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Abstract—Future systems dealing with big-data workloads will
be severely constrained by the high performance and energy
penalty imposed by data movement. This penalty can be re-
duced by storing datasets in DRAM or NVM main memory
in compressed formats. Prior compressed memory systems have
required significant changes to the operating system, thus limiting
commercial viability. The first contribution of this paper is to
integrate compression metadata with ECC metadata so that
the compressed memory system can be implemented entirely
in hardware with no OS involvement. We show that in such
a system, read operations are unable to exploit the benefits
of compression because the compressibility of the block is not
known beforehand. To address this problem, we introduce a
compressibility predictor that yields an accuracy of 97%. We
also introduce a new data mapping policy that is able to
maximize read/write parallelism and NVM endurance, when
dealing with compressed blocks. Combined, our proposals are
able to eliminate OS involvement and improve performance
by 7% (DRAM) and 8% (NVM), and system energy by 12%
(DRAM) and 14% (NVM), relative to an uncompressed memory
system.

I. INTRODUCTION

Memory system technologies are rapidly evolving, with
new 3D-stacked devices and non-volatile memories (NVMs)
on the horizon. As processors move towards specialization
with accelerators, one can argue that memory systems should
be specialized as well. Indeed, IBM already designs custom
DIMMs for their Power8 line of processors [10]. These
DIMMs include a Centaur memory buffer that has scheduling,
caching, and other RAS features [10]. In the future, we can
expect to see more system vendors designing specialized
memory architectures that are not as constrained by JEDEC
standards. A prominent example of such memory specializa-
tion is Near Data Processing (NDP) [14], [5], [1].

In this paper, we focus on specialized memory architectures
that provide support for memory compression. Compression
will likely be a key ingredient in a system’s ability to grapple
with emerging big data applications, regardless of whether data
is resident on DRAM or NVM.

The concept of memory compression has been around for
decades, with IBM’s MXT architecture representing an early
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commercial example [22]. However, memory compression
has not been widely used in modern systems. While the
many benefits of compression are evident [21], [18], [20],
the system-level complexity of implementing compression has
been non-trivial. A number of recent works have reduced
this complexity [21], [18], [16]. The work in this paper
continues this progression, resulting in a memory compression
architecture that is completely invisible to the OS.

Similar to the approach proposed in recent works [21], [20],
we do not use compression to grow the effective memory
capacity (thus avoiding OS involvement). Instead, compression
is used to read/write blocks that are smaller than the standard
72-byte blocks. This reduces energy per read/write; it also
reduces the impact of writes on NVM endurance. By reducing
bandwidth utilization, this has the potential to improve perfor-
mance as well. However, the solutions of Shafiee et al. [21]
(MemZip) and Sathish et al. [20] require separate metadata
storage to track the compressibility of every cache line, thus
involving the OS.

The first contribution of this paper is to eliminate all OS
involvement by encoding the compression metadata in the
field typically reserved for ECC. We are able to do this
without an increase in silent data corruption (SDC) or detected
unrecoverable error (DUE) rates.

In this new design, since separate metadata is eliminated,
the memory controller is unaware of the block size before a
read operation. Therefore, the low energy and low bandwidth
benefits of compression are not exploited by read operations.
We introduce prediction mechanisms that allow the memory
controller to guess the block size with a very high accuracy.
The prediction mechanisms have an accuracy of 97% and are
able to reduce memory energy by 24%. They are able to offer
performance that is within 1% of an oracular scheme.

Third, we recognize that the mapping of compressed blocks
to memory chips has a significant impact on wear leveling,
power per chip, and performance. We therefore design new
mapping policies that simultaneously improve all three of these
metrics by uniformly spreading activity within a memory rank.
Relative to the default mapping policy, our proposed permuted

mapping policy is able to reduce activity variance by 19×.



II. BACKGROUND

A. Prior Work in Memory Compression

A number of memory compression approaches have been
considered in the last 15 years [22], [7], [18]. These ap-
proaches were primarily designed to boost memory capacity
by compacting a large page into a smaller page. While this is
an attractive feature, it inevitably requires an overhaul of the
OS paging policies and mechanisms. The high complexity of
this overhaul, whether real or perceived, is a major obstacle
for commercial adoption.

