
Improving Memristor Memory with Sneak Current
Sharing

Manjunath Shevgoor
University of Utah, UT, USA

shevgoor@cs.utah.edu

Naveen Muralimanohar
HP Labs, CA, USA

naveen.muralimanohar@hp.com

Rajeev Balasubramonian
University of Utah, UT, USA

rajeev@cs.utah.edu

Yoocharn Jeon
HP Labs, CA, USA

yoocharn.jeon@hp.com

Abstract—

Several memory vendors are pursuing different kinds of
memory cells that can offer high density, non-volatility, high
performance, and high endurance. There are several on-going
efforts to architect main memory systems with these new NVMs
that can compete with traditional DRAM systems. Each NVM
has peculiarities that require new microarchitectures and pro-
tocols for memory access. In this work, we focus on memristor
technology and the sneak currents inherent in memristor crossbar
arrays. A read in state-of-the-art designs requires two consecutive
reads; the first measures background sneak currents that can be
factored out of the current measurement in the second read.
This paper introduces a mechanism to reuse the background
sneak current measurement for subsequent reads from the same
column, thus introducing “open-column” semantics for memristor
array access. We also examine a number of data mapping policies
that allow the system to balance parallelism and locality. We
conclude that on average, it is better to prioritize locality; our
best design yields a 20% improvement in read latency and a
26% memory power reduction, relative to the state-of-the-art
memristor baseline.

I. INTRODUCTION

Memory vendors are actively researching new scalable non-
volatile memory technologies that can augment or replace
DRAM memories. Such emerging memories, e.g., PCM, STT-
RAM, and memristors, have the potential to provide a big
boost to servers handling big-data workloads by offering higher
memory capacities and non-volatility. In addition, they also
have the potential to dramatically simplify software overhead
by enabling persistence at the main memory level [1].

However, many of these emerging NVMs also suffer from a
variety of new problems that impact performance and energy-
efficiency. While the use of NVMs as main memory is a very
attractive prospect, the problems for each NVM have to be
overcome. Most of the recent focus has been on PCM [2], [3],
[4], [5] and STT-RAM [6], [7], [8]. For example, Lee et al. [2]
architect PCM devices so they have energy and performance
that are competitive with those of a DRAM system. Kultursay
et al. [6] do the same for STT-RAM.

Memristors (or ReRAMs) have only been considered very
recently. Memristors have a distinct density advantage because
a single cell can approach an area of 4F 2 and multiple cells
can be created in a vertical stack with additional metal and
oxide layers, reducing the effective bit size to < 4F 2. They
also have read latencies that can be as low as 7.2 ns [9]
and have better on/off resistance ratio than STT-RAM. Initial
industrial efforts are attempting to build memristor arrays

This work was supported in parts by the Department of Energy under
Cooperative Agreement No. DE-SC0012199, NSF grants CNS-1302663 and
CNS-1423583.

that use crossbar architectures [10]. Some early architectural
work [11], [12] carries out design space explorations to identify
ideal memristor array layouts, and a recent paper [13] proposes
a few optimizations to reduce read and write latencies for
specific memristor design styles.

This paper adds to this literature by defining memristor
read mechanisms that significantly improve its performance
and energy-efficiency. We start with a tutorial on memristor
cell and array design that helps identify key challenges and
a reasonable baseline design. We then introduce new “open-
column” semantics.

We observe that memristor array reads require a noisy read
of current through the selected cell as well as a second read
of background sneak currents to cancel out the noise. The
latter measurement can be re-used when reading other cells in
the same column of the array. Similar to DRAM’s row buffer
hit, this introduces the notion of a column hit in memristors.
Managing the memristor column requires policies different
from those of DRAM. We also observe that there can be a
significant benefit from supporting parallel reads from many
arrays; we therefore consider a number of address mapping
policies. Our results show that performance and energy are
best with a policy that places an entire subset of a page in a
single array column.

II. MEMRISTOR/RERAM TECHNOLOGY

Memristor, also referred to as ReRAM, is a stateful mem-
ory device built by sandwiching metal oxide material such as
TiO2 or HfOx between electrodes [14], [15]. These devices
have at least two stable states characterized by either low
resistance or high resistance, which can be used to represent
logical one and zero.

Resistive memories are broadly classified into either unipo-
lar or bipolar devices based on their switching modes. In a
unipolar device, change in state happens if an external voltage
of specific magnitude and duration is applied across the device,
whereas in bipolar devices switching of states also depends
on the polarity of the external voltage [16], [17], [18], [9].
Even among bipolar devices, there are many metal oxide
materials that exhibit resistance switching. In this work, we
focus on a highly scalable, HfOx-based Memristor, which has
an endurance of > 1010 and the cell can be switched at tens of
nano seconds [14], [19]. By carefully architecting the memory
array, HfOx-based Memristor can be used as a main memory
along with or as a replacement to DRAM.

