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Abstract

Data prefetching is vital in high-performance processors and
a large body of research has introduced a number of different
approaches for accurate prefetching: stride detection, address
correlating prefetchers, delta pattern detection, irregular pat-
tern detection, etc. Most recently, a few works have leveraged
advances in machine learning and deep neural networks to
design prefetchers. These neural-inspired prefetchers ob-
serve data access patterns and develop a trained model that
can then make accurate predictions for future accesses. A
significant impediment to the success of these prefetchers is
their high implementation cost, for both inference and train-
ing. These models cannot be trained in real-time, i.e., they
have to be trained beforehand with a large benchmark suite.
This results in a large model (that increases the overhead
for inference), and the model can only successfully predict
patterns that are similar to patterns in the training set.

In this work, we explore the potential of using spiking
neural networks to learn and predict data access patterns,
and specifically address deltas. While prior work has leaned
on the recent success of trained artificial neural networks,
we hypothesize that spiking neural networks are a better
fit for real-time data prefetching. Spiking neural networks
rely on the STDP algorithm to learn while performing in-
ference - it is a low-cost and local learning algorithm that
can quickly observe and react to the current stream of ac-
cesses. It is therefore possible to achieve high accuracy on
previously unseen access patterns with a relatively small
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spiking neural network. This paper makes the case that
spiking neurons and STDP offer a complexity-effective ap-
proach to leverage machine learning for data prefetching.
We show that the proposed PATHFINDER prefetcher is com-
petitive with other state-of-the-art prefetchers on a range
of benchmarks. PATHFINDER can be implemented at 0.5 W
and an area footprint of only 0.23 mm? (12 nm technology).
This work shows that neural-inspired prefetching can be
both practical and capable of high performance, but more
innovations in SNN/STDP prefetch algorithms are required
to fully maximize their potential.
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1 Introduction

Hardware data prefetchers have been extensively researched
[3, 6, 17, 20, 31, 37, 40, 41, 52], but the memory wall contin-
ues to limit the performance of data-intensive workloads.
Continued advances in data prefetching are required to im-
prove coverage and accuracy at low overheads, especially
for workloads with access patterns that are noisy or hard to
predict with simple table-based or rule-based approaches.

In recent years, given the advancements in Al and deep
neural networks, multiple research efforts [17, 41, 46] have
explored the use of LSTMs and other neural-based techniques
in predicting future data accesses. These studies have re-
ported significant improvements over state-of-the-art prefetch-
ers, but their high overhead means that it will take years of
advancements to nudge these designs to be practical while
realizing most of the benefit that has been identified.

This paper opens up an alternative path to realizing the
benefits of neural-based data prefetching. We start with an
implementation that is practical today and that is competitive
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with, and occasionally better than, state-of-the-art prefetch-
ers. While this work falls short of showing a large jump in
prefetching performance, it provides evidence that there is
value in exploring the (largely unrepresented) low overhead
space of neural-based prefetching. We thus lay the founda-
tion for future research that can continue to improve the
accuracy/coverage of these prefetchers while staying within
the practical scaffolding we introduce.

How is this alternative path able to achieve high-quality
neural predictions at low overheads? Prior neural-based
prefetchers have relied on artificial neural networks that
have been remarkably successful for image and language
applications. Consider the state-of-the-art neural-based delta
prefetcher, Delta-LSTM [17], that utilizes an LSTM neural
network to generate prefetches based on the address deltas.
It performs clustering on virtual memory addresses before
training to limit the vocabulary of deltas and improve the ef-
ficiency of training. Another state-of-the-art neural address
correlation prefetcher is Voyager [41], which also uses an
LSTM architecture. Voyager collects a memory access trace
over a 50 million instruction epoch. This trace is then en-
coded and fed to a training algorithm to construct the model.
This training requires several hours on a GPU - this is an in-
herent drawback of artificial neurons that rely on stochastic
gradient descent, a global optimization process that requires
over 10!7 computations (for typical networks) to arrive at an
accurate model. This model is then used for inference over
the next 50 million instruction epoch. Both, the training and
inference overheads, are many orders of magnitude higher
than what is needed for a practical hardware prefetcher. The
nature of artificial neurons and stochastic gradient descent
are such that it is very challenging to lower the training
overhead by many orders of magnitude. A pre-trained static
model will not only be large, but it will also not adapt to the
behaviors of new programs with new access patterns.

The key to lowering the overhead of neural-based infer-
ence and training is to adopt an alternative neuron model - a
spiking neuron [13, 25] - that is inherently low-cost. Spiking
neurons rely on potential increments and do not use multipli-
ers, thus supporting many more computations per unit area
than hardware for artificial neurons. They are trained on-
the-fly using the Spike Timing Dependent Plasticity (STDP)
algorithm. As inference is performed, each neuron adjusts
its own weights based on the timing of its own inputs and
outputs. Thus, training is a local process (unaffected by the
behaviors of all other neurons) and can be accomplished
within nano-seconds of seeing a new input pattern. The
model is continuously training itself and does not require
alternating epochs of training and inference. The prefetcher
can thus react to new access patterns within hundreds of
cycles, unlike the epoch-based technique in Delta-LSTM and
Voyager. Further, STDP is a form of unsupervised learning,
i.e., it does not require a pre-labeled training set. The neu-
rons train themselves to recognize specific patterns without

labels/supervision - a post-processing step then assigns la-
bels to each neuron (a process that is easily compatible with
prefetcher implementations).

As we detail in this paper, Spiking Neural Networks (SNNs)
and STDP are not perfect - they do introduce a few challenges.
In particular, they have historically lagged behind the accura-
cies of mathematically-optimal and iterative stochastic gradi-
ent descent. We make the case that our proposed prefetcher,
PATHFINDER, based on SNN/STDP can offer sufficiently high
accuracies and can capture access patterns that are poorly
handled by non-neural prefetchers. SNNs also have a time
component that increases the overhead of the hardware im-
plementation, but we show that approximate low-overhead
implementations offer nearly the same accuracy. In spite
of the above drawbacks, PATHFINDER is implementable to-
day, and thus represents a more practical starting point for
follow-up work that can incrementally approach the higher
accuracies of stochastic gradient descent.

Recent literature [6, 36] has also considered other machine
learning based techniques, e.g., Pythia [6] uses reinforcement
learning to identify useful deltas during run time. While such
an approach is effective at run-time learning and has low
implementation complexity, we observe that the random
explorations inherent in reinforcement learning can cause
useless prefetches and sometimes fail to identify the best
delta, potentially impacting its performance.

This paper thus makes the following contributions:

e We introduce a hardware data prefetcher, PATHFINDER,
that is based on SNN and STDP for on-the-fly training
and inference.

e We introduce novel techniques to encode inputs and la-
bel neurons to enable the SNN to learn memory access
patterns similar to image recognition.

e We show that such prefetchers can be implemented at
relatively low overhead and are able to predict access
patterns that are problematic for other state-of-the-art
non-neural prefetchers. PATHFINDER can therefore be
an effective piece in an ensemble of prefetchers.

e We quantitatively compare PATHFINDER to a range
of state-of-the-art prefetchers using the ChampSim
framework. We observe that relative to these base-
line prefetchers, PATHFINDER is competitive on av-
erage and better on a few benchmarks. On average,
PATHFINDER achieves 18.7% better performance than
Delta-LSTM, 9.3% higher IPC than SPP, and 2% higher
IPC than Pythia. PATHFINDER also exhibits 2.1% higher
IPC than BO [31], a 1.7% advantage over Voyager [41],
and it attains 99.12% of the effectiveness of SISB. In
our optimal design configuration, the ensemble of
PATHFINDER, Nextline, and SISB achieves 4.6% higher
IPC than BO [31], 4.1% higher IPC than Voyager [41],
and surpasses SISB by 0.3%.
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2 Background and Related Work
2.1 Related Work in Non-Neural Prefetchers

Much of the early work in prefetching relied on tables that
tracked history, strides/offsets, delta patterns, and correla-
tions. Given a certain access pattern, the tables are indexed
to predict the next accesses in the stream. The Voyager pa-
per refers to this class of non-neural prefetchers as rule-
based prefetchers, which they categorized as strided/stream
prefetchers and correlation prefetchers. Below, we briefly
describe some of these major categories of prefetchers.

