
Pre-Read and Write-Leak Memory
Scheduling Algorithm

Long Chen Yanan Cao Sarah Kabala Parijat Shukla
{longc,yanan,skabala,parijats}@iastate.edu

Iowa State University

F

Abstract—Main memory system latency is a major bottleneck
for system performance and memory reads are on the critical
instruction path. Typically, memory access schedulers prioritize
read requests over write requests and eventually enter a drain-
write mode to process a batch of waiting writes. Conventional
memory scheduling algorithms strictly separate read mode from
drain-write mode, and no parallelism is exploited between the
two modes. However, parallelism is available when there are no
bank conflicts between pending read and write requests and the
command bus is idle. To reclaim this unexploited parallelism,
we propose a pre-read write-leak scheduling scheme to reduce
the frequency of entering drain-write mode. In order to mitigate
the impact of bus turnaround time as reads and writes are
interleaved, we further propose two methods to elaborately select
the read and write requests to be issued during the other mode.
Our simulation results show that with the proposed read-write
interleaving schemes, EDP is reduced by 18.4% and 17.3%
compared with typical FCFS scheduling algorithm. Additionally,
our methods reduce PFP by up to 24.3% and 22.8% respectively.

1 INTRODUCTION

Contemporary multi-core processor systems demand
high bandwidth and low latency for data transactions
with main memory. Unfortunately, memory access la-
tency and throughput have been major performance
bottlenecks for decades [3]. Processor frequencies and
core-counts continue to rise in the multi-core era; yet, the
rate of improvement to key features of memory system
performance lags behind. This widening gap exacerbates
the memory bottleneck already hindering performance in
many of today’s systems. Although main memory tech-
nology has been improved, the memory access latency
is still hundreds of processor cycles, which can stall the
execution of a thread on the processor.

Memory read latency is on the critical path of system
performance. Generally, a memory read access is ful-
filled by a sequence of memory commands: precharge
the addressed bank, activate the addressed row into that
bank’s row buffer, and read the addressed column from

the row buffer back to the processor. If a read access hits
the currently active row buffer due to its activation by
an earlier request, then the read latency is significantly
reduced to only tCAS (the time to access a column)
and the data transfer time. A bank can precharge and
activate a row in parallel with other banks. However,
simultaneous read accesses to different rows within the
same bank create a bank conflict and must be serviced
sequentially. A sequence of different-row memory read
accesses to the same bank thus requires the additional
time and energy costs of precharging the bank, which
closes its currently open row, and then activating the
new row into the bank’s row buffer.

Servicing a memory write may stall a number of
memory reads and significantly increase the memory
read latency. Because memory writes are not on the
critical path of system performance, they are often
delayed to be processed when the queue of pending
write requests reaches a certain size called the high-
water mark. Generally, during the drain-write mode,
memory write accesses are processed aggressively and
memory reads are completely stalled. The drain-write
mode is necessary because once the memory write queue
is full, the entire processor pipeline is stalled, which
harms system performance. This creates a dilemma
when scheduling drain-write mode. On one hand, read
requests are forbidden during drain-write mode whether
the command bus is idle or not. On the other hand, write
requests are not allowed when processing reads, which
accumulates writes to the high-water mark frequently.

In order to break the performance cap created by the
read-prohibiting use of drain-write mode, we propose
pre-read write-leak scheduling (PRWL) to interleave
memory read and write accesses and reduce the fre-
quency of entering drain-write mode. We allow mem-
ory read commands during drain-write mode, but we
elaborately select only those read accesses which could
utilize the otherwise idle command bus without harming



the progress of write drainage. Similarly, we allow
memory write commands during read mode. Although
both exceptions introduce bus turnaround latency, this
is mitigated by latency savings in row buffer hits that
would miss in their native mode, yielding an overall
performance improvement.

We propose two methods to limit the ratio of mode
exceptions to balance their negative and positive impacts.
Our simulation results show that energy-delay product
(EDP) reduces by 18.4% and 17.3%, respectively, for
our two schemes compared to typical FCFS scheduling.
As PRWL is based on FCFS, the performance-fairness
product (PFP) is also reduced by up to 24.3% and 22.8%.
These improvements mainly come from the reduction of
the frequency to enter drain write mode.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the main memory system and related
work. Section 3 presents our memory scheduling al-
gorithms and their implementation overhead. Section 4
briefly introduces the evaluation platform for DDRx
memory. The simulation results for performance, EDP,
and PFP are presented and analyzed in Section 5. Finally,
Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

2.1 Memory System

The predominant memory system used in today’s com-
modity computers is a one- to four-channel double data
rate (DDR) 3 interface to one or two dual in-line memory
modules (DIMM) per channel. The system may have one
or more memory controllers which are either processor-
integrated or found on a separate chip. A DDR3 memory
bus connecting a controller and its DIMM’s supports 64-
bit data, 23-bit address and command, and additional
clock and control signals [1].

Typically, a DIMM will have one, two or four ranks
and they share the same data bus in one channel. A
rank is further subdivided into banks and each bank is
addressed as an array of rows and columns. A row is
read in a bank by first precharging the bitlines and then
activating the addressed row so that the data are pushed
into the bank’s row buffer. A following column access
command can then access the row buffer to fetch or store
data for a read or write memory request [5].

The memory commands—PRE (precharge), ACT (ac-
tivate), and COL-RD/COL-WR (column read/write) —
are issued by the memory controller (MC) as the re-
sult of a scheduling algorithm that is executed every
memory cycle. The efficiency of the MC in servicing
requests from read and write queues has a significant
impact on memory latency and, thus, execution time
for program threads that exhibit memory-bound behav-
ior. If a scheduling algorithm favors memory-hungry

threads imprudently, it may improve their execution time
marginally at great cost to other threads that make very
few requests. Such an algorithm is said to be unfair.
Additional DIMM commands for power conservation
and the periodic refresh of volatile memory contents are
also administered by the MC’s scheduling algorithm.

