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in which every resource is provisioned for the
worst case. By addressing both problems, the new architecture, called Newton, moves
closer to achieving optimal energy per neuron for crossbar accelerators. We introduce
new techniques that apply at different levels of the tile hierarchy, some leveraging
heterogeneity and others relying on divide-and-conquer numeric algorithms to reduce
computations and ADC pressure. Finally, we place constraints on how a workload is
mapped to tiles, thus helping reduce resource-provisioning in tiles. For many
convolutional-neural-network (CNN) dataflows and structures, Newton achieves a 77-
percent decrease in power, 51-percent improvement in energy-efficiency, and 2.1x
higher throughput/area, relative to the state-of-the-art In-Situ Analog Arithmetic in
Crossbars (ISAAC) accelerator.

The last two years have seen a flurry of activity in designing machine-learning accelerators tar-
geted at enterprise servers, self-driving cars, and mobile devices. Similar to our work, most of
these recent works have focused on inference in artificial neural networks that achieve state-of-
the-art accuracies on challenging image-classification workloads.

‘While most of these recent accelerators have used digital architectures, a few have leveraged an-
alog acceleration on memristor crossbars that take advantage of in-situ computation to dramati-
cally reduce data-movement costs. Each crossbar is assigned to execute parts of the neural-
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network computation and programmed with the corresponding weight values. Input neuron val-
ues are fed to the crossbar, and—by leveraging Kirchhoff’s law—the crossbar outputs the corre-
sponding dot product. The neuron output undergoes analog-to-digital conversion before being
sent to the next layer. Multiple small-scale prototypes of this approach have been demonstrated.!

The design constraints for digital accelerators are very different from analog ones. High commu-
nication overhead and the memory bottleneck are first-order design constraints in digital,
whereas the computation overhead arising from analog-to-digital conversions and balancing the
extent of digital computation are more critical in analog accelerators. In this work, we show that
computation is a critical problem in analog. We leverage numeric algorithms to reduce conver-
sion overheads. We also introduce “just-right” resource provisioning to efficiently handle the
common case.

With these innovations in place, our new design, called Newton, moves the analog architecture
closer to the bare minimum amount of energy required to process one neuron. We define an ideal
neuron as one that keeps the weight in place adjacent to a digital ALU, retrieves the input from
an adjacent single-row eDRAM unit, and—after performing one digital operation—writes the
result to another adjacent single-row eDRAM unit. This energy is lower than that for a similarly
ideal analog neuron because of the ADC cost. This ideal neuron operation consumes 0.33 pJ. An
average DaDianNao operation consumes 3.5 pJ because it pays a high price in data movement
for inputs and weights.> An average ISAAC operation consumes 1.8 pJ because it pays a moder-
ate price in data movement for inputs (weights are in situ) and a high price for ADC.?> An aver-
age Eyeriss operation consumes 1.67 pJ because of an improved dataflow to maximize reuse.*
The innovations in Newton push the analog architecture closer to the ideal neuron by consuming
0.85 pJ per operation.

BACKGROUND

Analog Accelerators

Two CNN accelerators introduced in the recent past, ISAAC and PRIME,>* have leveraged
memristor crossbars to perform dot-product operations in the analog domain. We focus on
ISAAC here because it out-performs PRIME in terms of throughput, accuracy, and ability to
handle signed values. ISAAC is also able to achieve nearly 8% higher throughput than the digital
accelerator DaDianNao.

The ISAAC Pipeline

In ISAAC, memristive crossbar arrays are used to perform analog dot-product operations. Neu-
ron inputs are provided as voltages to wordlines, neuron weights are represented by pre-pro-
grammed cell conductances, and neuron outputs are represented by the currents in each bitline.
The neuron outputs are processed by an ADC and shift-and-add circuits. They are then sent as
inputs to the next layer of neurons. As shown in Figure 1(a), ISAAC is a tiled architecture,
meaning one or more tiles are dedicated to process one layer of the neural network. To perform
inference for one input image, neuron outputs are propagated from tile to tile until all network
layers have been processed.