The simplest implementations of Strided Prefetchers are
NextLine Prefetchers [21, 23, 30]. They are less effective
for some data traversals [43]. Several works have predicted
varying stride lengths based on recent accesses tracked in
metadata tables [10, 14, 30, 38, 43]. Some works have also
handled more complex streams by tracking 4 different stride
lengths [19]. Delta Correlation [30, 38, 41] is a significant
advancement on stride prediction. Best Offset [30] is on
the simple end of this spectrum, while VLDP [40] uses a
more complex implementation similar to the TAGE branch
predictor [39].

A Correlation Prefetcher builds connections between past
access patterns to determine future access patterns [32]. Spa-
tial Memory Streaming [45] determines what to prefetch
based on the patterns in which data was accessed and their
spatial relationships [32, 45]. Bingo [4] and other spatial
prefetchers [9, 22, 44, 45] also exploit similar repeating pat-
terns. Temporal Prefetching focuses on the relative timing
between block accesses. Dead-Block Predictors [27] similarly
identify the last touch to a block before it gets evicted.

2.2 Related Work in Neural Prefetchers

The success of deep neural networks has inspired a few re-
cent attempts at training deep networks to predict future
memory accesses. Works like Peled et al. [36] and Pythia [6]
use reinforcement learning for making predictions. Peled et
al. pursue “Semantic Locality”, i.e., locality defined by the
algorithm or data structure. Peled et al. use the compiler
to provide hints about the algorithm and the data structure
being traversed. These hints are combined with informa-
tion from the CPU to train a reinforcement learning model
to predict future addresses. Pythia takes a somewhat sim-
ilar approach in that they have a modular set of variables
that can be used to train the Reinforcement Learning model.
Pythia’s approach also allows for customizable prefetchers
and doesn’t require the code to be recompiled.

Hashemi et al. [17] used LSTMs for data prefetching, and
presented two different LSTM models, one that uses a large
vocabulary to model all of the most common deltas, and
one that uses clustering to shrink the vocabulary and the
model by categorizing accesses based on locality. Srivastava
et al. [46] also used LSTMs and shrank the LSTM model with
a binary encoding that uses the output from multiple output
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neurons to determine the label. RAOP [52] further builds on
this by designing an Offset delta prefetcher using LSTMs.
Voyager [41] also pursues LSTMs with a hierarchical model,
and divides the work of prefetching the page and offset across
multiple LSTMs. Wu et al. [50] have also performed an initial
study with motivations similar to ours. In a recent HotOS pa-
per, they show that Hebbian learning principles can achieve
high prefetch accuracies in the contexts of disaggregated
memory systems and CPU-GPU page movement.

2.3 Why Pursue Neural Prefetchers?

Non-neural rule-based prefetchers are very effective and
form the basis for most commercial prefetchers. However,
data access patterns are varied and each prevailing pattern
type will require a different set of rules. Capturing each of
these pattern types will require a large set of rules and tables,
essentially forming a “Franken-prefetcher” or an ensemble
of prefetchers, that combine features from all state-of-the-art
prefetchers. A neural prefetcher is a single elegant formula-
tion that tries to capture a large number of rules as patterns
that can be detected by neurons with trainable weights.

A second key advantage of a neural prefetcher is that it is
tolerant to noise. For example, out-of-order execution may
cause a re-ordering of loads, which in turn can impact the
indices used for rule-based table structures, thus leading
to wrong predictions. Noise can also be caused by varia-
tions in program control flow and interference from other
co-scheduled threads or applications. Neural-based prefetch-
ers attempt to generalize rule-based prefetchers. The hope is
that if the recent history of PC/address is provided as input,
the neurons will train themselves to recognize the prevail-
ing pattern and make correct predictions even in the face of
noisy inputs. Prior papers on neural prefetchers, e.g., Voy-
ager [41], have made the case that they can achieve higher
performance than rule-based prefetchers, i.e., they can make
good predictions for a larger set of access patterns. Those
benefits will likely be larger in noisy environments.

However, to date, a practical neural-based prefetcher does
not exist - our goal is to realize the opportunity of neural
prefetching at low cost.

2.4 SNN Background

Spiking Neural Networks (SNNs) attempt to emulate biolog-
ical behavior [13, 25]. Most implementations approximate
them with leaky-integrate-and-fire operations [13]. Each
neuron has a potential; when an input spike is received,
the potential is increased or decreased based on the weight
for that input (integrate operation). If no input is received,
the potential reduces (leak operation). When the potential
reaches a threshold, it generates its own spike (fire opera-
tion). Thus, all operations are performed with adders and no
multipliers are required.

Inputs are fed over many ticks, with 8-16 ticks typically
working well [18, 25]. Inputs and outputs can be encoded in
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many ways; rate encoding generates a number of spikes that
is a function of the input value; temporal encoding generates
a spike at a tick that is a function of the input value. Thus, it
takes many ticks to process an input and generate an output
sequence of spikes. This is one of the drawbacks of SNNs.

SNN’s can be trained with STDP, which is a form of Heb-
bian Learning [7]. Each neuron adjusts its own weights with-
out needing labeled inputs. If an input spike occured just
before the output spike, that input is deemed important and
its weight is incremented. If an input spike occured just after
the output spike, that input is deemed unimportant and its
weight is decremented. SNNs can therefore be learning con-
stantly. In essence, an SNN starts out with random weights
and when it sees an input, one of the output neurons fires.
The weights are strengthened such that the same neuron
firing sequence is encouraged when a similar input is seen
again. Thus, the neurons in the network train themselves
to recognize certain input patterns, even without requiring
labels for those input patterns. As a post-processing step, we
can observe each input and the corresponding firing neuron
and assign an appropriate label to that output neuron. The
training process can therefore converge after seeing just a
few examples of each input pattern. The training process is
local, i.e., during inference, each neuron can simply perform
its weight adjustments based on its own behavior. This is a
salient difference from artificial neural networks that require
many epochs of training with a large labeled dataset, with
each input being involved in forward and backward passes
that reduce a global cost function.

There are many ways to implement an SNN in hardware.
IBM’s TrueNorth [8] and Intel’s Loihi [11] are prominent
commercial examples targeted at larger-scale SNNs. In addi-
tion, many academic studies have also proposed implementa-
tions [15, 24, 28, 29, 33, 34, 48]. We base our prefetcher design
on the best practices introduced by these prior SNN imple-
mentations. While these implementations require a modest
number of transistors to implement the logical operations,
they require significantly more area/energy to store/access
weights and neuron potentials across multiple ticks [8, 11].

