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ABSTRACT

Multiple virtual machines (VMs) are typically co-scheduled
on cloud servers. Each VM experiences different latencies
when accessing shared resources, based on contention from
other VMs. This introduces timing channels between VMs
that can be exploited to launch attacks by an untrusted VM.
This paper focuses on trying to eliminate the timing chan-
nel in the shared memory system. Unlike prior work that
implements temporal partitioning, this paper proposes and
evaluates bandwidth reservation. We show that while tem-
poral partitioning can degrade performance by 61% in an
8-core platform, bandwidth reservation only degrades per-
formance by under 1% on average.

Categories and Subject Descriptors

B.3.1 [Memory Structures]: Semiconductor Memories—
Dynamic memory (DRAM)

; C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and Protection

General Terms

Design, Performance, Security.

Keywords

Cloud Computing, Memory Systems, Memory Controllers,
Security, Timing Channels.

1. INTRODUCTION

Most modern computing platforms co-schedule multiple
applications on shared hardware. In a cloud environment,
a user application typically executes on a server with other
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untrusted applications. Also, an untrusted downloaded ap-
plication typically executes on a user’s computing device
along with other trusted applications. These execution sce-
narios expose timing channels between the trusted and un-
trusted applications. By measuring delays to access shared
resources, an attacking application can estimate resource us-
age patterns of the application being attacked. Such infor-
mation leakage is then used to launch a more focused at-
tack [2-4,7,17, 20,22, 25,29, 30]. Ristenpart et al. [20] even
demonstrate one possible attack on Amazon EC2 hardware
that exploits cache timing channels to recover user pass-
words.

Wang et al. [30] describe one possible attack that exploits
memory timing channels. For an RSA decryption algorithm,
the memory addresses can be configured so that the number
of memory accesses is correlated with the number of 1s in
the private key. The attacker can gauge the victim thread’s
memory traffic, estimate the number of 1s, and thus narrow
the search space to determine the private key.

When two or more threads run on a server, they share
many on-chip and off-chip resources, such as L1/L2/L3 caches,
the on-chip network, and the memory system. Many prior
works have developed solutions to reduce information leak-
age in caches and on-chip networks [12, 16, 24, 26-28], but
only one recent paper by Wang et al. [30] has examined in-
formation leakage in a shared memory system. In this work,
we start with the solution proposed by Wang et al. and show
that their thread isolation policies can be greatly improved.
Wang et al. propose temporal partitioning (TP) that allows
only a single thread (or security domain) to issue requests in
every time slice. We argue that it is more efficient to inter-
leave requests from different threads. We argue that there
is little to no information leakage as long as every thread
takes up a pre-defined percentage of memory bandwidth.

We show that the policies of Wang et al. yield applica-
tion slowdowns of 61% for eight co-scheduled threads shar-
ing a memory controller. In comparison, our proposed poli-
cies yield a slowdown of under 1% when running eight co-
scheduled threads.

2. BACKGROUND

In this section, we review the temporal partitioning (TP)
policy of Wang et al. [30] and some DRAM basics.

Typical high-end processors can have up to four memory
channels, each managed by an on-chip memory controller.
When an application experiences a cache miss, a read re-



quest is enqueued at the appropriate memory controller. If
the cache line fetch triggers a dirty line eviction, a request is
also placed in the corresponding memory controller’s write
queue. Reads are given higher priority when scheduling
memory operations. Once the write queue reaches a high
water mark, writes are drained in succession until the write
queue size reaches a low water mark [9]. Similar to prior
work [30], we focus our attention on reducing information
leakage from a thread’s read request rate.

Read requests are placed in a per-channel transaction queue.

A scheduling algorithm, e.g., FR-FCFS [21], is employed to
pick the best candidate for issue. This request is decom-
posed into its constituent memory commands (precharge,
activate, column-read) that are then placed in logical per-
bank in-order queues.

A memory request is delayed when there is competition
for the corresponding memory bank, or for the shared ad-
dress/command bus, or for the shared data bus. By measur-
ing this delay, the attacker can estimate the level of memory
activity in the victim.