Early compression techniques have several other drawbacks
that have been progressively addressed by recent works. First,
the high latency of compression and decompression [22], [7]
has been reduced to a handful of cycles by the Base-Delta-
Immediate (B∆I) [19] algorithm. B∆I is very effective for
workloads that exhibit value locality, thus striking a sweet spot
in terms of latency and compressibility. Second, early works
require complex mechanisms to locate the start of a block.
Third, they also suffer from the “expanding-write” problem,
where a write to a block may result in lower compressibility.
This causes the new version of the block to occupy more space
than the old version of the block. A number of compressed
blocks then have to be moved to make room for this larger
block. Both of these problems were mitigated by the LCP
mechanism [18] that reduces complexity for the common case.

To further reduce the complexity of compression for DDR3
memory, Shafiee et al. [21] abandon the goal of higher mem-
ory capacity with compression. In their MemZip approach,
every block has the same starting address as in a baseline
uncompressed system. But instead of occupying the next 72
bytes as in an uncompressed baseline, the block occupies
a subset of those next 72 bytes. With support from rank-
subsetting [24], [4], MemZip can issue fine-granularity reads
and writes for compressed blocks. This reduces energy and
bandwidth demand. When applied to NVMs, this also reduces
wearout. However, like prior work, MemZip requires separate
metadata storage to track the compressibility of each block.
The management of this metadata in main memory requires
OS involvement. One (positive) side-effect of such separate
metadata is that a single read of metadata from memory
fetches information for hundreds of cache lines. This can
then be leveraged to efficiently fetch compressed versions of
neighboring blocks (assuming spatial locality).

B. Baseline Compressed Memory System

We build on the MemZip approach to construct a baseline
system for this work. We are targeting future specialized
systems that are willing to deviate from the DDR protocol. We
continue to use commodity DDR-compatible memory chips,
but the memory controller, channel, and DIMM are customized
to exploit compression (an approach similar to that of the
customized memory system architecture in IBM’s Power8
systems [10]). Our proposal and design are agnostic to the
memory technology; as described shortly, the proposals have
a higher impact for NVMs.

In our baseline system (example rank shown in Figure 1), a
memory rank is partitioned into smaller sub-ranks. In Figure 1,
a rank composed of 9 x8 memory chips is partitioned into
9 sub-ranks. The chips continue to share a single com-
mand/address bus. While all chips in a conventional rank share
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Fig. 1. Baseline memory system with sub-ranking.

a single chip-select line, each chip in this sub-ranked design
has its own chip-select line. This is the primary overhead and
change to the conventional DDR protocol. With this change
in place, the memory controller can issue commands just as
usual, but the commands are restricted to a subset of a rank. By
creating sub-ranks, we enable fine granularity reads and writes.
In the example in Figure 1, we can read/write blocks at 8-byte
granularity. As identified in MemZip, there are two primary
ways to map a block to chips in a rank. In Vertical Interleaving,
the block is placed entirely in one sub-rank. A single Column-
Read command to that sub-rank retrieves 8 bytes of data.
The number of Column-Read commands required to retrieve a
compressed cache line depends on the compressibility of that
block. In the worst case, an uncompressed 72-byte cache line
would require 9 sequential Column-Read commands to that
rank. In Horizontal Interleaving, the block is scattered across
multiple sub-ranks and 8-byte words are fetched in parallel
from all involved sub-ranks. Again, the number of involved
sub-ranks is a function of the compressibility of the block.

We first compare the merits of Vertical and Horizontal
Interleaving, while assuming an idealized compressed memory
system with no OS involvement. Since compression metadata
is embedded in the block itself, the size of the cache line is
not known before the read is performed.