3 The PATHFINDER Architecture

This paper explores the potential of using SNNs to make
prefetching decisions with high accuracy and coverage. An-
other primary focus is to create a design with low costs in
terms of area, energy, and latency. We hypothesize that SNNs
are especially compelling because they not only achieve
low-cost inference, they also achieve continuous training
through STDP at a very low cost. Unlike state-of-the-art
neural-based solutions like Delta-LSTM and Voyager, the pro-
posed PATHFINDER is hardware-implementable and doesn’t
necessitate separate epochs for training and inference.

We design PATHFINDER to perform online learning on ac-
cess patterns within a page. When a block is accessed, it

predicts the next block to be accessed within that same page.
PATHFINDER employs a 3-layer network alongside support-
ing tables used for labeling the output neurons. This section
describes PATHFINDER’s network architecture, how inputs
are encoded, how labels are computed, extensions to im-
prove accuracy and reduce cost, and hardware design details.
We end with an example showcasing the fast noise-tolerant
learning that SNNs are capable of.

3.1 The Structure and Topology of PATHFINDER

To keep complexity in check, we deploy a 3-layer SNN,
shown in Figure 1. Our implementation consists of an in-
put layer, an excitatory layer comprising 50 neurons, and
an inhibitory layer also consisting of 50 neurons. The input
layer has D X H neurons, where D is the range of allowed ad-
dress deltas, and H denotes the length of delta history (more
details shortly). The unsupervised learning rule, STDP, is
employed to update the connections (weights) between the
pre-synaptic neurons (the input layer) and the post-synaptic
neurons (the excitatory output layer). The network thus has
D x H x 50 weights that need to be learned.

In the subsequent evaluation, we vary the length of the
delta range and the quantities of excitatory/inhibitory neu-
rons. For now, we use the default delta range 127 (from -63
to 63) and 50 excitatory and inhibitory neurons as a rea-
sonable starting point that captures most of the likely delta
prediction outcomes. Fach excitatory neuron is connected
to a single inhibitory neuron; when the excitatory neuron
fires, its inhibitory neuron sends inputs to all other excita-
tory neurons to stifle their firing. The degree of inhibition
is a tunable knob that we vary to allow multiple neurons to
fire, which is desirable for high-degree prefetching.

The SNN is built on well-known leaky-integrate-fire (LIF)
neuron models, publicly available as part of the BindsNet [18]
framework. We adopt the framework’s STDP implementa-
tion to continuously update weights.

3.2 Encoding Inputs for PATHFINDER

Prior work has demonstrated that SNNs are effective at vari-
ous image classification tasks [13, 25]. Leveraging this expe-
rience, we aim to frame the prefetching problem as an image
classification task. By adopting the right formulation, we
anticipate that identifying a memory access pattern can be
analogous to classifying an image, while also being resilient
to some level of noise in access patterns. We therefore encode
the memory access pattern as a pixel matrix, converting the
H-length memory access stream into a Memory Access Pixel
Matrix with height H and width D.

Once this conversion is done, the rest of the network
can draw from best practices in image classification from
prior works [13, 25], effectively enabling different neurons
to fire for each detected memory access pattern. To strike
the balance between coverage, accuracy, and cost, it is vital
to define an appropriate set of inputs to the SNN. There is
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Figure 1. Example pattern being tracked and updated in PATHFINDER.

a large design space for these inputs. Our experiments and
some prior works [31, 37] have empirically shown that it is
effective to use per-page memory address deltas as inputs.
We later also discuss and evaluate other types of inputs.

To facilitate learning, a Training Table keeps track of re-
cent accesses by a given PC to a specific page (see Figure 1).
For example, PC 408 is accessing page 92 and has touched
blocks with page offsets 16, 17, 19, and 22. As done by many
prior works [31, 37], we focus on delta patterns, i.e., the gap
between consecutive addresses, which tend to be more pre-
dictable and easier to encode than the addresses themselves.
Thus, in this example, the Training Table entry has a delta
pattern of {1, 2, 3}. We assume that the prefetcher implements
a delta history with length H = 3, so with a delta history of
{1, 2, 3}, we are now ready to query the SNN.

@ Our approach starts by creating a memory access pixel
matrix, which transforms the delta history {1, 2, 3} into an
image representation. The resulting image consists of D X H
binary pixels, visually shown in Figure 1. Each row in the
image represents one of the deltas from the given history,
while each column signifies a different delta value. With a
page size of 4KB with 64-byte blocks, the deltas range from
-63 to 63, leading to D = 127. In Figure 1, the delta history {1,
2, 3} is illustrated with three prominent black pixels, one per
row at the appropriate delta value.

@ To feed inputs to the SNN, we use a rate coding scheme.
The pixel values are converted into an input spike train of
length T, following a Poisson distribution. An input interval
of T ticks is used to process the SNN input.

In our initial experiments, we prioritize achieving high
accuracy, and thus we choose D = 127, T = 32. However, we
later consider ways to reduce cost by shrinking the SNN size
with strategies like smaller D, smaller T, fewer neurons, etc.

3.3 Learning Labels on the Fly

The SNN operates as a black box, taking the Memory access
Pixel Matrix as input and generating a set of firing output
neurons. To construct the input sequences and interpret

these firing output neurons, a Training table and Inference
Table are employed, which we describe next.

The Training Table tracks recent combinations of PC/page
and the blocks that have been touched within that page. In
our ongoing example, after 4 accesses to a page, we obtain 3
deltas, which are then fed as input to the SNN. @ This input,
along with the firing output neuron (for instance, neuron 17),
is recorded in the Training Table. As depicted in Figure 1, the
training table now contains an entry with delta history of {1,
2, 3}, last accessing page offset 22 (which helps calculate the
future delta), and output neuron 17.

Upon encountering the same input and output pattern in
subsequent instances, the Inference Table captures the next
delta, let’s say 6. We can now label the SNN’s output neuron
and assign it an initial confidence value (1 in our study). @
In this scenario, the output neuron 17 is associated with a
label 6, which implies that when output neuron 17 fires, and
its corresponding confidence is greater than 0, we initiate a
prefetch for the next block in the page with a delta of 6.

Subsequent updates to the Training Table query the Train-
ing Table to identify if an output neuron label must be up-
dated. Once a label is assigned for neuron 17, we no longer
need to actively look for a label for that neuron as long as
its confidence remains above 0. It is worth noting that the
Training Table is an independent structure designed to un-
derstand the delta patterns with page and PC awareness. It
detects consistent access patterns that the SNN has learned
to recognize. Once the Training Table has detected that con-
sistency, it assigns a label to the corresponding neuron in
the Inference Table. Our label assignment process is similar
to how Diehl and Cook[12] assigned labels for their model.

3.4 Additional Design Details

Confidence Estimations. In the Inference Table, each ex-
citatory output neuron in the SNN is equipped with both
a label and a confidence counter, serving as essential com-
ponents for making accurate prefetching decisions. Upon
every new access, we check if the prediction generated by
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Figure 2. Circuit blocks in one PE (one neuron) of PATHFINDER.

the SNN for its prior access aligns with the accessed block of
the current page. We first use the page and pc information
to index the Training Table to locate the fired neuron that
got activated. Then, we use the neuron’s index to get its
associated label in the Inference Table, thus serving as the
prediction. When the SNN’s prediction matches the accessed
block of the current page, the confidence associated with the
corresponding neuron is incremented. Conversely, if the pre-
diction does not match the accessed block, the corresponding
neuron’s confidence is decremented. The confidence is im-
plemented as a 3-bit saturating counter. If the confidence
reaches zero, the neuron’s label is erased. This re-initiates
the process of tracking a specific delta pattern and finding
its corresponding label. Thus, not only does the SNN learn
continuously with STDP, but the confidence estimations also
help clear labels and adapt to new patterns as the program
moves between phases.