To alleviate this information leakage, Wang et al. intro-
duce Temporal Partitioning (TP). The memory controller
is used exclusively by a single thread (or security domain)
at a time. After a fixed time quantum (turn length [30]),
it switches to a different thread. The lengths of the time
quanta are determined beforehand by the operating system
and/or the memory controller, based on priorities or mem-
ory demand. These lengths cannot change at run-time as
a counter-measure against covert-channel attacks [30]. A
suggested length for the time quantum is 96 ns.

To prevent a memory operation from spilling into the next
time quantum and posing contention for the other thread,
Wang et al. disallow the issue of memory operations near
the end of a time quantum. This period at the end of the
time quantum is referred to as the dead time (see Figure 1a).
The dead time is about 65 ns and takes up most of the time
quantum, i.e., only a small fraction of the time quantum is
used to initiate memory requests. Wang et al. also propose
a policy that allocates different threads to different banks —
with such a policy, the dead time is reduced to 12 ns.

With the TP policy, every bank must be precharged at
the end of every time quantum. If this is not done, then
subsequent row buffer hits/misses will reveal if other threads
accessed that bank during their time quanta. To avoid the
need for many precharges at the end of a time quantum,
Wang et al. employ a strict close-page policy.

3. PROPOSAL

The TP policy of Wang et al. [30] has several drawbacks
that can lead to high performance degradations in memory-
intensive workloads:

1. The mandatory dead time at the end of every time
quantum leads to low memory bandwidth utilization.
The bank partitioning approach of Wang et al. does
help reduce dead time and alleviate this problem.

2. If N threads are co-scheduled and T is the length of
each time quantum, an additional queuing delay is
added for requests that arrive at the memory controller
during another thread’s turn. The probability of this
happening is (N — 1)/N and such requests are delayed
by an extra (N — 1) x T'/2 cycles on average. As N

increases, we see that this can have a very damaging
effect on memory latency and application performance.

3. The need to precharge all banks between successive
time quanta, and the resulting use of a strict close-
page policy can also yield sub-optimal memory perfor-
mance.

To overcome these drawbacks, we propose a policy that is
based on memory bandwidth reservation (BR).

If N threads are co-scheduled, every thread is guaran-
teed exactly 1/N of the data bus bandwidth within a time
quantum of length @ cycles. Thus, requests from differ-
ent threads are interleaved and requests are rarely forced to
wait for a long time (see Figure 1b). If a thread enters a
phase with low memory traffic, the memory controller in-
serts dummy requests on behalf of this thread to match the
allocated bandwidth for that thread. If a thread enters a
phase with high memory traffic, some of the requests are
delayed until the next time quantum. To an external ob-
server or attacker, every thread exhibits uniform memory
traffic, thus revealing nothing about the program phase or
specific key values.

The dummy requests can take many forms. To save en-
ergy, the memory controller could issue no requests and sim-
ply let the bus idle during that time. However, an attacker
could later detect row buffer hits and decipher that the other
threads are idling. Hence, at the very least, the dummy re-
quests should precharge the banks even if there are no acti-
vations or data transfers.

Because threads are not perfectly isolated and because
requests from different threads are being interleaved, an at-
tacker may gather some information, but we claim that this
information is of little value. For example, if the attacker
observes a row buffer hit, he/she can conclude that other
threads have not accessed that bank in the recent past. But
by design, we know that the other threads have made a fixed
number of memory accesses in the recent past. So the only
information being leaked here is that the OS has coinciden-
tally mapped recently touched pages of the victims to other
banks. At worst, over time this may reveal that an appli-
cation tends to favor pages that have been (coincidentally)
mapped by the OS to certain banks. As another example,
consider a victim thread that exhibits a high row buffer hit
rate.Such a thread should pose fewer bank conflicts for other
threads, thus possibly leaking some information to the at-
tacker. However, since the attacker is forced to issue requests
at a uniform rate, he/she is going to experience contention
cycles in any case, i.e., the attacker has no idea if its stalls
are created by demand requests from other threads or by
the throttling mechanisms of the memory controller. In any
case, such potential attacks can be easily thwarted by en-
forcing a close page policy, or by enforcing a constant row
buffer hit rate policy, or by further reserving 1/N of every
bank’s bandwidth for every thread. An evaluation of perfor-
mance and information leakage for this design space is left
for future work.