With Vertical Interleaving, one cache line is fetched from
a single sub-rank, and multiple cache lines can be fetched in
parallel from different sub-ranks. We’ll make the optimistic
assumption that the first word contains enough information
to decipher the size of the block. Accordingly, additional
Column-Reads are issued until the entire block has been
fetched. By fetching exactly the required data, Vertical In-
terleaving can enjoy the low energy, low bandwidth, and
high parallelism enabled by compression. A similar benefit is
also experienced when handling writes. As seen in Figure 2,
benchmarks LU , GemsFDTD, zeusmp exhibit performance
improvements in a DRAM system with vertical interleaving.

However, Vertical Interleaving suffers from a significant
drawback – longer latency to fetch an entire cache line.
In a DRAM system, or an NVM system that supports row
buffers, the increase in latency is modest. Since the mul-
tiple sequential reads can be pipelined row buffer hits, the
additional latency is at most 32 memory cycles. This has a
noticeable impact on workloads that are largely incompressible
(workloads libquantum, omnetpp, xalancbmk in Figure 2).



Fig. 2. Execution time for Vertical Interleaving for DRAM and NVM main
memories, normalized to a baseline with no compression.

In an NVM system with no support for row buffers, e.g., a
memory system based on memristor crossbars [23], multiple
sequential fetches from the same chip can take significantly
longer. This is because a crossbar-based chip can only read 64
bits from 64 crossbar arrays at a time – so, reading a 576-bit
cache line will require 9 sequential and slow reads. Vertical
Interleaving therefore performs poorly for NVM systems for
all benchmarks (Figure 2). This is unlike a memory with a
row buffer that can read thousands of bits in parallel into
a row buffer, and quickly send bits to the output pins in
successive bursts. This is a fundamental limitation of Vertical
Interleaving.

With Horizontal Interleaving, a single cache line can be
fetched in a single burst. But because the size of the cache
line is not known beforehand, we have to conservatively fetch
data from all chips in the rank. This implies that reads do
not enjoy any of the benefits (low bandwidth, low energy, and
high parallelism) of compression. Writes can be made more
efficient because the size of a compressed block is known
before performing a write. We assume a default mapping
policy where the first 8 bytes of a block are placed in chip 0,
next 8 in chip 1, and so on. We assume that the first 8 bytes
represent the ECC/metadata for the cache line. Therefore, all
writes, regardless of compressibility, involve chip 0. As a
result, while compression helps reduce the energy overhead
of writes, it does little to boost parallelism. Therefore, Hori-
zontal Interleaving has the same performance as the baseline
uncompressed memory system. However, we believe that the
above limitations of Horizontal Interleaving can be overcome
with smart prediction and mapping policies. Therefore, the
goal here is to start with a Horizontal Interleaved design and
augment it so it is better than the baseline and the Vertical
Interleaved design in every workload, in terms of performance
and energy.

III. PROPOSALS

As described in Section II-B, without loss of generality, we
are assuming a baseline memory system where a rank has
been partitioned into 9 sub-ranks, and a block is placed in the
rank with Horizontal Interleaving. Writes are performed on a
subset of sub-ranks in parallel. Reads are performed across all
sub-ranks in parallel.

For all cache lines, we assume a naive mapping policy that
places the first 8 bytes of a cache line in sub-rank 0, the next
8 bytes in sub-rank 1, and so on. Later, we introduce other
mapping policies. Recall that the first 8 bytes of the 72-byte

data packet represent the ECC/metadata for the 64-byte cache
line.

A. Managing Compression Metadata

The first step is to define a coding mechanism that can use 8
bytes of a 72-byte word to perform error correction and store
compression metadata. We consider three possible approaches
for constructing the codes in the 8-byte ECC/metadata field.
Approach 1: Modified Hamming Codes

There are many ways to construct ECC codes. For example,
with BCH codes, a 61-bit code can protect a data field of up
to 1023 bits from up to 6 errors [12]. This means that a 512-
bit cache line can be protected with a 61-bit BCH code, and
have 3 spare bits to track compression metadata. However,
this approach cannot handle the common case of a pin failure
that can cause up to eight errors in a cache line access. We
therefore do not leverage BCH codes in this work.