Multi-Degree Prefetching. In our previous discussion,
each neuron is associated with a single label, resulting in a
prefetcher with a degree of 1. Most state-of-the-art prefetch-
ers have the ability to increase coverage and also IPC by
prefetching with higher degrees. To get better IPC and cover-
age, we recognize the need for PATHFINDER variants capable
of supporting higher degrees of prefetching.

To address the above challenge, we can vary the inhibition
degree to control the number of excitatory neurons that
fire for a given input. By reducing the inhibition, we can
observe 2-5 firing excitatory neurons for any input. We can
then issue prefetches for the firing neurons with confidence
values exceeding a certain threshold or select the neurons
with the highest confidence levels.

Alternatively, we can use high inhibition to allow only
one firing neuron, but assign multiple labels (and confidence
values) to that single firing neuron. For each neuron in the

Inference Table, we accommodate two slots for the label-
confidence pair. For instance, when neuron 17 fires upon
observing delta pattern {1, 2, 3}, it obtains its label following
the process described above. Later, if it fires when encounter-
ing delta pattern 2, 2, 3 with the next access delta being 12,
it will get a different label 12 to be assigned to it. Therefore,
neuron 17 will have the two labels, 6 and 12, attached to it
when it identifies a different pattern. This approach has been
adopted in our work to support higher degrees of prefetching
to enhance the performance and efficiency of PATHFINDER.
Ensemble of Prefetchers. Another avenue to increase
prefetching coverage is ensembling PATHFINDER with an-
other state-of-the-art, low-overhead prefetcher. In scenar-
ios where PATHFINDER may not generate sufficient high-
confidence prefetches, the prefetching budget can be allo-
cated to prefetches identified by other prefetchers. We earlier
claimed that PATHFINDER is effective at generalizing several
rule-based prefetchers - but here, we are falling back on rule-
based prefetchers. It turns out that PATHFINDER is quite se-
lective in issuing prefetches - it waits to see the same pattern
multiple times and needs high-confidence labels. The other
rule-based prefetchers are effective when the patterns are
simple and can be triggered without much deliberation, such
as a next-line prefetcher. Therefore, in our evaluations, we
combine PATHFINDER with a state-of-the-art prefetcher like
an idealized version (SISB) of the Irregular Stream Buffer [20],
as well as with one of the simplest prefetchers like Next-Line
to enhance prefetching performance.

Initial Accesses to a Page. As mentioned earlier, PATHFINDER
currently only focuses on predicting the next block touched
within a page. Predicting the first access to a page that has
not been touched in a while (a cold page access) is left for
future work. The design so far presents a limitation wherein
the SNN is fed with the last H deltas, and prefetching is
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initiated only after the first H+1 accesses to a page. With
H = 3 for most of our experiments, it is a significant missed
opportunity to delay prefetch until the 4th access to a page.
We propose an extension to the input encoding scheme,
handling the first three accesses to a page as special cases, to
address the above limitation. Upon the initial touch to a page
where the page is absent in the Training Table, the offset is
OF1. The SNN receives a delta input of {OF1, 0, 0}. On the
second touch to the page, with a single delta D1 available, the
SNN receives a delta history of {0, 0, D1}. Note that the zeroes
have moved from the end to the start of the history so the
SNN can make a distinction between an offset pattern and a
delta pattern. For the third touch, we feed the two available
deltas (D1 and D2) as {0, D1, D2}. With this extension, we
can initiate inputs to the SNN whenever any access to a page
is observed, eliminating the necessity to wait for 3 deltas to
construct the Input Matrix.
Enlarged Pixel in Input Pixel Matrix. We encountered a
challenge with the Input Pixel Matrix being extremely sparse,
which posed difficulties in triggering neuron firing. To al-
leviate this issue, we amplify the signal by expanding each
colored pixel so it also occupies its 4 neighboring pixels. This
amplification technique empirically demonstrated notewor-
thy benefits, such as facilitating the recognition of patterns,
elevating the neuron firing rate, and ultimately leading to im-
proved IPC. However, a potential issue emerged after signal
amplification, where some closer pixels clustered together,
resulting in aliasing problems. To mitigate this concern, we
shift the middle delta in the delta pattern by a fixed constant,
effectively reducing the risk of aliasing.
Lowering Time Interval. A drawback of SNN inference is
that inputs are processed over a T-tick interval, which adds
to the prefetcher’s latency and energy consumption. Ideally,
we’d like to compress the input time interval to one and still
produce the same prediction. To approximate the behavior
of a 32-tick SNN with a low-cost implementation, we model
a 1-tick SNN and assume that the neuron with the highest
potential after 1 tick would have been the first to fire. Our
empirical findings, shown in Table 1, demonstrate a large
percentage of the highest voltage neurons after the first tick
are also the most-firing neurons during a 32-tick interval.
This correlation indicates our 1-tick approximation closely
aligns with the SNN’s behavior during the 32-tick interval,
offering high accuracy at a low implementation cost.

3.5 Implementing PATHFINDER in Hardware

PATHFINDER is composed of an SNN and two supporting
tables that help with encoding and labeling. Figure 2 shows
details of the PATHFINDER s microarchitecture. The SNN itself
is the largest overhead due to the storage requirements for
its weights. The SNN is primarily composed of 50 excitatory
neurons, each equipped with DH weights. Each of these
50 neurons is implemented with two adders and a directed
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‘ Benchmark Suite ‘ Trace Name ‘ matched neuron ‘

GAP cc-5 92.43%
GAP bfs-10 90.63%
SPEC06 471-omnetpp-s1 93.56%
SPEC06 473-astar-s1 91.38%
SPEC06 450-soplex-s0 85.72%
SPEC06 482-sphinx-s0 86.21%
SPEC17 605-mcf-s1 91.92%
SPEC17 623-xalan-s1 93%
Cloudsuite cassandra-phase0-core0 86.59%
Cloudsuite cloud9-phase0-core0 82.76%
Cloudsuite nutch-phase0-core0 85.66%

Table 1. The % of neurons with the highest voltage after the
first tick that matched the firing neuron after 32 ticks.

Ae_Voltages voltages for neurons (0 - 50) from t = 0 to 100

40 60 80 100

Simulationtime 100

Figure 3. Demonstration of SNN learning a pattern. Neuron
9, shown in orange, trains itself to recognize an input pattern
that is fed repeatedly to the SNN for three input intervals.

mapped scratchpad with a little more than DH entries to
track weights, potential, leak, inhibition, and firing threshold.

The sequence from the Training Table is converted into a
set of spikes, which are fed as a set of spike timestamps/ids.
These ids are used to sequentially access weights from the
weight buffer, which are then fed to the ALU to increment
neuron potentials (or decrement based on leak). Also given
the input process interval and the high sparsity, an output
spike can be generated after tens of ALU increments. Given
the low cost of an ALU, parallel ALUs can implement these
increments at low overhead. This helps to lower the latency
of a prefetch prediction to just a handful of cycles.