III. ARRAY ARCHITECTURE

Memristor arrays can either be designed as a grid with
1T1R cells [20] or as a dense crossbar architecture [21]. In



Fig. 1. Crossbar array with each cell having a Memristor storage element connected to a stateless selector device. The heat map shows the sneak current
measured in the wordlines and bitlines in a crossbar array. The first row and the last column are selected to access the cell at the right most corner at the top.

a conventional design, each cell has a dedicated MOSFET
transistor (a “1T1R” structure). Similar to DRAM, when a
row gets activated, the access transistors in the selected row
provide exclusive access to the cells in that row without
disturbing other cells in the array. This isolation provides
better energy efficiency and access time compared to other
array architectures. However, since resistive memories typi-
cally operate at a significantly higher current than DRAM, they
require a large sized access transistor for each cell, making
1T1R cells less compelling for a cost conscious design. As
we describe next, crossbar architectures have the potential to
provide significantly higher densities.

A. Crossbar Architecture

Most emerging resistive memory technologies change their
state when a voltage equal to the switching voltage is applied
across the cell. If the potential is less than the switching
voltage, then the cell retains its state without getting disturbed.
In contrast, in charge based technologies such as DRAM, any
non-zero voltage across a cell can disturb its content. This
property of resistive memory along with the non-linear nature
of Memristor, where current changes non-linearly with voltage,
make it possible to build a unique crossbar architecture.

In a crossbar array (Figure 1), a metal layer implements
several wordlines and the next metal layer implements several
bitlines. At every overlap point, the bitline and wordline are
fused with metal-oxide material, forming a Memristor cell.
If the voltage across a low resistance state cell exceeds a
certain threshold, that cell essentially conducts current from the
wordline to the bitline. Ideally, cells that do not have sufficient
voltage across them should be non-conducting. In practice, a
sneak current flows through such cells.

With such a design, we see that all cells are interconnected
to form a dense grid without any access transistors. By
eliminating access transistors, cells in a crossbar achieve the
smallest theoretical size of 4F 2. A cell size of 4F 2 is literally
the area under the cross-section of a minimum sized wordline
and bitline. In addition, Memristor cells employ different
fabrication steps from transistors; therefore, the silicon area
under the array can be used for other peripheral circuits such
as decoders and drivers, maximizing the area efficiency of an
array. In a highly cost conscious memory market, the crossbar
architecture is better suited for Memristor-based main memory.

In addition to the cell dimension, a Memristor array can

also be scaled vertically by having multiple layers of cells. In
a crossbar architecture, we can add a layer on top of an array
by simply adding two metal layers with metal-oxide between
them. Having four such layers can reduce the effective cell
size to 1F 2 [22], [23].

Vread

0 

Iread

Ileak

Ileak

Ileak

Vread/2

Vread/2

Vread/2

Vread/2 Vread/2Vread/2

Selected Cell

Unselected Cell

Half-Selected Cell

Wordline

Bitline

Fig. 2. A read operation to the top right corner cell in a 4×4 crossbar array.
B. Memristor Reads/Writes

A Memristor crossbar allows reading a single cell at a time.
We illustrate this in Figure 2 with an example. If we are trying
to read cell (i, j) in an array, a voltage V is applied to wordline
i, and zero voltage is applied to bitline j. All other wordlines
and bitlines are set to a voltage of V/2. As a result, assuming
all cells apart from (i, j) are non-conducting, a voltage of V is
applied across cell (i, j), making it a fully selected cell (the red
cell in Figure 2). It therefore conducts and a current is received
at the bitline that corresponds to the resistance of the selected
cell. Now the reason that all other cells are non-conducting
is that they have a voltage of V/2 or 0 applied across them.
Ideally, that voltage is low enough to keep the cell in non-
conducting state. The cells that have 0 voltage applied to them
(the blue cells in Figure 2) are unselected cells and the cells
that have V/2 voltage applied to them (the yellow cells) are
half-selected cells.

With this ability to read a single cell at a time, over-
fetch [24] in Memristor memories can be eliminated. When
reading a cache line, 512 separate 1-bit reads can be performed,
either in parallel or in series, either from one array or from
512 different arrays. Similarly, single-bit writes can also be
performed. When writing cell (i, j), the same setup as Figure 2
is used, except that a voltage VW is applied across the
fully-selected cell (and voltage VW /2 is applied to all other
wordlines and bitlines). To write the opposite value, VW is
applied to the selected bitline and 0 is applied to the selected
wordline.



C. Sneak Current in a Crossbar

Unfortunately, cells have non-ideal behavior and conduct
small amounts of current even if the voltage across them is
less than the threshold voltage. This results in sneak currents
through all the bitlines and wordlines. Further, this results
in IR-drops (voltage drops) along the wordlines and bitlines.
Therefore, the voltage applied across every cell is not the
idealized V, V/2 or 0 volts.

Memristor cells exhibit a non-linear relationship between
their applied voltage and their current, i.e., current decreases
significantly with a small drop in voltage. This helps keep
the sneak current through half-selected and unselected cells in
check. Thus, a critical parameter in a crossbar architecture is
the ratio of the amount of current flowing through a fully-
selected cell (Ifsel RESET ) to a half-selected cell (Ihsel),
referred to as non-linearity (κ). The higher the κ, the lower
the sneak current.

Fig. 3. Typical I-V curves of Memristor (left) and selector (right) elements in
a cell. The blue state in the left corresponds to logic 1 and the red corresponds
to logic 0.