Instead, we consider Hamming codes that are very popular
in DRAM memories [8], [9]. In several commercial systems,
an 8-bit Hamming SECDED code can be added to every 64-bit
data transfer. This code is widely used because it can protect
against single-bit random soft errors in every 72-bit field, as
well as hard errors that impact one bit in every bus transfer
(e.g., a pin failure). More generally speaking, m code bits can
protect k information bits, where 2m−1 ≥ m + k. With an
8-bit code, we can protect (single error correct, double error
detect) data fields as large as 120 bits; with a 7-bit code, we
can protect data fields as large as 57 bits.

To make the ECC code more space-efficient, we can try to
use the 8-bit code to protect data fields larger than 64 bits. But
then, a single pin failure (a common error scenario) would go
uncorrected. Instead, if we try to use the 8-bit code to protect
data fields smaller than 64 bits, the data+code would not fit
in a 576-bit transfer. So there is no way to modify the 8-
bit Hamming SECDED code to be more space-efficient and
include compression metadata in a 576-bit transfer.

Instead, if we use a 7-bit Hamming SECDED code to
protect a 57-bit data field, we can spare a single bit in a 576-bit
data transfer to store compression metadata. Nine 7-bit codes
can be used to protect nine 57-bit data fields (where the data
field is comprised of up to 512 bits of data and another bit
to indicate if the block is compressed or not). If the block is
compressed to a size of 455 bits or less (as is the case for
blocks compressed with B∆I), we only need eight 7-bit codes
to protect eight 57-bit data fields – this frees up an extra 7
bits in the 64-bit ECC/metadata field to store B∆I metadata.

When encoding the block, unused bits are treated as ze-
roes. Similarly, when decoding the block, since compression
metadata is known (by inspecting the bits read from the 64-bit
ECC/metadata field), the unused bits are treated as zeroes.

This new coding technique has higher resilience than the
baseline. While the baseline memory system can protect from
a single error in every 72-bit field, the new code can protect
from a single error in every 64-bit field.

The 7-bit Hamming SECDED code is therefore an effective
way to provide error correction support that is at least as strong
as the baseline, and maintain compression metadata in the
block itself.
Approach 2: Bamboo ECC

A recent paper [11] introduced the concept of Bamboo ECC,
that uses Reed-Solomon (RS) codes. The data emerging from



a single DRAM pin in a cache line burst is treated as a single
8-bit symbol. A large number of data symbols can be protected
from t symbol failures with 2t additional symbols. Therefore,
with eight additional pins (symbols) in a 72-bit channel, an RS
code can be constructed to handle four pin (symbol) failures.
As shown by Kim et al. [11], such a Bamboo ECC code is very
strong and can comfortably handle most common memory
error patterns. Therefore, of the eight additional pins in a 72-bit
channel, six can be allocated for Bamboo ECC codes, and two
can be allocated for compression metadata. This guarantees
protection from errors in up to three pins or symbols. The
penalty imposed by tracking compression metadata in the
block itself is that scenarios with four symbol errors will
now go uncorrected. This already uncommon scenario can
be further alleviated by using some of the 16 compression
metadata bits to construct additional error detection codes, or
by employing a background scrubber to prevent accumulation
of errors.
Summary

The above examples show how compression metadata can
be integrated with ECC codes within a 64-bit field. In some
of these examples (Hamming or BCH codes), the integration
does not introduce any additional penalties. In other examples
(Bamboo ECC), there is a slight drop in (already strong) error
coverage. With the above codes, writes are performed to a
subset of memory chips, and the codes are constructed with the
assumption that the data in unused chips are zeroes. Reads can
be performed with a subset of memory chips, and compression
metadata indicates the data that must be zeroed while verifying
the ECC codes.

B. Compressibility Prediction for Reads

With the above encoding of compression metadata in the
block itself, OS involvement is eliminated. Compression and
ECC are entirely handled by the memory controller. Writes
are performed on a subset of chips in a rank. However, reads
are problematic because the size of the block is encoded in
the block itself. Therefore, the read has to either be performed
in two phases (read the metadata from the 0th chip, then read
data from the appropriate subset of chips) or the read has
to conservatively read data from all 9 chips in parallel. The
former introduces a significant penalty in read latency and the
latter fails to exploit the benefits of compression during reads.