The supporting tables are relatively small but are compli-
cated by the required indexing mechanisms. The Training
Table is indexed with a combination of PC/page to track
deltas and identify labels. It is therefore implemented as a
CAM structure. Based on our analysis, a Training table with
1K 120 bit-wide rows is good enough to maintain high perfor-
mance. We estimate area under 0.02 mm? and power under
11 mW using CACTI [5] to model the structures at 22 nm
and then scaled down to 12 nm. The firing neuron indexes
the Inference Table, and is also implemented as a CAM. The
Inference Table has 50 rows, each with 24 bits, yielding an
area of 0.00006 mm? and power of 0.02 mW However, many
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of these parameters can be further reduced with minimal
impact on prediction accuracy, as we show later in Section 5.
To more precisely estimate its overhead, we implemented
and functionally verified the 50-neuron SNN shown in Fig-
ure 2. The SNN is modeled with 50 PEs (each with its adder,
comparators, and weight buffer) and a global timer module.
The spikes generated from each neuron are aggregated as
a single signal and then used to inhibit neurons that do not
fire. We use the Synopsys Design Compiler [47] at a 12-nm
technology node to determine the power and area consumed
by this structure. The SNN uses 0.21 mm? of area while con-
suming a peak power of 446 mW, with the weight buffer ac-
counting for 56% of area and 94% of power. These metrics are
at a clock frequency of 1 GHz, and the circuit can operate cor-
rectly up to a frequency of 2.5 GHz. The hardware overhead
of PATHFINDER is comparable to that of Pythia [6], which at
14nm has a 0.33 mm? area overhead and a power consump-
tion of 55.11 mW. Pythia has a larger storage requirement,
which results in the larger area. PATHFINDER implements the
weight buffers as register files, which accounts for its larger
power profile, relative to Pythia. A modern processor at 12
nm technology, the AMD Ryzen 7 2700X [49], has a die size
of 213 mm? and TDP of 105 W - making the overheads of
PATHFINDER a small fraction (< 1%) of the total processor.

3.6 SNN in Action

We now use a few representative examples to zoom into the
inner workings of an SNN to show how it quickly learns
new patterns with little effort and tolerates noise. Consider
an input pattern of {1, 2, 4} fed to an SNN initialized with
random weights. Our example walks through access patterns
listed in Table 2, accompanied by the visualization depicted
in Figure 3.

When the input pattern is first fed to the SNN, one of the
excitatory neurons in our network - neuron 9 in our example
- fires at tick 42. Other neurons come close to firing (with
potentials slightly below the firing threshold), but they are
subsequently inhibited and do not fire within the 100-tick
input interval. The left part of Figure 3 shows that the top
orange neuron 9 fires multiple times during the first input
interval. This is a crucial element in unsupervised learning
- without any labels and without any training, neuron 9
is pre-disposed to detecting the pattern {1, 2, 4}. Neuron
weights are then adjusted to increase neuron 9’s ability to
detect this input pattern. When pattern {1, 2, 4} is fed to the
SNN again in the next input interval, neuron 9 continues
to fire again. With a single observation and STDP weight
adjustment, neuron 9 has better trained itself to recognize
this pattern than the other neurons. We see this in Figure 3 -
the potential of the orange neuron 9 has further distanced
itself from the potentials of other neurons in the 2nd and 3rd
input intervals.

Input access Firing | Firing | Potential of the
pattern for the SNN | neuron | tick | next-best neuron
{1,2, 4 9 42 523
{1, 2,4 9 65 51.9
{1, 2,4 9 65 51.9
{1,2, 4 9 52 51.9
{1, 2,4 9 54 517
{1, 2,4 9 45 517
{1,3, 4 24 70 51.6
{1, 2,5} 9 63 516
{1, 4,2} 49 77 -52.2
{1, 3, 6} 0 80 52.17
{1,2,4 9 46 514

Table 2. Understanding the SNN’s firing/learning behavior.

Table 2 summarizes our observations for a set of SNN
input patterns. It shows when pattern {1, 2, 4} is fed repeat-
edly, neuron 9 fires each time and after the initial learning,
it detects the pattern at earlier ticks. We also see that the
potential of the next nearest neuron starts to fall behind be-
cause of the STDP weight adjustments and lateral inhibition.
Table 2 also shows what happens when the input pattern
is slightly changed. We show three input patterns that are
slightly different from {1, 2, 4}, and in one of them, neuron
9 recognizes the pattern in spite of the noise. Note that this
demonstration is only showing the SNN’s ability to recog-
nize patterns - neuron labeling is a separate step not shown
here, and is done once we identify the next delta after 1, 2, 4.

4 Methodology

PATHFINDER is a neural prefetcher that facilitates on-the-fly
training and inference by swiftly adapting the predictions
in response to evolving program phases. We compared it
against a range of state-of-the-art prefetchers emphasizing
different perspectives, including neural prefetchers and rule-
based prefetchers that learn delta patterns and address corre-
lations on a set of benchmarks from GAP, SPEC06, SPEC17,
and Cloudsuite.

4.1 Simulator

To evaluate our proposals, we used a fork of ChampSim
developed by the authors of the Voyager paper [41] to con-
duct our single-thread simulations. This fork was specifi-
cally designed for the ML-based Data Prefetching Competi-
tion [2] and used to test several state-of-the-art ML-based
prefethers[41, 51]. The key distinction of this fork from the
main ChampSim branch is its ability to accept precomputed
prefetch traces. First, the memory trace is utilized to generate
a prefetch file through prefetching techniques. Second, both
the original memory trace and the generated prefetch trace
are fed into ChampSim to have cycle-accurate simulation
and IPC estimates. ChampSim’s memory hierarchy simula-
tion parameters are concisely summarized in Table 3. Similar
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to the setting in the ML Prefetching Competition, we focus
on LLC misses and prefetching from memory to the LLC.

L1I 32KB, 64 sets, 8 ways, latency 4 cycles
L1D 48KB, 64 sets, 12 ways, latency 5 cycles
L2 512KB, 1024 sets, 8 ways, latency 10 cycles
LLC 2MB, 2048 sets, 16 ways, latency 20 cycles
DRAM tRP = TRCD = tCAS = 12,5
1 channel, 8 ranks per channel, 8 banks per rank
Write Queue Size = Read Queue Size = 64

Table 3. ChampSim parameters.

4.2 Pathfinder

PATHFINDER uses an off-the-shelf SNN simulator to make
prefetch predictions. The topology of the SNN is imple-
mented using a PyTorch-based [35] library, Bindsnet [18], for
a fast GPU-enabled SNN simulation. Within BindsNet, we de-
ployed the provided “DiehlAndCook” model as our baseline
and modified it to handle a different input shape (our D X H
Memory Access Pixel Matrix instead of an MNIST image).
Other SNN parameters are summarized in Table 4. We used
the built-in BindsNet monitor classes to measure run-time
neuron behaviors. Input spike trains were generated using
the Poisson rate encoding included in BindsNet.

n_input D x H; D=128, H=3

n_neurons 50

exc 20.5

inh 17.5
dt 1

norm 38.4

theta_plus 0.05

inpt_shape (1, 128%3)

number of time steps (ticks) 32

Table 4. BindsNet network initialization parameters.

4.3 Baselines

Delta-LSTM [16] is an LSTM-based neural prefetcher that
predicts virtual memory address deltas. As suggested in the
paper [16], we implement a 3-layer structure - two LSTM
layers with 128 neurons each and one dense layer. To reduce
training overhead and achieve better performance, we fol-
lowed the paper’s recommendation to cluster each trace file
into 6 clusters based on the locality of memory addresses
and performed training and testing runs on these 6 clusters
separately. In the current implementation, training is per-
formed on the initial 10% of accesses in each cluster, while
inference is performed on the full trace.

