reliable Computer Memory,” in the Proceedings of

HPCA-15, February 2015.

[20] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre At-
tacks: Exploiting Speculative Execution,” 2018, https://spectreattack.
com/spectre.pdf.

[21] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading
Bits in Memory Without Accessing Them,” in 41st IEEE Symposium on

Security and Privacy (S&P), 2020.

[22] T. Lehman, A. Hilton, and B. Lee, “MAPS: Understanding Metadata
Access Patterns in Secure Memory,” in Proceedings of ISPASS, 2018.

[23] T. S. Lehman, A. D. Hilton, and B. C. Lee, “PoisonIvy: Safe Speculation
for Secure Memory,” in Proceedings of MICRO, 2016.

[24] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation,” in Proceedings

of PLDI, 2005.

[25] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi,
V. Shanbhogue, and U. Savagaonkar, “Innovative Instructions and Soft-
ware Model for Isolated Execution,” in Proceedings of HASP Workshop,

in conjunction with ISCA-40, 2013.

[26] Micron, “DDR4 SDRAM RDIMM,” 2013, product datasheet,
https://www.micron.com/-/media/client/global/documents/products/
data-sheet/modules/parity rdimm/asf9c512x72pz.pdf.

[27] Micron Technology Inc., “Ddr3 sdram part mt41j256m8,” 2006.
[28] K. Nguyen, “Introduction to Cache Allocation Technology in the Intel

Xeon Processor E5 v4 Family,” 2016, https://software.intel.com/en-us/
articles/introduction-to-cache-allocation-technology.

[29] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
ExitLess OS Services for SGX Enclaves,” in EuroSys, 2017, pp. 238–
253.

[30] M. Qureshi, “CEASER: Mitigating Conflict-Based Cache Attacks via
Encrypted-Address and Remapping,” in Proceedings of MICRO, 2018.

[31] J. Robertson and M. Riley, “The Big Hack: How China Used a Tiny
Chip to Infiltrate U.S. Companies,” 2018, https://tinyurl.com/ycywjdmo.

[32] B. Rogers, S. Chhabra, Y. Solihin, and M. Prvulovic, “Using Address
Independent Seed Encryption and Bonsai Merkle Trees to Make Secure
Processors OS- and Performance-Friendly,” in Proceedings of MICRO,
2007.

[33] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and
M. Qureshi, “Morphable Counters: Enabling Compact Integrity Trees
for Low-Overhead Secure Memories,” in Proceedings of MICRO, 2018.

[34] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, and M. Qureshi,
“SYNERGY: Rethinking Secure-Memory Design for Error-Correcting
Memories,” in Proceedings of HPCA, 2018.

[35] B. Schroeder, E. Pinheiro, and W. D. Weber, “DRAM Errors in the Wild:
A Large-Scale Field Study,” in Proceedings of SIGMETRICS, 2009.

[36] M. Seaborn and T. Dullien, “Exploiting the DRAM Row Hammer Bug
to Gain Kernel Privileges,” in Black Hat, 2015.

[37] A. Shafiee, A. Gundu, M. Shevgoor, R. Balasubramonian, and M. Tiwari,
“Avoiding Information Leakage in the Memory Controller with Fixed
Service Policies,” in Proceedings of MICRO, 2015.

[38] V. Sridharan and D. Liberty, “A Study of DRAM Failures in the Field,”
in Proceedings of SC, 2013.

[39] V. Sridharan, N.DeBardeleben, S. Blanchard, K. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory Errors in Memory Systems: The
Good, The Bad, and The Ugly,” in Proceedings of ASPLOS, 2015.

[40] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reducing
Paging Overheads in SGX with Efficient Integrity Verification Struc-
tures,” in Proceedings of ASPLOS, 2018.

[41] A. N. Udipi, N. Muralimanohar, R. Balasubramonian, A. Davis, and
N. Jouppi, “LOT-ECC: Localized and Tiered Reliability Mechanisms
for Commodity Memory Systems,” in Proceedings of ISCA, 2012.

[42] A. Vuong, A. Shafiee, M. Taassori, and R. Balasubramonian, “An
MLP-Aware Leakage-Free Memory Controller,” in Proceedings of HASP

Workshop, in conjunction with ISCA-45, 2018.
[43] Y. Wang, B. Wu, and G. Suh, “Secure Dynamic Memory Scheduling

Against Timing Channel Attacks,” in Proceedings of HPCA, 2017.
[44] Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing Channel Protection for

a Shared Memory Controller,” in HPCA, 2014.

[45] Z. Wang and R. B. Lee, “New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks,” in Proceedings of ISCA, 2007.

[46] ——, “A Novel Cache Architecture with Enhanced Performance and
Security,” in Proceedings of MICRO, 2008, pp. 83–93.

[47] Xilinx, “DDR3 ECC with Data Mask,” 2013. [Online].
Available: https://forums.xilinx.com/t5/Other-FPGA-Architectures/
ddr3-ecc-with-data-mask/td-p/570028

[48] M. Yan, J.-Y. Wen, C. Fletcher, and J. Torrellas, “SecDir: A Secure
Directory to Defeat Directory Side-Channel Attacks,” in Proceedings of

ISCA, 2019.
[49] M. Ye, C. Hughes, and A. Awad, “Osiris: A Low-Cost Mechanism to

Enable Restoration of Secure Non-Volatile Memories,” in Proceedings

of MICRO, 2018.
[50] D. Yoon and M. Erez, “Virtualized and Flexible ECC for Main Memory,”

in Proceedings of ASPLOS, 2010.
[51] K. A. Zubair and A. Awad, “ Anubis: Ultra-Low Overhead and Recovery

Time for Secure Non-Volatile Memories,” in Proceedings of ISCA, 2019.