Many recent Memristor prototypes employ a dedicated
selector or bi-polar diode in each cell to improve κ, as shown in
Figure 1 [16], [25], [23]. A selector is a state-less device, which
can be laid on top of the Memristor material, without requiring
additional area. In this work, we model a NbO based selector,
which has a highly non-linear curve [26]. An ideal selector
should act as a perfect switch with zero leakage current when
the applied voltage across it is less than the selector threshold
voltage. However, as shown in Figure 3, it is inevitable that
some amount of leakage current flows through the selector,
contributing to the sneak current in a crossbar.

D. Impact of Sneak Current

Although a crossbar architecture is best suited for building
dense memories, sneak current places strict constraints on
read/write margins and array specifications. Most Memristor
memories, even with a dedicated selector in each cell, have
only finite non-linearity. Hence, sneak currents flowing through
them pose a number of challenges, opening up new research
possibilities for architects.

1) Crossbar Size:: As discussed before, large crossbars and
consequently large sneak currents can increase noise during
reads and writes. In addition, the amount of sneak current
ultimately determines the energy efficiency, access time, and
area of an array. For example, sneak currents in a large array
can cause a large IR-drop across half-selected cells. We have
to therefore provide a higher voltage at the driver so that
even after IR-drops, the fully-selected cell sees a sufficiently
high voltage. Without this, the write may not succeed (write
failure [11]). But a high voltage at the driver also results in

high voltage at nearby half-selected cells. This can lead to
write disturbance [11]. This inherent conflict requires an array
to be moderately sized. For a given read or write bandwidth
of a crossbar array, Figure 4 shows the increase in sneak
current as the array size increases from 16x16 to 256x256
configurations. For a given array size, having the same number
of rows and columns minimizes the half select path, and hence
we only consider arrays with square aspect ratios. A detailed
description of modeling and methodology for calculating the
sneak current can be found in Section V.

0.00E+00

5.00E‐05

1.00E‐04

1.50E‐04

2.00E‐04

2.50E‐04

16x16 32x32 64x64 128x128 256x256

Sn
ea
k C

ur
re
nt
 (A

)

Crossbar Size

Sneak Current in Different Array Sizes

Fig. 4. Sneak current for different crossbar sizes.

2) Array Bandwidth:: In a conventional memory array with
access transistors per cell, activating a row results in reading
out all cells in a row. Such arrays, e.g., with DRAM or PCM,
have dedicated sense-amplifiers for every bitline or groups of
bitlines. An array therefore has inherently high read bandwidth
and row buffers are a natural extension to such arrays.

A memristor crossbar, on the other hand, does not lend
itself easily to high-bandwidth access. As seen in the example
in Figure 2, activating a single wordline and bitline in an n×n
array allows us to read a single cell value, while introducing
2n− 2 half-selected cells. Alternatively, we could add another
sense-amplifier circuit to the array and set another bitline to 0
volts. This would allow us to read two bits in a row, but would
grow the number of half-selected cells to 3n − 4. This leads
to two important drawbacks. First, the energy for the array
read goes up dramatically because of the higher number of
half-selected cells. This requires larger drivers, which in turn
impacts density and cost [11]. Alternatively, the driver size
can be kept constant, but n can be reduced – this too reduces
density. Second, the sense-and-hold circuits that constitute the
sense-amplifier are large and doubling this number per array
will also negatively impact density. In fact, we expect that
future Memristor devices will likely share one sense-amplifier
among 16-64 different arrays. Third, as discussed previously,
higher sneak currents will exacerbate the write failure and
write disturbance problems.

For these reasons, we expect that future cost-sensitive
memristor devices will likely have very low bandwidth per
array. In this work we investigate single-bit read/write per array
although the proposed techniques can be extended to multi-bit
accesses.

3) Read Complexity:: For a given read voltage, a Memris-
tor cell typically conducts < 5µA in its off state (“0”) and
> 15µA in its on state (“1”). While ∼ 3× on/off ratio can
offer an excellent read margin, when cells are connected in a



crossbar fashion with the afore mentioned biasing scheme, the
selected bitline will carry a sneak current of 134 − 146µA
(in a 128x128 crossbar) in addition to the cell current as
shown in Figure 4. This variation is due to a number of
factors such as the distribution of 1s and 0s across an array,
selector threshold and leakage variation, and Memristor on/off
resistance variation. As variance in sneak current is greater
than the difference between on and off currents, a simple
sense-amplifier with a single reference current cannot faithfully
detect the state of the memory cell. Furthermore, since sneak
current can vary based on the data stored in the array, it
is critical to architect the sensing circuit such that we have
enough noise margin to differentiate sneak current from the
total read current.