Voyager [41] is a neural-based prefetcher that learns address
correlations using an LSTM architecture. For the Voyager
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code, we use the publicly available version on their Github
[42]. Voyager envisioned an implementation where traces
collected during a 50 M instruction epoch are trained offline,
then deployed for the next 50 M instruction epoch. To en-
sure all the prefetchers use the same trace files, we trained
and tested Voyager on the same trace files we use for all the
baseline prefetchers and Pathfinder.

SPP [26] is a history-based delta prefetcher. The prefetch
degree is dynamically adjusted through adaptive throttling,
allowing SPP to issue a prediction only when its confidence
level surpasses a predetermined threshold. Our comparison
against SPP uses the ML-based Champsim simulator in [51],
identical to our own simulator, with an integrated SPP im-
plementation.

Pythia [6] is a state-of-the-art prefetcher that applies re-
inforcement learning to data prefetching for the L2 cache.
Pythia’s model is built around actions that are delta prefetches,
and state that includes a dynamic range of “features” like the
addresses, program counter, and it uses performance coun-
ters for bandwidth or IPC to help compute rewards. Using
the code in Pythia’s public repository, we ported Pythia to
serve as a prefetcher into the LLC, and additionally tested
across several diverse configurations that primarily varied
the action list and the alpha, gamma, and epsilon values to
identify the best-performing configuration at the LLC.
More Baselines In our evaluation, we also included other
baseline approaches for comparison: a baseline with no prefetch-
ing, and two baseline prefetchers integrated into the Champ-
Sim fork - Best Offset (BO) [31] (with prefetch throttling
disabled by the provider) and an idealized version (SISB) of
Irregular Stream Buffer [20], which are both provided by the
ML-based Data Prefetching Competition [2].

4.4 Benchmarks

Our evaluation includes programs drawn from various bench-
marks: GAP, SPEC06, SPEC17, and CloudSuite. The traces
for these benchmarks were provided by the ML Prefetching
Competition [2] and the 2nd Cache Replacement Champi-
onship [1]. Our simulations for each benchmark consist of
1 million memory loads, equivalent to tens of millions of
benchmark instructions, as summarized in Table 5.

Before each simulation, we performed a warm-up phase of
10 million instructions to prime the caches. Since PATHFINDER
learns online and exhibits rapid pattern recognition, we omit-
ted a separate training phase for PATHFINDER compared to
the baseline prefetchers, and our results reflect the behav-
ior of the prefetcher when processing a burst of 1 million
IMemory accesses.

4.5 Metrics

The primary evaluation metrics are: IPC, issued prefetches,
accuracy, and coverage. All simulations execute the same sub-
set of the trace file to ensure a fair comparison. We computed
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Benchmark Suite Trace Name ‘ Total instructions ‘

GAP cc-5 31M
GAP bfs-10 71IM
SPEC06 471-omnetpp-sl 65M
SPECO06 473-astar-s1 99M
SPEC06 450-soplex-s0 39M
SPEC06 482-sphinx-s0 95M
SPEC17 605-mcf-s1 48M
SPEC17 623-xalan-s1 63M
CloudSuite cassandra-phase0-core0 207M
CloudSuite cloud9-phase0-core0 208M
CloudSuite nutch-phase0-core0 154M

Table 5. Tested workloads.

accuracy by dividing the reported useful prefetches by the to-
tal number of issued prefetches. We computed the coverage
by dividing the useful prefetches by the number of baseline
misses. All prefetchers submit at most 2 prefetches for each
memory access, so the total number of issued prefetches is
at most twice the number of the baseline misses.

5 Results

Prior work [17, 41, 46, 52] has shown that neural prefetch-
ers like Voyager can outperform rule-based prefetchers. Our
evaluation assesses if PATHFINDER, an implementable neu-
ral prefetcher, can approach or exceed the performance of
hard-to-implement neural-based delta prefetchers like Delta-
LSTM and neural prefetcher Voyager that learns address
correlations. We further assess if PATHFINDER is competitive
with reinforcement-learning-based delta prefetcher, Pythia,
and other rule-based prefetchers. Our results show that this
is indeed the case, and follow-up work must continue to
explore the design space of combined neural and rule-based
prefetchers that capture the most common data access pat-
terns at low implementation costs. We start by evaluating a
version of PATHFINDER that is designed for high accuracy -
we then show the sensitivity of PATHFINDER as parameters
are varied to achieve even lower implementation costs.
Figure 4a compares the IPC achieved by various prefetch-

ers, including the no-prefetching baseline, rule-based prefetcher

(BO), temporal prefetcher (SISB), neural prefetcher that learns
address correlations (Voyager), delta neural prefetcher (Delta-
LSTM), and reinforcement-learning-based delta prefetcher
(Pythia), PATHFINDER, and PATHFINDER combined with next-
line (NL) prefetching and SISB. On average, we see that the se-
lective PATHFINDER offers better IPC than rule-based BO, and
neural prefetchers Delta-LSTM and Voyager, and being com-
petitive with RL-based Pythia and temporal prefetcher SISB.
Furthermore, PATHFINDER shows higher accuracy (Figure 4b)
and coverage (Figure 4c) than all the baseline prefetchers
on average besides SPP on accuracy. SPP is selective in the
high-confidence prefetches that it issues, giving it the high-
est accuracy, but also lower coverage than other prefetchers

(see Table 6). The Delta-LSTM model is not as competitive as
the other prefetchers, primarily because it is trained on a sub-
set of the trace and it encounters several new deltas during
testing. We conducted an experiment where we trained the
Delta-LSTM model on 30% of the full trace — the experiment
with 30% training data reduced the number of unseen deltas
by 10.3%, accompanied by a 4.6% improvement in IPC.

‘ Trace ‘ SPP ‘ Pythia ‘ PATHFINDER ‘
cec-5 116k 1.95M 1.865M
605-mcf-s1 642k 1.95M 1.43k
bfs-10 935k 1.73M 1.9297M
450-sopleX-SO 598k 1.84M 1.718M
623-xalan-s1 1.41IM | 1.60M 1.985M
471-omnetpp-s1 | 944k | 1.524M 1.8887M
482-sphinX-SO 938k 1.944M 1.965M
473-astar-s1 286k 1.94M 1.4599M
Cassandra 1.15M | 2.364M 1.7535M
Cloud 9 602k 1.79M 1.767M
Nutch 892k | 1.9075M 1.468M
average 774k | 1.867TM 1.75M

Table 6. Issued prefetches of SPP (the baseline with lowest
coverage), Pythia (the baseline with highest coverage), and
Pathfinder.

On most workloads, PATHFINDER and Pythia exhibit sim-
ilar IPCs, although with very different techniques to learn
deltas. The key difference is: Pythia randomly explores dif-
ferent deltas so there are opportunities to learn via rein-
forcement, whereas PATHFINDER’s neurons detect patterns
with high confidence. Therefore, Pythia is a more aggressive
prefetcher (see Table 6) and tends to have higher coverage.
This gives Pythia the edge on a few workloads. Notably, on
mcf, an irregular workload, PATHFINDER does worse than
Pythia because it doesn’t encounter as many high-confidence
predictions. However, PATHFINDER can bridge the coverage
gap by combining with other simple prefetchers as part of
an ensemble. On the other hand, the random exploration
of deltas in Pythia can limit its effectiveness in some cases,
e.g., consuming memory bandwidth to learn hard-to-predict
patterns. We observed that Pythia’s reinforcement learning
can settle on a “local minimum”, e.g., quickly settling on a
delta of 1 in xalan, whereas PATHFINDER achieves higher IPC
because it identifies other better-performing deltas. Addi-
tionally, Pythia has a large set of configurations that must
be tuned for high performance, whereas PATHFINDER is able
to quickly learn most patterns without much fine tuning.