Once a measurement time quantum ends, a new measure-
ment time quantum of length @ is considered; the starts and
ends of two successive time quanta are separated by S cy-
cles, where S < @. As shown in Figure 1c, this implements a
coarse-grained sliding window. This is important to ensure
that a thread’s memory accesses are somewhat uniformly
spread across the entire time quantum. If this is not done,
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Figure 1: Interleaving of thread requests at the
memory controller for the prior work (a) and the
proposed bandwidth reservation techniques (b and

c).

a non-memory-intensive thread may issue few requests at
the start of the time quantum and the memory controller
may insert several dummy requests at the end; this may
cause some information leakage. The start and end times
of the measurement quanta of each thread need not be co-
ordinated. Further, the value of S can be selected at random
from a specified range for every new quantum. These poli-
cies make it harder for an attacker to detect if/when dummy
operations are being inserted.

4. METHODOLOGY

For our simulations, we use Windriver Simics [1] inter-
faced with the USIMM memory simulator [8]. USIMM is
configured to model a DDR4 memory system (bank groups,
DDR4 timing parameters, etc.). Simics is used to model
eight out-of-order processor cores. These eight cores share a
single memory channel with four ranks. Simics and USIMM
parameters are summarized in Table 1. Our default sched-
uler prioritizes row buffer hits, closes a row if there aren’t
any pending requests to that row, and uses write queue wa-
ter marks to drain many writes at once [9].

We use a collection of multi-programmed workloads from
SPEC2k6. Libquantum, milc, mcf, omnetpp, h264ref, Gems-
FDTD, leslie3d, gromacs, and soplex are run in rate mode
(eight copies of the same program). Of these, h264ref and
gromacs are not as memory-intensive as the others. We
also execute two workloads (mix1 and mix2) that include
a mix of different SPEC programs. Mixl is a combina-
tion of perlbench, bzip2, gromacs, gobmk, hmmer, tonto,
astar and sjeng. Mix2 is a combination of gromacs, gobmk,
tonto, sjeng, perlbench, hmmer, mcf, soplex. SPEC pro-
grams are fast-forwarded for 50 billion instructions before
detailed simulations are started. Statistics from the first 5
million simulated instructions are discarded to account for
cache warm-up effects. Simulations are terminated after a
million memory reads are encountered.

For now, we assume that all co-scheduled programs re-
ceive an equal share of memory bandwidth. Non-uniform
allocations will benefit both the TP and BR policies.

l Processor I
ISA UltraSPARC IIT ISA
CMP size and Core Freq. 8-core, 3.2 GHz
ROB size per core 64 entry
Fetch, Dispatch, Maximum
Execute, and Retire 4 per cycle

l Cache Hierarchy

Coherence Protocol Snooping MESI

L1 I-cache 32KB/2-way, private, 1-cycle
L1 D-cache 32KB/2-way, private, 1-cycle
L2 Cache 4MB/64B/8-way, shared, 10-cyc

l DRAM Parameters

DRAM Frequency 1600 Mbps

Channels, ranks, banks 1 channel, 4 ranks/channel,

16 banks/rank

Write queue water marks
Read Q Length

40 (high) and 20 (low)
32 per channel

DRAM chips 4 Gb capacity
trc =39, trep =11
tras = 28, traw = 32
DRAM twr =12, trp = 11
Timing trRTRS = 2, tcas = 11
Parameters trrp = 6, tpaTA TRANS = 4

(DRAM cycles) tcep.r =4, tcep.s =4
twrr.L = 6, twrr.s = 6
trRrD.L = 5, tRRD_.S = 5

trerr = 7.8us, trrc = 260ns

Table 1: Simulator and DRAM timing [11] parame-
ters.

5. RESULTS

In this initial study, we primarily focus on the impact of
various policies on performance. Information leakage analy-
ses are left for future work. Figure 2 shows the effect of the
TP policy on performance, for our 8-core workloads. We as-
sume a non-secure baseline that uses an optimized FR-FCFS
scheduling policy. The bar marked “Autoprecharge” changes
the scheduling policy so that every column-read and column-
write include a precharge directive, i.e., a strict close-page
policy. This is required by the TP policy so that there is
no information leaked via row buffer hits and misses. The
next bar, marked “Dead” in each graph shows the effect of
introducing frequent dead times. In every 256-cycle win-
dow (80 ns), we assume that no commands can be issued
in the last 172 cycles. The “Dead” model does not isolate
the threads. The next bar in each graph, marked “Isolate”
assumes no dead times, but only allows one thread to issue
at a time. Each thread gets a turn for 256 cycles in round-
robin fashion. The next bar, “TP”, represents the policy of
Wang et al., including a strict autoprecharge policy, thread
isolation, and a dead time of 172 cycles for every 256-cycle
turn. We carried out a design space exploration to confirm
that a turn length of 256 cycles is optimal. The last bar,
“Optimized-TP”, resembles the best model of Wang et al.,
and assumes bank partitioning and a lower dead time of 32
cycles.