An ISAAC chip consists of many tiles connected in a mesh topology. Each tile includes an
eDRAM buffer that supplies inputs to in-situ multiply-accumulate (IMA) units. The IMA units
consist of memristor crossbars (which perform the dot-product computation), ADCs, and shift-
and-add circuits that accumulate the digitized results. With a design space exploration, the tile is
provisioned with an optimal number of IMAs, crossbars, ADCs, and so on. Within a crossbar, a
16-bit weight is stored with 2 bits per cell, across eight columns. A 16-bit input is supplied as
voltages over 16 cycles, 1 bit per cycle, using a trivial DAC array. The partial outputs are shifted
and added across eight columns and across 16 cycles to give the output of many parallel multi-
ply-accumulate (MAC) operations. Thus, there are two levels of pipelining in ISAAC: (i) the in-
tra-tile pipeline (where inputs are read from eDRAM, processed by crossbars in 16 cycles, and
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aggregated) and (ii) the inter-tile pipeline (where neuron outputs are transferred from one layer
to the next). The intra-tile pipeline has a cycle time of 100 ns, matching the latency for a crossbar
read. Inputs are sent to a crossbar in an IMA using an input HTree network. The input HTree has
sufficient bandwidth to keep all crossbars active without bubbles. Each crossbar has a dedicated
ADC operating at 1.28 GSamples/s shared across its 128 bitlines to convert the analog output to
digital in 100 ns. An HTree network is then used to collect digitized outputs from crossbars.
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Figure 1. (a) The ISAAC architecture. (b) Energy breakdown of vector-matrix multiplication in
existing digital and analog pipelines for the proposed optimizations.

Even though an analog architecture consists of both digital and analog computations, the over-
head of analog dominates with 61 percent of the total power.> Consider a 1x128 vector being
multiplied with a 128x128 matrix (all values are 16 bits). Figure 1(b) shows the energy break-
down of the vector-matrix multiplication pipeline compared against digital designs for various
architectures. As the figure shows, communication and memory accesses are the major limiting
factor for digital architectures—whereas for analog, computation overhead dominates, primarily
arising from the ADC costs.

PROPOSAL

Intra-IMA Optimizations

HTree modifications

ISAAC did not place any constraints on how a neural network can be mapped to its many tiles
and IMAs. As a result, its resources, notably the HTrees within the IMA, are provisioned to han-
dle the worst case. If multiple layers were to share an IMA, we would need multiple HTrees to
support the simultaneous aggregation of multiple neurons. This introduces a non-trivial area
overhead and offers a flexibility that is rarely useful to the workloads we examined. We modify
mapping by placing the constraint that an IMA cannot be shared by multiple network layers.
While this inflexibility can waste a few resources, we observe that it also significantly reduces
the HTree size and hence area per IMA. The architecture is still general-purpose, meaning arbi-
trary CNNs can be mapped to it.

ISAAC was agnostic to how a single synaptic weight was scattered across multiple bitlines; it

therefore requires a 16-bit wide HTree. Instead, we adopt the following approach to boost area-
efficiency. A 16-bit weight is scattered across eight 2-bit cells; each cell is placed in a different
crossbar. We also embed the shift-and-add units in the HTree, as shown in Figure 2(b). So, the
shift-and-add unit at the leaf of the HTree adds the digitized 9-bit dot-product results emerging
from two neighboring crossbars. Because the operation is a shift-and-add, it produces an 11-bit
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result. The next shift-and-add unit takes two 11-bit inputs to produce a 13-bit result, and so on.

This leads to an efficient pipeline and lowers the HTree widths.
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Figure 2. (a) Heterogeneous ADC sampling resolution, (b) IMA supporting Karatsuba’s algorithm,
and (c) mapping Strassen’s algorithm to a tile.

Adaptive ADCs

A simple dot-product operation on 16-bit values performed using crossbars typically results in an
output of more than 16 bits. In the example discussed earlier, using 2-bit cells in crossbars and 1-
bit DACs yields a 39-bit output. Once the scaling factor is applied, the least significant 10 bits
are dropped. The most significant 13 bits represent an overflow that cannot be captured in the
16-bit result, so they are effectively used to clamp the result to a maximum value.

What is of note here is that the output from every crossbar column in every iteration is being re-

solved with a high-precision 9-bit ADC, but many of these bits contribute to either the 10 least

significant bits or the 13 most significant bits that are eventually going to be ignored. This is an
opportunity to lower the ADC precision and ignore some bits, depending on the column and the
iteration being processed. Figure 2(a) shows the number of relevant bits emerging from every
column in every iteration. Note that before dropping the highest-ignored least significant bit, we

use rounding modes to generate carries.