To address this problem, we introduce a prediction mecha-
nism to guess the number of chips required for every cache line
read. If the prediction is accurate, we save energy and enable
multiple parallel cache line fetches from a single rank. If the
prediction is a conservative over-estimate, we waste energy
and reduce the parallelism in the system. If the prediction
is an under-estimate, we increase read latency by requiring
multiple sequential data fetches for a single cache line.

We consider two prediction approaches. The first is PC-
based, where the PC of the load instruction serves as the
index into a predictor table. This assumes that a load tends to
access the same type of data record, with relatively uniform
compressibility. The second is page-based, where the physical
page number serves as the index into a predictor table. This
assumes that the data records in a single page are of a similar
type and have uniform compressibility.

In both cases, as shown in Figure 3, each entry in the
predictor table is comprised of saturating counters for each
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candidate block size, i.e., up to 9 saturating counters per
entry. The B∆I implementation in this study only requires
five saturating counters per entry because at 8-byte granularity,
only five block sizes are supported. Once the size of a block is
determined, the prediction table is updated by incrementing a
single saturating counter corresponding to that block size and
that PC or page. In case of erroneous predictions, the satu-
rating counter that caused the wrong prediction in that entry
is decremented. On a look-up, the highest-valued saturating
counter indicates the predicted size of the block. In case of a
tie, we conservatively predict the larger block size. The tables
are tagged, i.e., each entry stores its corresponding PC or page
number. We also assume that the table is fully-associative and
managed with an LRU replacement policy. In our evaluations,
we observed that 2-bit saturating counters and 64-entry tables
were sufficient for high accuracy. The page-based predictor
can even be merged with the TLB structures.

C. Data Mapping Policies

One of the benefits of dealing with compressed blocks is
that reading/writing a compressed block only involves a subset
of the rank (chips and channel). This means that a rank can
support multiple concurrent reads or writes as long as they
are to non-intersecting subsets of chips in the rank. In our
default mapping policy, every cache line starts at chip 0, and
progressively uses chips 1, 2, . . ., 8, depending on the size of
the block. Such a naive mapping policy is clearly sub-optimal
because two accesses to the same rank can never proceed in
parallel.

We consider an obvious alternative mapping policy to
promote parallelism within a rank. This policy reverses the
mapping for adjacent cache lines. So, odd-numbered cache
lines are mapped to chips 0, 1, 2, . . ., 8 (in that order), while
even-numbered lines are mapped to chips 8, 7, 6, . . ., 0 (in
that order). We refer to this as the simple mapping policy.
While it increases the likelihood that two adjacent compressed
cache lines can be fetched together, it is less effective for more
general access patterns, and it leads to non-uniform activities
in chips.

We therefore construct a mapping policy that maximally
promotes parallelism and uniform activities in each chip in
a rank. We first define two cache lines as being m − n
compatible if the two cache lines use non-intersecting sets
of chips, assuming the first cache line uses m chips after
compression and the second uses n chips after compression.
For example, in the simple mapping policy, two adjacent cache
lines are always 4-5 compatible.

We attempt to construct a mapping for every group of eight
consecutive cache lines that somewhat preserves the compat-
ibility properties of the simple mapping policy, but allows



some perturbation so that each chip has somewhat uniform
activity. We therefore come up with mappings that permute
the order of the chips as long as the following properties are
preserved: (i) consecutive cache lines are 1-7, 3-5, 5-3, and 7-1
compatible, (ii) the last cache line in the group is 1-7, 3-5, 5-3,
and 7-1 compatible with the first cache line of the next group.
By enumerating a number of permutations, we considered
a vast design space of possible mappings for a group of
eight adjacent cache lines. We selected the best mapping
based on the afforded parallelism and activity uniformity for
a few synthetic compression patterns. This mapping policy,
referred to as the permuted mapping policy, is indicated below
in Figure 4. The memory controller statically enforces this
mapping policy for every group of eight consecutive cache
lines. To promote long-term uniform wearout, this mapping
policy can be periodically rotated.