Crossbar arrays typically require a complex two level
sensing circuit in which, a read operation is split into three
parts. First, similar to DRAM, bitlines are precharged before
a read operation. Second, a half-select voltage is applied to
the selected row to measure the background current in the
present state of the array. In other words, a voltage of V/2
is applied to the selected row and a voltage of 0 is applied
to the selected column. When this is done, the bitline current
represents the current contributions of all the half-selected cells
in that column. A special sample and hold circuit that is part
of the sense amplifier measures this background current, and
stores it in a capacitor. Finally, a normal read operation is
performed, that factors out the sampled background current.
This approach is therefore trying to eliminate the noise from
the problem mentioned previously. There are two downsides to
this approach: first, read latency is much larger than DRAM,
which uses a simple sense-amplifier. Second, the silicon area
overhead of the variation aware circuits is significantly higher,
limiting the number of sense-amplifiers per array. As men-
tioned earlier, a single sense-amplifier will likely be shared
among many arrays. In comparison, DRAM has a sense-
amplifier for every bitline in the array. Hence, techniques that
reduce sensing overhead in memristors are critical to improve
read latency and memory bandwidth.

IV. PROPOSAL
In the previous section, we have shown that the non-

linearity of a memristor cell makes it a good fit for a crossbar
architecture. Crossbars are highly superior in terms of density,
which is why they are attractive for cost-sensitive memory
products. However, crossbars introduce a variety of problems
stemming from sneak currents. These sneak currents impact
energy and latency (by varying the voltage across cells and
by requiring a multi-step read operation). In this paper, we
examine architectural approaches to alleviate these concerns
and improve read latency and energy.

Our baseline is a memristor memory system that, like
DRAM, is composed of channels, DIMMs, ranks, and banks.
We assume that a bank is composed of several crossbar arrays.
On a 64-byte cache line request, single-bit reads are performed
in parallel on 512 different arrays. These 512 different arrays
are scattered across the memristor chips that form the rank.
Writes follow a similar process.

A. Reusing Background Currents

Figure 5 shows the high-level block diagram of two-
level sensing with a sample and hold circuit for crossbar

Vread

Vread/2

Vread/2

Vread/2 Vread/2

Vr

Pacc

Pprech

S1
Sensing 
Circuit

S2

Sample and Hold Sneak Current

CBL

Fig. 5. Two level sensing with sample and hold circuit to cancel the effect
of sneak current in reads.

memory [27]. During the first phase of a read operation, the
selected wordline is biased with half-select voltage and the
selected bitline connects to the sample and hold circuit with
switch S1 closed and S2 open. The transistor, connected as a
diode, charges the holding capacitor based on the potential at
its gate and source, which in turn is a function of the leakage
current flowing through the bitline. During the second step,
S1 is opened to isolate the holding capacitor from the selected
column and S2 is closed to initiate sensing. Since the transistor
gate potential is maintained by the capacitor, the same current
equivalent to the sneak current flows through the drain. When
the selected wordline voltage is increased to full read voltage,
the selected bitline current goes up. However, the effective
current fed to the sense-amp will be the difference between the
total bitline current in the second phase and the drain current
induced by the capacitor.

In a crossbar array, biasing unselected rows and columns
to half select voltage can help avoid read or write disturbance
and reduce sneak current. To half-bias all unselected rows
and columns, we need a voltage source multiplexer for every
row and column, which can increase the area of the crossbar.
Hence, it is better to limit the half-biased rows and columns
as much as possible to improve density.

Fig. 6. Background current measured for cells at various location in a crossbar
array. The background current varies from 136 to 142 µA.

Most prior work on memristors treat the array as a simple



load store unit that performs both sampling and sensing for
every read operation 1. We make a key observation that even
in the presence of variation in cells, the background current
read for a column will closely resemble the background current
read for other cells in the same column.

Figure 6 shows a heat map of background currents for dif-
ferent cells in a crossbar. The figure is based on the assumption
that 1s and 0s are randomly distributed with equal probability.
The selector, memristor, and cell variation parameters used to
model this are discussed in Section V. Overall, the background
current variation across the array is < 6µA and within a
column, the variation is less than 3µA. When sensing current
along the bitline, the half selected row cells mainly contribute
to the reduction in voltage across the selected cell, whereas
the half selected column cells contribute to the total sneak
current in the selected column. Hence, even if we do not
assume random distribution of 1s and 0s, the variation within
a column is always smaller as cells that are contributing to
the sneak current are mostly the same. The main factor that
affects the variation of sneak current within a column is the
current coming from the floating wordlines and bitlines. As
we half-bias more unselected rows and columns, the variation
of background current within a column goes down further.

Based on this observation, we propose to reuse the back-
ground current to read multiple cells from a single column.
As in the baseline, a cache line request will first involve
a read of the background current for that column (in 512
different arrays). This is followed by a read of the fully-
selected cell corresponding to the cache line being read. Once
this is done, the sample and hold circuit continues to retain
its stored charge. Based on SPICE simulations we found that
the capacitor can retain its charge for upto 10µ seconds or 32
reads, whichever comes first.

Hence, if subsequent requests are made to other cells in the
same column, the background current read can be elided. The
capacitor in the sample and hold circuit continues to assist the
next many reads from that same column, just as a DRAM row
buffer continues to assist subsequent reads from the same row.
This helps reduce latency, essentially halving memristor read
latency every time the background current read is reused. For
example, if a single read sense takes 50 ns, then the baseline
has constant cache line read latencies of 100 ns, while in our
proposed model, the read latency can be either 100 ns or 50 ns,
depending on whether a background current read is required
or not.