The ADC accounts for a significant fraction of IMA power. When the ADC is operating at a
lower resolution, it has less work to do. In every 100-ns iteration, we tune the resolution of a suc-
cessive approximation (SAR) ADC to match the requirement in Figure 2(a). The ADC simply
gates off its circuits until the next sample is provided.” Thus, the use of adaptive ADCs helps re-
duce IMA power while having no impact on performance. We are also ignoring bits that do not
show up in a 16-bit fixed-point result, so we are not impacting the functional behavior of the al-
gorithm, thus having zero impact on algorithm accuracy. It is also worth pointing out that the

adaptive ADC technique is compatible with the encoding used by ISAAC to reduce ADC resolu-

tion by 1 bit.

Karatsuba’s divide-and-conquer multiplication technique

Karatsuba’s divide-and-conquer algorithm (see Equation 1) manages to reduce the complexity of
multiplying two n-bit numbers O(#?) to O(n'-®) by dividing the numbers into two halves of n/2
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bits; instead of performing four n/2-bit multiplications, it calculates the result with two n/2-bit
multiplications and one (n/2+1)-bit multiplication.

W= 2N/2VV1 +VVI)
X=2""X+X, (1)
WX =2 WX, + 2" (WX, + W X))+ W X, = 2% =2 WX, + 2" (W + W)X, + X))+ (-2 X,

To illustrate the benefit of this technique, consider the same example discussed earlier using
128x128 crossbars, 2-bit cells, and a 1-bit DAC. The product of input X and weight ¥ is per-
formed on eight crossbars in 16 cycles. In Equation 1, WoXo is performed on four crossbars in
eight iterations (since we are dealing with fewer bits for weights and inputs). The same is true for
WiXi. A third set of crossbars stores the weights (W1 + W) and receives the pre-computed inputs
(X1 + Xo). This computation is spread across five crossbars and nine iterations. We see that the
total amount of work has reduced by 15 percent.

There are a few drawbacks, as well. A computation now takes 17 iterations instead of 16. The
net area also increases because the network must send inputs Xo and Xi in parallel, an additional
crossbar is needed, the output buffer is larger to store sub-products, and 128 1-bit full adders are
required to compute (X1 + Xo). Again, given that the ADC is the primary bottleneck, these other
overheads are relatively minor.

To implement Karatsuba’s algorithm, we modify the IMA, as shown in Figure 2(b). The changes
are localized to a single mat. Each mat now has two crossbars that share the DAC and ADC.
Given the size of the ADC, the extra crossbar per mat has a minimal impact on area. The left
crossbars in four of the mats now store Wo, the left crossbars in the other four mats store #1, the
right crossbars in five of the mats store o + W1, and the right crossbars in three of the mats are
unused. In the first eight iterations, the eight ADCs are used by the left crossbars. In the next
nine iterations, five ADCs are used by the right crossbars. As discussed earlier, the main objec-
tive here is to lower power by reducing use of the ADC. Divide-and-conquer can be recursively
applied further. When applied again, the computation keeps eight ADCs busy in the first four
iterations and six ADCs busy in the next ten iterations. This is a 28-percent reduction in ADC
use and a 13-percent reduction in execution time. But, there is an area penalty because 20 cross-
bars are needed per IMA.

Intra-Tile Optimizations

The previous sub-section focused on techniques to improve an IMA; we now shift our focus to
the design of a tile. We first use a divide-and-conquer approach at the tile level. We then create
heterogeneous tiles that suit convolutional and fully connected layers.

Strassen’s algorithm

A divide-and-conquer approach can also be applied to matrix-matrix multiplication. Note that all
of our computations are vector-matrix multiplications. But when a layer is replicated, multiple
input vectors are being fed to the same matrix of weights; so, replicated layer computations are
matrix-matrix multiplications. By partitioning each matrix X and ¥ into four sub-matrices, we
can express matrix-matrix multiplication in terms of multiplications of sub-matrices (see Figure
2(c)). A typical algorithm would require eight sub-matrix multiplications, followed by an aggre-
gation step. Linear algebra manipulations can perform the same computation with seven sub-ma-
trix multiplications (Po—Ps) with appropriate pre- and post-processing. Figure 2(c) shows the
mapping of computations within a tile to implement Strassen’s algorithm. The computations
(Po—Ps) in Strassen’s algorithm are mapped to seven IMAs in the tile, thus freeing up the eighth
IMA and reducing ADC usage.

The two divide-and-conquer optimizations reduce the computational energy by 20.6 percent.
However, they have very little impact on other digital accelerators. For example, these algo-
rithms may impact the efficiency of the neuron functional units (NFUs) in DaDianNao, but DaD-
ianNao area is dominated by eDRAM banks, not NFUs. On the other hand, analog computations

September/October 2018 45 www.computer.org/micro



I 'ccE MICRO

are dominated by ADCs, so efficient computation does noticeably impact overall efficiency. Fur-
thermore, some of the preprocessing for these algorithms is performed when installing weights
on analog crossbars, but it has to be performed “on the fly” for digital accelerators. The compu-
tation re-factoring due to these techniques needs additional adder blocks in the pipeline, incur-
ring a storage overhead of 4.3 percent and a latency overhead of 4.5 percent.