Cache line          Chips used by this cache line (in order)

0                           0  1  2  3  4  5  6  7  8

1                           7  8  5  3  6  4  2  1  0

2                           0  4  1  3  2  5  8  7  6

3                           6  5  8  7  2  1  3  0  4

4                           4  1  3  2  0  8  7  6  5

5                           5  7  6  8  0  1  2  4  3

6                           3  1  2  0  4  6  7  5  8

7                           8  6  7  5  4  1  2  0  3

Fig. 4. Permuted mapping policy for a group of eight consecutive cache lines.

D. Supporting Scheduling Policies

Each incoming memory transaction request (a macro-
request) is partitioned into up to nine micro-requests (one
per sub-rank). The micro-requests corresponding to a macro-
request are handled together by the memory controller. The
number of micro-requests is based on the compressibility
prediction in case of reads, or based on the compression
logic in case of writes. In case of mis-predictions by our
compressibility predictor, additional micro-requests may be
inserted into the queue.

While a compressed memory system should typically yield
performance improvements, we observed slight performance
degradations in some cases. This was because the above
scheduling policy was sub-optimal when handling row buffer
hits or compressibility mis-predictions. Consider the following
example where two read requests are to the same DRAM row,
i.e., in the baseline memory system, the second read is a row
buffer hit. In our compressed memory system, assuming that
the first cache line is compressed to use 3 chips, the first
request will involve Activates and Column-Reads to only 3
chips. If the second cache line is compressed to use 5 chips,
it can no longer enjoy a row buffer hit; it would have to issue
Activates to 2 of the chips, followed by Column-Reads to 5
chips.

To address this problem, Activates and Precharges are
performed on all nine chips in the rank, while Column-Reads
and Column-Writes are performed on rank sub-sets. Figure 5
shows that such full-activates are slightly better than partial-
activates in all but one benchmark.

IV. METHODOLOGY

For our simulations, we use the Simics full-system simu-
lator [3]. We model eight out-of-order cores with 1 memory

Fig. 5. Performance of a compressed DRAM system with partial and full
Activates and Precharges.

channel and 4 ranks. Detailed simulation parameters are listed
in Table I. We interface a detailed memory timing model
(USIMM [6]) to Simics.

Processor

ISA UltraSPARC III ISA
CMP size and Core Freq. 8-core, 3.2 GHz

Re-Order-Buffer 64 entry
Fetch, Dispatch, Maximum

Execute, and Retire 4 per cycle

Cache Hierarchy

L1 I-cache 32KB/2-way, private, 1-cycle
L1 D-cache 32KB/2-way, private, 1-cycle
L2 Cache 8MB(DRAM) 16MB(NVM)

/64B/8-way, shared, 10-cycle
Coherence Protocol Snooping MESI

DRAM Parameters

DDR3 MT41J256M4 DDR3-1600 [13],
Baseline 1 72-bit Channel
DRAM 4 DIMM/Channel

Configuration (unbuffered, ECC)
1 Ranks/DIMM, 9 devices/Rank

DRAM Bus Frequency 800MHz
DRAM Read Queue 48 entries per channel

DRAM Write Queue Size 48 entries per channel
High/Low Watermarks 40/20

NVM Parameters

Baseline 1 72-bit Channel
NVM 4 DIMM/Channel

Configuration (unbuffered, ECC)
1 Ranks/DIMM, 9 devices/Rank

NVM Bus Frequency 400MHz
tRCD/tWR/tCL 58/237/48 (CPU cycles)

NVM Read Queue 48 entries per channel
NVM Write Queue Size 48 entries per channel
High/Low Watermarks 40/20

TABLE I
SIMULATOR PARAMETERS.

Memory Power

VDD/IDD0/IDD2P0/ 1.5(V)/55(mA)/16(mA)
IDD2P1/IDD2N/IDD3P/ 32(mA)/28(mA)/38(mA)

IDD3N/IDD4R/IDD4W/IDD5 38(mA)/157(mA)/128(mA)/155(mA)

Compressor/Decompressor

Com. Power 15.08 (mW)
decom. power/cycle fre. 17.5(mW)/1 GHz

TABLE II
POWER PARAMETERS.