This reuse of the background current re-introduces the con-
cept of an open page access, which was deemed unnecessary
for memristors. Physically, this is very different from DRAM
open page access – instead of storing a row’s worth of data
in a “cache” with fast access, the memristor is simply storing
background current in a single capacitor. While many of the
semantics for open page access are similar to those for DRAM,
there are also significant differences:

1) There is an expiration time for the capacitor in the
sample and hold circuit because its charge gradually
leaks away.

1Note that sample and hold circuit is also used for writes to ensure current
compliance. For this work, we focus on improving read latency and energy.

2) The number of reads and writes that can be serviced
by the capacitor is limited.

3) A write to any cell in that column renders the
background current measurement invalid. Based on
the process variation in the cell that got written, its
impact on the bitline sneak current can vary. In other
words, open page access only works for reads.

4) The number of “open” columns in the memristor
memory system can be much larger than the number
of open rows in a DRAM system.

5) The organization of data in arrays must be transposed
so that consecutive cache lines are made to share the
same column and not the same row (as in DRAM).
This helps exploit spatial locality for open page
accesses.

The open page access described so far offers latency and
energy savings. However, if workloads exhibit low levels of
spatial locality, then both benefits are small. Instead, to save
energy in a guaranteed manner, we can configure open page
access to benefit each individual cache line read. When reading
a cache line, we can fetch (say) 2 bits of that cache line from
the same column of the same array. Since an activated column
can read only one bit at a time, the 2 bits from a given column
will have to be read sequentially. But this process is performed
across 256 different arrays in parallel. The result is a higher
latency of 150 ns for the cache line read, but a reduction in
energy dissipation from sneak currents. If a subsequent cache
line access is to the same column, it has an access latency of
100 ns. However, increasing the memory latency in this manner
results in longer execution times and more energy dissipated
in the rest of the system. We therefore do not consider such
models further in this paper.

If an application does exhibit spatial locality, we will see
multiple back-to-back accesses to the same array and column.
Even though our open-page mode avoids multiple background
current reads, throughput is limited because the second array
read cannot begin until the first array read has completed.
This delay is much higher than the delay seen in DRAM for
open-page accesses. In DRAM, the second access does not
perform an array read; it simply moves data from the row
buffer to the output pins; this operation completes in about
5 ns. In memristors, two back-to-back accesses to the same
array are separated by about 50 ns. Therefore, it is not evident
that consecutive cache lines should be placed in the same
column. If an application exhibits spatial locality, it might
benefit by placing consecutive cache lines in different arrays
so that both cache lines can be fetched in parallel. In short,
the address mapping policy can possibly have a significant
impact on memristor throughput. We investigate this further
in Section VI.

V. METHODOLOGY

In Memristor memory, both access latency and energy
are dominated by the cell and crossbar array, whereas in
charge based technologies such as DRAM, the overhead of
accessing a mat2 itself is small compared to the routing and IO
overhead. To evaluate the impact of the proposed techniques
on Memristor performance and power, it is critical to have
an accurate model of a crossbar array. For this work, we

2Mat is the basic building block of a DRAM bank.



Fig. 7. Crossbar components modeled.

built a tool that takes array size, cell parameters, and process
technology as input to generate a complete HSPICE netlist,
which is then used to calculate output wordline current, sneak
current, voltage drop across the row, and transient delay.

Figure 7 shows the components modeled to simulate a
crossbar array. We use HfOx-based cell parameters from Lee
et al. [28] and selector parameters from Pickett et al. [26]. The
memristor element is modeled as a voltage controlled current
source and the selector as a current controlled voltage source.
For transistor parameters in peripheral circuits, we use AMI
250nm technology. For all our analysis, we consider only a
single layer crossbar array and access only one bit per array.
A detailed list of selector, memristor, and wire parameters
is tabulated in Table I. The sneak current in Figure 4 and
heatmap in Figure 6 are based on HSPICE simulations using
these parameters.

For performance analysis, we run our simulations for a
total of 250M instructions. We use Simics [29] functional
simulator and augment its trans-staller module with a detailed
memristor timing model based on USIMM [30], including
memory controller overhead and its queuing delay. The CPU
we simulated consists of eight out-of-order cores with 32MB
of shared LLC, similar to [31]. The memristor memory system
has two DDR channels with each channel having two ranks.
We use workloads from SPEC2006 benchmark suite. Simulator
parameters are summarized in Table II.

We experimentally determine the best address mapping
policy for our memristor baseline. We map successive cache
lines to different channels, ranks, banks and sub-banks. The
sub-bank is XORed with the column in order to further reduce
sub-bank conflicts [32]. Each time a cache line needs to be
read, the background current is first read, followed by the
actual read. This baseline optimizes parallelism when servicing
memristor reads.

The sample and hold circuit that provides the background
current is shared between all the crossbars in a subarray. In
our design we assume 8 Banks per rank, 32 sub-banks, and 64
subarrays per sub-bank. Hence we have a total of 16K sense
and hold circuits per rank. A subarray here is defined as a
set of crossbars that share a two-level sensing circuit. A sub-
bank consists of a set of subarrays from which a cacheline is
retrieved.

VI. RESULTS

Figure 8 shows the performance increase when a baseline
memristor system is compared with a DRAM system, and with
the proposed system that re-uses the background current.