Different tiles for convolutions and classifiers

While ISAAC uses the same homogeneous tile for the entire chip, we observe that convolutional
layers have very different resource demands than fully connected classifier layers. The classifier
(or FC) layer has to aggregate a set of inputs required by a set of crossbars. The crossbars then
perform their computation; the inputs are discarded and a new set of inputs is aggregated. This
results in the following properties for the classifier layer:

e The classifier layer has a high communication-to-compute ratio, so the router bandwidth
puts a limit on how often the crossbars can be busy.

e The classifier also has the highest synaptic weight requirement because every neuron
has private weights.

e The classifier has low buffering requirements; an input is seen by several neurons in
parallel, and the input can be discarded right after.

We therefore design special tiles customized for classifier layers that:

e have a higher crossbar-to-ADC ratio (4:1 instead of 1:1),
e operate the ADC at a lower rate (10 MSamples/s instead of 1.2 GSamples/s), and
e have a smaller eDRAM buffer size (4 Kbytes instead of 16 Kbytes).

Storage-efficient FC tiles reduce inter-tile communication and hence the communication energy.
For small-scale workloads that are trying to fit on a single chip, we propose a chip in which

some of the tiles are conv tiles and some are classifier tiles (a ratio of 1:1 is a good fit for most of
our workloads). For large-scale workloads that use multiple chips, each chip can be homogene-
ous; we use roughly an equal number of conv chips and classifier chips. The results consider
both cases. While a digital accelerator such as ScaleDeep uses heterogeneity to manage the byte-
fetch-to-flops ratio in different layers, Newton employs new knobs to manage varying ADC uti-
lization rates.

METHODOLOGY

For modeling the energy and area of the eDRAM buffers and on-chip interconnect like the
HTree and tile bus, we use CACTI 6.5 at 32 nm. The area and energy model of a memristor
crossbar is based on its experimental realization by Miao Hu and colleagues.® We adapt the area
and energy of a 1-bit DAC, shift-and-add circuits, max/average pooling block, sigmoid opera-
tion, and router similar to the analysis in ISAAC.? We avail the same HyperTransport serial link
model for off-chip interconnects as used by DaDianNao and ISAAC.?>* While our buffers can
also be implemented with SRAM, we use eDRAM to make an apples-to-apples comparison with
the ISAAC baseline. Newton is only used for inference with a delay of 16.4 ms to pre-load
weights in a chip. The Newton architecture uses the same 8-bit ADC at 32 nm as used in ISAAC,
partly because it yields the best configuration in terms of area/power and meets the sampling fre-
quency requirement, and partly because it can be reconfigured for different resolutions.” This
ADC is equipped with a memory and state logic to realize the control logic of Figure 2(a) to tune
the ADC, which requires no extra time.

The ADC power for different sampling resolutions is modeled by gating off the other compo-
nents except the sampling clock. We create an analytic model for a Newton pipeline within an
IMA and within a tile, and then map the suite of benchmarks, making sure that there are no
structural hazards in any of these pipelines. We consider network bandwidth limitations in our
simulation model to estimate throughput. Since ISAAC is a throughput architecture, we perform
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an iso-throughput comparison of the Newton architecture with ISAAC for the different intra-
IMA or intra-tile optimizations. Since the dataflow in the architecture is bounded by the router
bandwidth, we allocate enough resources until the network saturates to create our baseline
model. Similar to ISAAC, data transfers between tiles on chip and on the HT link across chips
have been statically routed to make it conflict-free. Like ISAAC, the latency and throughput of
Newton for the given benchmarks can be calculated analytically using a deterministic execution
model. Since there aren’t any runtime dependencies on the control flow or dataflow of the deep
networks, analytical estimates are enough to capture the behavior of cycle-accurate simulations.

As with any new technology, a memristor crossbar has unique challenges, mainly in two re-
spects. First, mapping a matrix onto a memristor crossbar array requires programming (or writ-
ing) cells with the highest precision possible. Second, real circuits deviate from ideal operation
due to parasitics such as wire resistance, device variation, and write/read noise. All of these fac-
tors can cause the actual output to deviate from its ideal value. Recent work has captured many
of these details to show the viability of prototypes to tolerate errors.:® The adaptive ADC tech-
nique leads to a reduced output precision requirement, which helps the cause of tolerating noise,
whereas the other techniques are modifications in the digital domain.