As a sensitivity study, we also model behavior when the
DRAM system is replaced by an NVM system (NVM param-
eters are also summarized in Table I). To model read/write
timing we use the parameters from the work of Xu et al. [23].



Note that our proposals are especially compelling for NVM
systems because of the positive impact on endurance and the
poor behavior of Vertical Interleaving in NVMs.

For our workloads, we use eight memory-intensive pro-
grams from SPEC2k6 (libquantum, onmetpp, xalacbmk,
GemsFDTD, soplex, zeusmp) and NAS Parallel Bench-
marks (LU, MG). The SPEC2k6 programs are run in multi-
programmed mode, with 8 copies of the same program, while
the NAS benchmarks are run in multi-thread mode. We ignore
the statistics for the first 100K DRAM reads to account for
cache warmup effects. All our simulations are run until 1
million DRAM (or NVM) reads are completed.

To calculate the energy consumed by our memory system,
we use Micron’s power calculator [2]. The power model for the
compression and decompression logic are based on those in
MemZip. These power parameters are summarized in Table II.
Similar to the methodology used by MemZip [21], system
power is calculated by assuming that memory consumes 25%
of baseline system power. For NVM read/write energy, we use
the per-bit energy numbers of Niu et al. [15].

Figure 6 shows the compression histogram of all workloads
(for B∆I). It shows the percentage of cache lines that can be
stored in 2, 3, 4, 6, and 9 chips. Out of the 8 workloads that
we use, 5 exhibit high compressibility (first 5 bars), whereas
3 don’t (next 3 bars).

Fig. 6. Compression histogram of all workloads

V. RESULTS
A. DRAM Results

We first evaluate the impact of our proposals on a DRAM-
based memory system. Figure 7 shows normalized execution
time for a number of configurations. The left bar is an oracular
system that knows the compressibility of every block, but uses
the default mapping policy. As a result, it is unable to issue
requests to multiple cache lines in parallel. Its performance
therefore represents that of a baseline uncompressed memory
system. The second bar is the oracular system, but with the
permuted map policy introduced in Section III-C. It promotes
high parallelism and therefore represents an upper-bound in
terms of performance.

The next three bars in Figure 7 represent behavior for
different mapping policies (default, simple, and permuted),
while assuming a PC-based compressibility predictor. The
last three bars do the same for a page-based compressibility
predictor.

We observe that the mapping policies have a significant
impact on performance. Moving from the default to the
simple map yields a performance improvement of 6% on
average for the page-based predictor. Moving from simple to
permuted yields an additional 1% improvement on average.
When considering the workloads on the left of the graph (with
more than 65% of blocks being compressible), the average
improvement with the page-based predictor and permuted
mapping is 11%. Both prediction-based approaches are equally
effective at nearly matching the performance of the oracular
scheme. The PC-based and page-based predictors are within
1% of the oracular scheme on average. Libquantum exhibits
small performance degradations because of a slight decrease
in row buffer hit rates.

Fig. 7. Performance of Oracular, Page, and PC based predictors in a DRAM
system with different mapping schemes.

To better understand the behavior of the predictors, Fig-
ures 8 and 9 characterize the prediction accuracy of the PC and
Page based predictors with permuted mapping. Their average
accuracies are 93% and 97% respectively. Several benchmarks
have near perfect prediction accuracies. The mispredictions are
split evenly as over-estimations (bad for energy) and under-
estimations (bad for performance).

Fig. 8. Prediction accuracy of the PC based predictor in a DRAM system.

Figure 10 shows the system energy consumed by our
predictor based designs, normalized to a baseline with un-
compressed memory. These numbers closely follow the per-
formance trends. The energy savings are from accessing fewer
chips per memory request and reduced execution time. The
predictor-based schemes with permuted mapping yield average
energy reduction of 12%, and this is within 2% of the energy



Fig. 9. Prediction accuracy of the Page based predictor in a DRAM system.

saved by an oracular scheme.

Fig. 10. System energy consumption of Page and PC based predictors in a
DRAM system.