The first bar (DRAM) shows the performance increase
when a DRAM based memory system is used. The address

TABLE I. PARAMETERS IN THE CROSSBAR ARRAY MODEL

Metric Description Value or Range
A Crossbar size: A wordlines ×A bitlines 128 × 128
n Number of bits to read/write 1
Ion Cell current of a LRS Memristor 15uA
Ioff Cell current of a HRS Memristor 4uA
Rwire Wire resistance between adjacent cells 8Ω
Vth Selector threshold voltage 1.5V
σvth Selector voltage variation 15%
Ileak Selector half-select leakage 1µA
σleak Selector half-select leakage variation .1µA
Kr Selector ileak variation 15 − 30%
VW Full selected voltage during write 3.6V
VR Read voltage 2.0V

Processor
Core Parameters: UltraSPARC III ISA, 8-core, 3.2 GHz,

64-entry ROB, 4-wide OOO.
Cache Hierarchy

L1 I-cache 32KB/2-way, private, 1-cycle
L1 D-cache 32KB/2-way, private, 1-cycle
L2 Cache 8MB 64B,8-way, shared, 10-cycle

Coherence Protocol Snooping MESI
Memory

Memristor Frequency 1600 Mbps
Channels, ranks 2 channels, 2 ranks/channel,

Banks, Sub Banks 8 banks/rank 32 sub banks/bank
Sub Arrays, Crossbars 64/bank , 64 Crossbars/ sub array
Read Queue Length 64 per channel

BGCurrentSense = 50ns ns
Memristor 1− bit/CrossbarRead = 50 ns

Timing 2− bit/CrossbarRead = 100 ns
TABLE II. SIMULATOR AND MEMRISTOR TIMING PARAMETERS.

mapping policy used here maps an entire OS page to a single
row, thus maximizing row buffer hits. The DRAM system
is intended to show the potential room for improvement in
an idealized memory system with latencies as low as that of
DRAM. Of course, a DRAM only system will offer much
lower memory capacity and will be a poor fit for big data
workloads because of large page fault rates. This study does
not consider the effect of memory capacity on page fault rates,
so the first bar in Figure 8 is an optimistic upper bound.

The second bar (32ReUse) shows the performance increase
when the proposed memristor system is used. As discussed in
the proposal section, we change the default address mapping
policy such that successive cachelines get mapped to rows
in the same column of a memristor crossbar, i.e., an entire
OS page maps to a single column in a sub-bank. This policy
enables us to exploit the spatial locality of workloads to reuse
background current measurements. We re-use the background
current for 32 successive reads to the same column of the same
sub-bank, as long as they occur within 10 µs.

Zeusmp sees the largest performance improvement because
of a combination of high column hit rates and long gaps
between successive accesses to the same page. Compared
to the baseline memristor system, reusing the background
current increases performance by 8.3%, on average across
all benchmarks. The DRAM system is 34.8% better than the
baseline system, however it is only 24.4% better than the
proposed memristor system.

Memristor latency is a combination of the time it takes
to sense the background current, and the time it takes to
sense the data stored in the cell. Figure 9 shows the memory
latencies for the baseline system (NoReUse), the proposed
system (32ReUse), and a DRAM system. Memory latency is



0%

20%

40%

60%

80%

100%

120%

140%
In

cr
ea

se
 in

 P
er

fo
rm

an
ce

DRAM 32ReUse

Fig. 8. Performance impact of Background Current re-use

0
10
20
30
40
50
60
70
80
90
100

0
50

100
150
200
250
300
350
400
450
500

C
o

lu
m

n
 H

it
 R

at
e

M
em

o
ry

 L
at

ec
n

y 
(C

yc
le

s)

NoReUse 32Reuse DRAM CHR

Fig. 9. Impact of BG current reuse on memristor read latency.

a combination of the memory core latency and the queuing
delay in the memory controller. By re-using the background
current, we are able to reduce total memristor memory latency
by 20%. The line titled CHR shows the column hit rates as
seen when background current is re-used. The large number
of sub-banks present in the memristor system reduces column
conflicts, and hence is able to provide an average column hit
rate of 67%. Applications that see high column hit rates, like
Gems and bwaves, show the largest drops in memory latency,
while astar and gobmk show the lowest.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
o

rm
al

iz
ed

 IP
C

32Reuse 4interleave XOR 32interleave 4Reuse

Fig. 10. Trading off locality for parallelism.

A key difference between a hit to a DRAM row-buffer and
to a memristor crossbar column is the large latency difference,
stemming from the absence of overfetch [24] in a memristor
memory. Because DRAM senses more than a single cacheline,
the CAS-to-CAS latency for DRAM is 5 ns. Memristors sense
only a single cache line per read, and hence need to sense the
resistance of the cell anew, even when the background current
is re-used. For this reason, the CAS-to-CAS latency is much
higher than DRAM (50ns in our evaluation). Workloads that
have high locality as well as high Memory Level Parallelism
(MLP) end up having multiple accesses to the same page at
the same time. The high CAS-to-CAS latency of memristor
memory can adversely impact the performance of such work-
loads even in the presence of high column hit rates. To address
this, we investigate the trade-off between locality and MLP by
evaluating different address mapping policies.