RESULTS

We use ISAAC as the baseline architecture and augment it with the proposed optimizations. This
work considers a suite of state-of-the-art workloads representative of various dataflows and net-
work sizes.

We explored Newton’s design space and chose a moderately sized IMA that processes 128 in-
puts for 256 neurons and has high computational-efficiency and low crossbar under-utilization (9
percent), given the mapping constraints.” In Figure 3(a), we show the improvement of Newton
over ISAAC for the various workloads. The improvement in area-efficiency is largely due to the
HTree modification that decreases the number of wires and heterogeneous tiles that make the FC
tiles storage-efficient. Karatsuba’s technique comes at the cost of a 6.4-percent reduction in area-
efficiency because of the need for more crossbars and the increase in HTree bandwidth to send
the sum of inputs. The overall improvement in area is 60 percent.

The ADCs contribute 49 percent of the chip power in ISAAC. Optimizing the number of ADC
conversions and their precision leads to large gains in energy-efficiency (adaptive ADC: 13 per-
cent, Karatsuba’s: 17 percent, and Strassen’s: 4.5 percent). Divide-and-conquer can be recur-
sively applied further, but experiments show that applying it once is nearly as good as applying it
twice, and much less complex. The heterogeneous tiles are able to bring down the peak power
requirement by 25 percent, as the ADCs in the FC tile sample at a much lower frequency. We
also observe that the above techniques are not sensitive to the ADC design; using a recently pub-
lished neuromorphic architecture, friendly ADC leads to 30-percent improvement in energy-effi-
ciency but increases the area of the chip by 35 percent.!”

Figure 3(b) plots the incremental effect of each of our techniques on peak computational-effi-
ciency (GOPS/s/mm?) and power-efficiency (GOPS/s/W) of DaDianNao, ISAAC, and Newton.
We see that both adaptive ADCs and the divide-and-conquer approach play a significant role in
increasing the power-efficiency. While the impact of Strassen’s technique is not visible in this
graph, it manages to free up resources (one in every eight IMAs) in a tile, thus providing room
for more compact mapping of networks and reduced ADC utilization.

Figure 3(c) shows an iso-area comparison of the 8-bit version of Newton with Google’s tensor
processing unit (TPU) architecture.!! For the TPU, we perform enough batch processing to not
exceed the latency target of 7 ms as demanded by most application developers. Newton’s latency
is comfortably less than 7 ms for all the evaluated benchmarks. We also model the TPU with
GDDRS5 memory to allocate sufficient bandwidth.

Newton exhibits 10.3% improvement in throughput even though its peak computational-effi-
ciency is 12.3x better. This is because, when operating on an FC layer, some crossbars in New-
ton remain idle. While Newton is only 1.6% better than the TPU in terms of peak power-
efficiency, the actual benefit goes up for real workloads, increasing to 3.4x. Some large networks
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like MSRAS3 require a lower batching degree for the TPU to meet the latency target; this in-
creases the memory pressure and causes idling in compute units. From the figure, it can also be
noted that the throughput improvement of AlexNet and ResNet aren’t as high as the other bench-
marks because of their relatively smaller networks. This increases the batch size, improving the
data locality for FC layer weights in the TPU.
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Figure 3. (a) Breakdown of improvement over ISAAC on area-efficiency, power envelope, and
energy-efficiency due to different techniques. (b) Peak computational-efficiency (CE) and power-

efficiency (PE) metrics of different schemes, along with baseline digital and analog accelerators. (c)
Comparison with Google’s TPU."

CONCLUSION

In this work, we target resource provisioning and efficiency in a crossbar-based DNN accelera-
tor. Starting with the ISAAC architecture, we show that three approaches—heterogeneity, map-
ping constraints, and divide-and-conquer—can be applied within a tile and within an IMA. This
results in a smaller HTree, energy-efficient ADCs with varying resolution, energy- and area-effi-
ciency in classifier layers, and fewer computations. While some of these techniques are used in
software libraries, our key finding is that they have little impact on digital accelerators that are
more memory-bound, but have a significant impact on analog accelerators that are ADC-bound.
Many of these ideas would also apply to a general accelerator for matrix-matrix multiplication,
as well as to other neural networks such as RNN and long short-term memory (LSTM). The
Newton architecture cuts the current gap between ISAAC and an ideal neuron in half.
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