It is more insightful to examine behaviors on individ-
ual benchmarks. Programs like xalan, soplex, omnetpp, and
sphinx3 do better with SISB’s temporal recording-replaying
approach, which significantly outperforms the neural-based
approach of Voyager and PATHFINDER. However, an ensem-
ble that combines PATHFINDER and NL or SISB is able to
alleviate most of this drawback. Note that our ensemble
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Figure 4. Performance (IPC, Accuracy, Coverage) comparison of different prefetchers on 1M load accesses. PATHFINDER
configuration: 50 neurons with 2 labels for each neuron, delta range: -63 to 63, input interval: 32 ticks, prefetch degree: 2.
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Figure 5. Performance of PATHFINDER with different delta ranges (31, 63, 127), but same neuron count (50) and time interval

(32 ticks).

prefetcher prioritizes PATHFINDER and uses NL or SISB pre-
dictions to fill unused slots, so it falls a little short of SISB
performance in some benchmarks. This points to an avenue
for future work that explores different ensemble policies.

However, benchmarks astar, mcf, bfs, and cc benefit sig-
nificantly from the neural-based approach. In all of these
programs, Voyager and PATHFINDER outperform SISB, show-
ing the potential of a neural-based approach. In 3 of these 4
programs, PATHFINDER is not as effective as Voyager - this is
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to be expected given that PATHFINDER is learning on-the-fly
with STDP while Voyager has the benefit of a long and pre-
cise training process on the entire trace. Bridging this gap
with better learning policies is a key area for future work.
The gap is especially wide for mcf, but with the help of the
no-overhead NL or temporal prefetcher SISB (maintaining
prefetch degree=2), PATHFINDER achieves performance very
close to Voyager and surpasses all baseline prefetchers in
accuracy and coverage. This highlights that PATHFINDER is a
selective prefetcher and can find distinct patterns better than
other prefetchers. It is worth noting that Voyager generally
lags behind PATHFINDER in accuracy on most benchmarks (cc,
bfs, soplex, xalan, omnetpp, sphinx, and astar). This indicates
that fast learning and adaptation to short-lived patterns with
PATHFINDER’s STDP can be more effective than capturing an
average pattern across a large epoch.

The best design point is a combination of NL, SISB and
PATHFINDER, an implementation that benefits from both
temporal-based and neural-based prefetching, which pri-
oritizes PATHFINDER’s predictions and uses the prefetches
from NL and SISB to fill out the remaining available slots.
For our benchmarks, the neural prediction is used 80-99% of
the time and the rule-based prediction is used 1-20% of the
time. It is possible to get larger benefits with dynamic en-
semble priority policies. Because of our fixed priorities, the
ensemble can sometimes behave very similar to PATHFINDER,
which in some benchmarks is worse than SISB-only.

‘ Benchmarks ‘ #deltas in (-31,31) ‘ #deltas in (-15,15) ‘
cc-5 682K 425K
bfs-10 968K 880K
471-omnetpp-s1 539K 314K
473-astar-s1 665K 351K
450-soplex-s0 844K 713K
482-sphinx-s0 930K 891K
605-mcf-s1 709K 476K
623-xalan-s1 809K 712K
cassandra-phase0-core0 793K 513K
cloud9-phase0-core0 893K 721K
nutch-phase0-core0 651K 529K

Table 7. Number of deltas out of 1M load memory accesses
under different delta ranges.

Next, we explore various implementations of PATHFINDER
to understand its sensitivity to SNN parameters. The advan-
tage of PATHFINDER lies in its low cost, so we aim to reduce
its size while maintaining performance values similar to
those shown in Figure 4. In Figures, 5, 6, 7, 8, we vary one
parameter at a time - the delta range, the number of excita-
tory/inhibitory neurons, the input interval size, and training
period. Finally, Figure 9 illustrates the collective impact of
all these different implementations of PATHFINDER.

Among the variables we considered, the length of the
delta range directly determines the size of the input layer.
As the delta range decreases, a tradeoff between accuracy
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Figure 6. Comparing PATHFINDER’s performance with vary-
ing numbers of neurons (10-100) across two configurations:
2 labels per neuron and 1 label per neuron. Y-axis range ad-
justed for clarity.

Benchmarks Avg # deltas | Avg # distinct | Sum of occurrences
‘ deltas of top5 distinct deltas

cc-5 377 182 106
bfs-10 920 329 356
471-omnetpp-s1 67 6 52
473-astar-s1 26 7 19
450-soplex-s0 775 290 355
482-sphinx-s0 842 35 645
605-mcf-s1 35 25 8
623-xalan-s1 451 14 264
cassandra-phase0-core0 163 97 135
cloud9-phase0-core0 528 269 317
nutch-phase0-core0 615 152 529

Table 8. Number of deltas, distinct deltas, and the summation
of top 5 frequent distinct deltas out of every 1K accesses.

and coverage arises, impacting the IPC (Figure 5). Smaller
delta ranges reduce coverage for all programs since fewer
deltas are within the shorter range (see Table 7). On the
other hand, the accuracy of all programs increases because
the smaller range filters out large deltas that contribute to
offset predictions. Specifically, for programs like xalan and
mcf, a clear drop in IPC can be observed.
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Figure 7. IPC improvement of 1-tick over 32-tick version.
Another key parameter in PATHFINDER is the number of ex-

citatory/inhibitory neurons, which significantly impacts its
overall cost as it determines the size of the weight buffer and
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Figure 8. Performance comparison for PATHFINDER with
STDP fully enabled throughout and with STDP enabled peri-
odically for different initial accesses (e.g., on for the initial
10, 20, 50, ... accesses) in every 5K access epoch.
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Figure 9. Comparing the performance of various
PATHFINDER variants: basic 1-label version, enlarged-pixel
1-label version, enlarged-pixel 2-label version, enlarged-pixel
reduced-interval 2-label version, and reordered-enlarged-
pixel reduced-interval 2-label version.

Prediction Table. As previously discussed, PATHFINDER can
assign multiple labels to a single neuron. We conduct an anal-
ysis to explore the influence of different neuron configura-
tions on two PATHFINDER implementations: the PATHFINDER
2-label version and PATHFINDER 1-label version.

In Figure 6, we show IPC as the number of neurons changes
for both settings. We observe that altering the neuron count
has minimal impact on the 2-label version, while it more no-
ticeably reduces the IPC in the 1-label version. To understand
this better, we quantify relevant statistics in Table 8. Within
a specific period, such as every 1000 accesses, the number
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of distinct deltas is not excessively large, with a few deltas
being repeatedly observed. This indicates that PATHFINDER
is agile in effectively learning short-lived patterns and adjust-
ing its labels as the workload changes. The agility is higher
when each neuron is associated with 2 labels.

Table 9 quantifies the area and power consumption for
each low-cost implementation - we see that reducing the
delta range and number of neurons are the most effective
ways to reduce the cost.

Moreover, as discussed in Section 3, we can reduce the
input interval to reduce latency and cost. Figure 7 supports
that hypothesis. The IPC is affected by very small amounts,
showing that the neuron with the highest voltage after the
first tick of processing has a dominant likelihood of being the
neuron that eventually fires during the full 32-tick interval.