Figure 10 shows the performance of five different ad-
dress mapping policies. 32ReUse maps the entire page to a
single column in a sub-bank. 4interleave maps every fourth
cacheline to the same sub-bank. XOR maps successive cache
lines to different Channels, Ranks, Banks and Sub-banks.
The sub-bank is XORed with the column in order to further
reduce sub-bank conflicts [32]. 32interleave maps every 32nd
cacheline in a page to the same sub-bank. 4ReUse maps 4
successive cachelines to the same bank, subsequent chunks
of four cachelines are mapped to different Channels, Ranks
and Banks in that order. 32ReUse, which maximizes locality,
represents one end of the spectrum, while XOR, which max-
imizes parallelism, represents the other end of the spectrum.
4/32interleave and 4ReUse represent points in between. For all
the workloads except libquantum, soplex and astar, 32ReUse
has the highest performance. This is contrary to our obser-
vation in the memristor baseline, where the XOR scheme that
maximizes parallelism does best. Therefore, our ability to reuse
background currents has yielded a different optimal address
mapping policy. On average, 32ReUse outperforms 4interleave
by 3%, XOR by 8%, 32interleave by 7%, and 4ReUse by 6%.

0.5
0.6
0.6
0.7
0.7
0.8
0.8
0.9
0.9
1.0
1.0

N
o

rm
al

iz
ed

 R
ea

d
 P

o
w

er

32ReUse 4ReUse 4Interleave 32Interleave NoReUse

Fig. 11. Reducing average power by reusing background current.

Using the memristor parameters detailed in Table I and
detailed HSPICE simulation, we determine that for a 128x128
array, reading the background current consumes 335 µW ,
while a full read takes 546 µW . This difference is due to the
different row voltages required for background and full reads.
Figure 11 shows the power consumption for the workloads we
evaluated, normalized to the memristor baseline. On average,
re-using the background current reduces Memristor read power
by 25.8%. Other address mapping schemes that trade off
locality for parallelism attain lower power savings. 4ReUse
reduces average read power by 16.3%, 4Interleave reduces it
by 15.5%, 32Interleave decreases it by 8.4%.

VII. RELATED WORK

A large body of work exists on leveraging emerging non-
volatile memory to augment or replace DRAM main memory.
Most of them focus on phase change memory, addressing its
limitations such as long write latency, limited endurance, and
high write energy [33], [5], [3], [4].

To hide the long write latencies of PCM, Qureshi et al. [3]
proposed write pausing and write cancellation. Jiang et al. [5]
proposed write truncation to improve the write performance in
MLC PCM. Cho et al. [33], flipped the cache line if it reduces
the number of bits that needs to be written. This improves
the endurance of PCM as well as write energy. Most of these
approaches are orthogonal to the proposed techniques and are
applicable to resistive memories such as memristors.

There are a number of device and circuit papers on ReRAM
that discuss cell specification and circuit design to build



memristor memories [34], [11], [35]. The most recent work
on ReRAM architecture is by Cong et al. [13], in which
the authors discuss challenges in building crossbar memories
focusing on multibit reads and writes within an array. They
propose inverting a set of bits written to a crossbar to reduce
the number of low resistance states within a crossbar and
improve write performance. As discussed earlier, we target
one bit operation per crossbar array due to its low voltage
requirement and smaller driver size.

VIII. CONCLUSION

Memristor is a promising emerging technology and a
crossbar architecture is the best way to build dense memristor
memory. In this work, we discussed key problems in designing
a crossbar and proposed solutions to reduce read overhead.
We enhance the two level sensing scheme typically employed
for a crossbar, such that we reuse the background current
read in the first step for subsequent reads. This reduces the
effective read latency by 20% and memristor power by 25.8%.
While the proposed scheme is beneficial for a majority of
workloads, some benchmarks prefer more parallelism within
the memory to improve performance. We investigated several
address mapping schemes that exploit reusing background
current for a different number of cachelines per page with
varying levels of parallelism. We find that placing consecutive
cache lines in the same column of the same array yields the
highest performance and energy efficiency.

REFERENCES

[1] J. Condit et al., “Better I/O Through Byte-Addressable, Persistent
Memory,” in Proceedings of SOSP, 2009.

[2] B. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” in Proceedings of ISCA,
2009.

[3] M. Qureshi, M. Franceschini, and L. Lastras, “Improving Read Perfor-
mance of Phase Change Memories via Write Cancellation and Write
Pausing,” in Proceedings of HPCA, 2010.

[4] M. K. Qureshi, M. Franceschini, L. Lastras, and A. Jagmohan, “PreSET:
Improving Read Write Performance of Phase Change Memories by
Exploiting Asymmetry in Write Times,” in Proceedings of ISCA, 2012.

[5] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving
write operations in MLC phase change memory,” in Proceedings of
HPCA, 2012.

[6] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating STT-RAM as an Energy-Efficient Main Memory Alternative,” in
Proceedings of ISPASS, 2013.

[7] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. Friedman, “AC-DIMM:
Associative Computing with STT-MRAM,” in Proceedings of ISCA,
2013.