In the results so far, the difference in performance and
energy between the simple and permuted mapping schemes
has been relatively small. The clear benefit of the permuted
mapping scheme is evident when plotting the distribution of
write activity across the chips in a rank. Figure 11 shows
the fraction of memory requests that touch each chip in a
rank for the default, simple, and permuted mapping policies.
The last bar in the graph plots the variance in these three
distributions. Clearly, the default mapping involves the first
two chips in every access, while the permuted mapping is best
at evenly distributing accesses across all chips. The variance
of default, simple, and permuted mapping are 0.15, 0.05, and
0.008 respectively. This uniformity of accesses is useful in
three ways: it increases the probability of scheduling two
requests together, it maximizes endurance for NVM memories,
and it reduces the likelihood of thermal emergencies.

B. NVM Results

We next examine the performance impact of our proposals
on an NVM based memory system. The prediction accuracies
and per-chip write activities are similar to those in the DRAM

Fig. 11. Per chip write activity with each mapping policy.

system since they are not affected by DRAM timing param-
eters. As shown in Figure 12, the page-based predictor with
the simple mapping policy shows a performance benefit of
7.2%. This increases by an additional 1% in case of permuted
mapping. For workloads that have high compressibility, the
page-based predictor with permuted mapping shows an aver-
age performance improvement of 13.5%. In terms of system
energy consumption, the best evaluated configuration yields
an average energy reduction of 14%.

Fig. 12. Performance of Oracular, Page, and PC based predictors in an NVM
system with different mapping schemes.

VI. RELATED WORK

Section II-A has already described prior approaches in
compressed memory systems. Here, we describe a few prior
works that are related to our approaches of ECC/metadata
integration and prediction of compressibility.

A recent paper by Palframan et al. [16] modifies data layout
in non-ECC DIMMs to support ECC. It takes advantage of
compression to create room in a 64-byte block to store error
correction codes. The 64-byte block is partitioned into four
regions, each with an ECC code. If multiple ECC codes
flag errors, then with a very high probability, the block is
uncompressed and stored in its raw 64-byte form. With such
a data layout and code, separate metadata is not required to
keep track of which blocks are compressed and which are
not. However, for blocks that are uncompressed, ECC must
be maintained in a separate region of memory. This requires
multiple memory accesses to process one transaction, and
involvement from the OS.



The LCP implementation of Pekhimenko et al. [18] has
a default compressibility for every block in a page. This is
tracked in page table entries and is used to efficiently handle
the common case for that page. This is similar to our approach
of tracking compressibility on a per-page basis with our pre-
dictor. But the applications of this compressibility prediction
are very different in LCP and in our design. For example, our
design is using prediction to avoid OS involvement, while LCP
relies on the OS to maintain this compressibility information.
Pekhimenko et al. [17] also use compressibility as a prediction
of future reuse of a block, applied to cache replacement
policies.

VII. CONCLUSIONS

In this work, we take the next step in memory compres-
sion by implementing it entirely in hardware with no OS
involvement. Three enabling technologies are proposed: (i)
Modified Hamming and Bamboo codes that integrate ECC
and compression metadata in a single 64-bit field per cache
line. (ii) PC and page based prediction techniques that allow
read operations to be performed more efficiently. (iii) Mapping
policies that evenly distribute activity across a rank to improve
performance, endurance, and power/thermal profiles.

Our analysis and results show that the modified Hamming
code introduces no penalties. The PC and page based predic-
tions are both highly accurate. The page-based prediction turns
out to be slightly more effective (an accuracy of 97%), and can
be integrated into existing TLB hardware. We observe that the
simple and permuted mappings have very similar performance,
but the permuted mapping offers much lower variance. The
combined techniques offer a performance improvement of 7%
in DRAM, and 8% in NVM, because of the higher parallelism
they enable. By limiting the number of chips accessed per
memory request, and by improving performance, they also
yield system energy reductions of 12% in DRAM, and 14% in
NVM. The variance in write activity is also reduced from 0.15
in the default mapping to 0.008 in the permuted mapping.
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