The results show that the use of a strict autoprecharge
policy causes a 2.7% performance loss on average. The in-
troduction of dead time alone causes a significant perfor-
mance degradation of 22% on average. Thread isolation has
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Figure 2: Normalized IPCs for temporal partition-
ing (TP) in an 8-core model.

a much more significant effect (64%) on performance be-
cause it increases wait time for most memory requests. The
negative performance impact of thread isolation increases as
core count is increased. The effects of each factor are roughly
additive, yielding an average 74% slowdown for TP in the 8-
core case. We also observe that bank partitioning provides a
small performance boost, similar to what has been reported
in other papers [14]. The final Optimized-TP policy is 61%
worse on average than the FR-FCFS baseline.
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Figure 3: Normalized IPCs for bandwidth reserva-
tion (BR) with different Q values in an 8-core model.

Next, in Figure 3, we show the effect of our bandwidth
reservation policies for 8 cores. Our experiments assume
that the memory controller simply idles if a thread has fewer
requests than its allocation. The graph is normalized against
an optimized FR-FCFS baseline and shows results for dif-
ferent time quanta @ of 128, 1K, and 8K cycles. In these
initial experiments, we assume that the value of S matches
Q. We see that a @ of 128 is too restrictive in many cases,
causing an 8% performance loss on average. But a @ value
of 8K cycles affords sufficient flexibility to the memory con-
troller and yields a performance degradation of under 1%
on average. We thus show that bandwidth reservation is far
more effective than complete thread isolation.

6. RELATED WORK

In addition to Wang et al. [30], a few other papers have
tried to eliminate timing channels in caches and on-chip net-
works [12, 16, 24, 26-28]. Note that techniques such as cache

partitioning can isolate the cache activity of one thread from
another, but it does not eliminate the memory timing chan-
nels, i.e., memory latencies of one thread are impacted by the
cache miss rate of the co-scheduled thread. Martin et al. [13]
thwart timing channel attacks by limiting a user’s ability
to take fine-grained timing measurements. Saltaformaggio
et al. [22] identify potential attacks because of atomic in-
structions that can lock up the entire memory system; they
develop solutions that require hypervisor extensions.

Information-secure memory systems can borrow designs
from networking and real-time systems as well. Virtually
pipelined network memory [5] (VPNM) is a secure mem-
ory system that hides information leaks among threads that
contend for memory banks in network processors. VPNM
normalizes memory access time to trade off latency for de-
terministic, high bandwidth — good for network processing,
but unsuitable for standard desktop/server workloads.

Reineke et al. [19] build a DRAM controller with pre-
dictable latencies. Refreshes are broken into smaller RAS-
only refresh operations to prevent disruptions from a long
refresh operation. The memory controller also uses a close
page policy and forcibly goes through bank groups in round-
robin fashion. But a co-scheduled attacker thread can esti-
mate the memory intensity of a victim thread because queu-
ing delays at banks will be variable. CCSP arbitration [6] re-
quires assigning priorities and bandwidth requirements, and
regulates rate of requests to ensure bounded latency.

A few papers [10, 15, 18, 23] have used memory bandwidth
reservation as a technique to aid QoS policies in datacenters.
QoS policies and timing channel prevention policies differ in
the following two ways: (i) QoS policies allow allocations to
change based on need, and (ii) QoS policies allow a thread
to steal idle resources from another thread.

7. CONCLUSIONS

The paper argues that bandwidth reservation yields higher
performance than temporal partitioning. This is primarily
because temporal partitioning introduces long wait times for
memory requests that do not arrive during the thread’s turn
at the memory controller. Periodic dead times and a strict
close page policy also contribute to temporal partitioning’s
high performance degradations. We qualitatively argue that
the bandwidth reservation policy leads to nearly zero infor-
mation leakage. This will be evaluated more rigorously in
future work.
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