In addition to reducing the size of PATHFINDER’s structure,
we also explore the impact of periodically disabling STDP to
reduce the cost. By disabling STDP, we can save energy by
not updating weights in weight buffers. Figure 8 illustrates
that PATHFINDER can learn delta patterns rapidly and accu-
rately. In our experiments, we apply STDP for only the first
10, 20, 50, 100, 1000, 2000, 3000, or 4000 accesses out of every
5000 accesses. After this initial phase, STDP is turned off
with no weight updates during prediction for the remaining
accesses in that epoch. The result in Figure 8a indicates that
having STDP active for approximately the first 50 accesses
out of every 5000 accesses is sufficient for PATHFINDER to
learn the patterns and generate accurate predictions, similar
to the performance achieved with STDP fully enabled.

‘ Different Parameters ‘ Total Area (mm?) ‘ Total Power (W) ‘

50 pe, range 127 0.21 0.446
50 pe, range 63 0.107 0.227
50 pe, range 31 0.055 0.116
1 pe, range 127 0.004 0.009
1 pe, range 63 0.003 0.006
1 pe, range 31 0.001 0.002

Table 9. Area and power of PATHFINDER implementations.

Figure 9 presents major PATHFINDER implementation vari-
ants, where we begin with the basic configuration in which
each excitatory neuron is assigned only one label. This al-
ready achieves competitive IPC similar to baseline prefetch-
ers. Building upon this foundation, we explore further en-
hancements to boost PATHFINDER’s performance. First, we
enlarge the input pixels to increase the chances of neuron
firing, thereby enabling PATHFINDER to capture more pat-
terns. Second, we introduce the assignment of two labels to
each neuron, which offers greater flexibility and learning
capacity for the network. Third, we reduce the input process
time interval, enabling PATHFINDER to adapt and respond
rapidly to changing data access patterns. Last, we reorder
the input pixels, which aids in optimizing the processing
flow and improving PATHFINDER’s overall performance.
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The implementation details for these modifications are
further elaborated in Section 3. By incorporating these en-
hancements, PATHFINDER demonstrates improved prefetch-
ing capabilities, making it a highly competitive and efficient
solution for accurately predicting data access patterns.

6 Conclusions

This paper introduces an implementable path towards highly
accurate neural-based prefetching that learns delta patterns
at run time. PATHFINDER relies on SNNs and STDP to learn
data access patterns within hundreds of cycles, and uses a few
supporting tables to track histories, assign labels, and main-
tain high-confidence predictions. We show that PATHFINDER
can be implemented within area and power footprints of
0.23 mm? and 0.5 W. Our analysis of IPC, accuracy, and cover-
age shows that PATHFINDER is competitive with other neural
and non-neural state-of-the-art that focus on learning delta
access patterns and address correlations - the averages are
similar, with each prefetcher yielding best results on part
of the benchmark suite. PATHFINDER can be combined with
NL and SISB to slightly edge out the competition on average.
We observe that PATHFINDER is selective in its predictions,
thus yielding high accuracy; we also observe that it achieves
high accuracy when the implementation is scaled down. The
paper identifies several avenues for future work that can re-
alize the potential of delta neural prefetching while retaining
low implementation overheads.
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A Artifact Appendix
A.1 Abstract

The artifact appendix includes the GitHub links of prefetcher
code bases, datasets info, and scripts to reproduce Pathfinder

and generate IPC, accuracy, and coverage results from Pathfinder

and the baselines (No Prefetch, Best Offset, SISB, SPP, Voy-
ager, and Pythia).

A.2 Artifact check-list (meta-information)

e Dataset: Will be downloaded using the provided script.

Run-time environment: Create a conda environment us-

ing environment.yml that is provided in the GitHub link.

e Hardware: Most modern general-purpose CPUs should
work.

e Metrics: IPC, prefetcher’s Coverage, Accuracy

Experiments: Use the provided script to download the

datasets, run Pathfinder, and generate result files that con-

tain IPC numbers, LLC LOAD ACCESS, and LLC PREFETCH

REQUEST, ISSUED to calculate accuracy and coverage num-
bers.

e How much disk space required (approximately)?: 20
GB

e How much time is needed to prepare workflow (ap-
proximately)?: 2 hours includes downloading the datasets

e How much time is needed to complete experiments
(approximately)?: About 40 hours for Pathfinder

e Publicly available?: Yes. https://github.com/linjiaty/Pathfinder.git

A.3 Description

A.3.1 How to access. The source code for Pathfinder can
be found at https://github.com/linjiaty/Pathfinder.git.

A.3.2 Hardware dependencies. Most general-purpose
CPUs should be good to run this code. Baseline prefetchers
may need to run with a GPU.

A.3.3 Software dependencies. Use this command "conda
env create -f environment.yml" to create the environment
for Pathfinder.

A.3.4 Datasets. Run "download.sh" to download the traces
we tested in our paper which was originally provided by ML-
based Data Prefetching Competition [2].

A.4 Installation

1. Clone Pathfinder GitHub repo:

$ git clone https://github.com/linjiaty/Pathfinder.git
2. Create a conda environment

$ cd ChampSim

$ conda env create -f environment.yml

$ conda activate snn-champ_test
3. Build Pathfinder

$ ./ml_prefetch_sim.py build

A.5 Experiment workflow

Generate prefetch files using Pathfinder. The prefetch files
will be generated in the ’pathfinder_prefetches_gap_spec’
folder and the results files will be in the ’results’ folder.

$ run_pathfinder_gap_spec.sh

A.6 Evaluation and expected results

e Evaluation: We evaluate Pathfinder on three metrics:
IPC, Accuracy, and Coverage. All the IPC numbers
from Pathfinder, Best Offset Prefetcher, SISB Prefetcher,
and No Prefetch will be generated in the results folder.
Accuracy and Coverage can be calculated by the for-

mula below:
_ _LLC PREFETCH ISSUED
Accuracy = 11 pREFETCH REQUEST

Coverage = L€ PRErErci Ut

o Expected Results: The results files will contain the
results generated by Pathfinder prefetches, Best Off-
set Prefetches (BO), SISB Prefetches (SISB), and No
Prefetch. As seen in Figure 4, Pathfinder exhibits bet-
ter IPC than BO and is competitive with SISB.
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A.7 Additional Baseline Prefetchers

We

have two more baseline prefetchers that have their stan-

dalone GitHub repo.

e Voyager can be tested in the below GitHub repo, which
is also implemented in the same ML-based ChampSim
simulator as ours. (Voyager’s model needs a long time
to train on GPU. Start the training process early.) After
generating prefetch files from Voyager, you can create
a new folder in Pathfinder, put the prefetch files into
it, comment out the command to generate Pathfinder
prefetches, replace the corresponding directory/file
names in run_pathfinder_gap_spec.sh, then run it to
generate result files.

GitHub Link: https://github.com/Quangmire/voyager

e Pythia is ported into LLC in an ML-based Champ-
Sim simulator with thorough tests to serve as an LLC
prefetcher for a fair comparison among all prefetchers.
Run "trace_script.sh” to generate result files.

GitHub Link: https://github.com/linjiaty/Pythia_test.git

Unmodified Pythia: https://github.com/CMUSAFARI/Pythia

o SPP The results of SPP prefetcher will be available in
the results file of Pythia_test.

A.8 Methodology

Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-review-

badging
e http://cTuning.org/ae/submission-20201122.html
e http://cTuning.org/ae/reviewing-20201122.html
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