[8] W. Xu, Y. Chen, X. Wang, and T. Zhang, “Improving STT MRAM
storage Density through Smaller-Than-Worst-Case Transistor Sizing,”
in Proceedings of DAC, 2009.

[9] Sheu et al., “A 4Mb Embedded SLC Resistive-RAM Macro with 7.2ns
Read-Write Random-Access Time and 160ns MLC-Access Capability,”
in Proceedings of ISSCC, 2011.

[10] X. Wang, Y. Chen, H. Li, D. Dimitrov, and H. Liu, “Bringing the
memristor to market,” 2010.

[11] D. Niu, C. Xu, N. Muralimanohar, N. Jouppi, and Y. Xie, “Design
Trade-offs for High Density Cross-point Resistive Memory,” in Pro-
ceedings of ISLPED, 2012.

[12] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, , and Y. Xie, “Design
of Cross-point Metal-oxide ReRAM Emphasizing Reliability and Cost,”
in Proceedings of ICCAD, 2013.

[13] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang,
S. Yu, and Y. Xie, “Overcoming the Challenges of Cross-Point Resistive
Memory Architectures,” in Proceedings of HPCA, 2015.

[14] Govoreanu et al., “10x10nm2 Hf/HfOx cross-point Resistive RAM
with Excellent Performance, Reliability, and Low-energy Operation,”
in Proceeding of IEDM, 2011.

[15] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. Williams, “The
Missing Memristor Found,” Nature, vol. 453, pp. 80–83, May 2008.

[16] Kawahara et al., “An 8Mb Multi-Layered Cross-Point ReRAM Macro
with 443MB/s Write Throughput,” in Proceedings of ISSCC, 2012.

[17] Kim et al., “Low Power Operating Bipolar TMO ReRAM for Sub 10nm
Era,” in Proceeding of IEDM, 2010.

[18] Otsuka et al., “A 4Mb Conductive-Bridge Resistive Memory with
2.3GB/s Read-Throughput and 216MB/s Program-Throughput,” in Pro-
ceeding of ISSCC, 2011.

[19] D. Ielmini, S. Lavizzari, D. Sharma, and A. Lacaita, “Physical interpre-
tation, modeling and impact on phase change memory (PCM) reliability
of resistance drift due to chalcogenide structural relaxation,” in IEDM
Technical Digest, 2007.

[20] Wong et al., “Metal-Oxide RRAM,” in Proceedings of IEEE, 2012.
[21] M. M. Ziegler and M. R. Stan, “CMOS/Nano Co-Design for Crossbar-

Based Molecular Electronic Systems,” in Proceeding of Transactions
on Nanotechnology, 2003.

[22] Chevallier et al., “A 0.13um 64Mb Multi-layered Conductive Metal-
oxide Memory,” in Proceeding of ISSCC, 2010.

[23] Liu et al., “A 130.7mm2 2-Layer 32Gb ReRAM Memory Device in
24nm Technology,” in Proceeding of ISSCC, 2013.

[24] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. Jouppi, “Rethinking DRAM Design and Organization
for Energy-Constrained Multi-Cores,” in Proceedings of ISCA, 2010.

[25] Lee et al., “Integration of 4F2 Selector-less Cross-point Array 2Mb
ReRAM Based on Transition Metal Oxides for High Density Memory
Applications,” in Symposium on VLSI Technology, 2012.

[26] M. D. Pickett and R. S. Williams, “Sub-100 fJ and Sub-nanosecond
Thermally Driven Threshold Seitching in Niobium Oxide Crosspoint
Nanodevices,” in Symposium on VLSI Technology, 2012.

[27] Foltin et al., “Sensing Circuit for Resistive Memory,” 2014, United
States Patent, Number US : 700218780WO01.

[28] Lee et al., “Evidence and Solution of Over-RESET Problem for HfOx
Based Resistive Memory with Sub-ns Switching Speed and High
Endurance,” in Proceeding of IEDM, 2010.

[29] “Wind River Simics Full System Simulator,” 2007,
http://www.windriver.com/products/simics/.

[30] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “USIMM: the Utah
SImulated Memory Module,” University of Utah, Tech. Rep., 2012,
UUCS-12-002.

[31] Cong et al., “Overcoming the Challenges of Crossbar Resistive Memory
Architectures,” in Proceedings of HPCA, 2015.

[32] Z. Zhang, Z. Zhu, and X. Zhand, “A Permutation-Based Page Interleav-
ing Scheme to Reduce Row-Buffer Conflicts and Exploit Data Locality,”
in Proceedings of MICRO, 2000.

[33] S. Cho and H. Lee, “Flip-N-Write: A Simple Deterministic Technique
to Improve PRAM Write Performance, Energy, and Endurance,” in
Proceedings of MICRO, 2009.

[34] J. Liang and H.-S. P. Wong, “Cross-Point Memory Array Without Cell
Selectors- Device Characteristics and Data Storage Pattern Dependen-
cies,” IEEE Transactions on Electron Devices, vol. 57, 2010.

[35] C. Xu, X. Dong, N. P. Jouppi, , and Y. Xie, “Design Implications
of Memristor-Based RRAM Cross-Point Structures,” in Proceedings of
DATE, 2011.