These conflicting performance, fairness, and power-
saving concerns make memory scheduling a very dif-
ficult problem. Further complicating that problem are
numerous timing constraints stemming from the physical
construction of the DDRx memory systems [2].

2.2 Memory Scheduling Algorithms
The ideal performance improvement that can be achieved
through memory scheduling will utilize the full band-
width of its DDR3 memory channels when servicing
read/write requests from the processor(s). Though full
bandwidth utilization may not be achieved in practice,
many algorithms have been proposed to improve the
performance of the threads making memory requests by
carefully ordering when those requests are serviced.

The pioneering work of Rixner et al. sought to reorder
memory requests to exploit row locality for single-
threaded systems [7]. Zhu and Zhang extended the
considerations of memory access scheduling to address
conflicts introduced by multi-threaded workloads [8].
Ipek et al. used reinforcement learning (RL) techniques
to develop an adaptive scheduler that would optimize
its scheduling policy configuration in response to re-
cent workloads [4]. The application of RL to memory
access scheduling shows promise as does the thread-
clustering technique of Kim et al., which applies differ-
ent scheduling policies to threads whose requests show
more performance sensitivity to bandwidth vs. latency.
The two clusters are constructed dynamically in response
to the workload to produce an adaptive policy application
depending on a thread’s relative behavior [6].

3 MEMORY SCHEDULING ALGORITHM
3.1 Algorithm Overview
Given that memory reads are on the critical path and a
row buffer hit has the lowest access latency, we schedule
memory reads with higher priority than memory writes
and row buffer hits with higher priority than other mem-
ory commands as our fundamental scheduling principle.
Though read requests are strictly forbidden in conven-
tional drain-write mode, we issue several beneficial read
commands when write draining nears its end. Moreover,
carefully selected write requests are allowed to execute
during the processing of read requests. As the intrusion
of memory writes may inflate memory read access times,
two simple write-filtering schemes are proposed to limit
the write ratio and balance its negative impacts with its
benefits to the system.

2



3.2 Read-Write Interleave

The conventional FCFS memory scheduling technique
strictly separates read mode from drain-write mode. As
memory reads are prioritized over memory writes, the
write request queue fills to a high-water mark. At that
time, drain-write mode becomes active, and memory
reads are deprioritized. Our technique services memory
reads and minimizes the interference of memory writes.
However, the two modes are no longer strictly designed
so that no read or write can be issued during the other
mode even if there are some idle resources. Our pro-
posed read-write interleaving issues several memory read
commands during drain-write mode when the command
bus becomes idle. In addition, selected memory write
requests are issued during read mode when the overall
system would benefit from those exceptions.

A read-during-write-mode exception opens the row
buffer for the following read-mode column access. This
greatly reduces memory read latency and partially in-
creases read-write parallelism. In addition, the leaked
write requests reduce the frequency that full drain-write
mode is entered and, thus, reduce the amount of time
memory reads are stalled, which further improves system
performance. Although this read-write interleaving will
introduce some overhead in the form of bus turnaround
delay, the effect is limited by two factors in our design.
First, the read commands pre-issued during drain-write
mode are only PRE and ACT commands, which do
not incur data bus turnaround. Second, the leaked write
commands during read mode are filtered to a low ratio
so that their benefits remain greater than their negative
impacts.

Pseudocode for the main part of our algorithm is given
in Algorithm 1. The selection of pre-issued read com-
mands and leaked write commands are further described
in the following sections.

Algorithm 1 Memory Scheduling Algorithm

if In drain-write mode then
(1) memory write hit
(2) memory write PRE or ACT
if near the end of drain-write mode then

(3) issue doable read PRE or ACT
end if

else
(1) memory read hit
(2) memory write hit
(3) memory read PRE or ACT
if doable write then

issue memory write requests
end if

end if

3.3 Pre-Issue Read Command
In conventional drain-write mode no read access com-
mands are issued. This restricts the maximum parallelism
possible for read and write commands. However, the
memory command bus is idle if write commands are not
issued during every scheduling cycle of write draining.
If feasible read commands are waiting in the read queue,
the system would benefit from higher utilization of
the command bus. We therefore break from a strict
drain-write mode design and issue several selected read
commands during drain-write mode.

The pre-issued read requests and their issue time are
carefully selected to avoid any negative impact to write
requests so that write draining will proceed smoothly and
the drain-write period will not be prolonged. First, the
read commands are only issued when the write queue
is almost drained to the low-water mark. Second, the
chosen memory read commands are limited to PRE and
ACT commands while COL-RD (column read) remains
forbidden. This prohibition avoids data bus conflict and
prevents data bus turnaround delay overheads during
drain-write mode. In addition, the banks accessed by
the chosen reads are those which have no bank conflict
with remaining memory writes. Any memory read whose
PRE and ACT commands are pre-issued during drain-
write mode can finish immediately with their COL-RD
command when the scheduler returns to read mode. In
the best case, pre-issued memory read requests have a
read access latency that is only tCAS .

3.4 Limit Write Rate
Allowing write requests to execute during read mode
can potentially impact read access latency negatively.
One example is a read-write bank conflict where a write
request opens a row buffer in a bank yet the next read
request closes that row before the write’s column access
command is issued because the write column access is
delayed by the data bus conflict. This introduces an extra
read PRE command and the write’s ACT is wasted.

In order to avoid this overhead, we limit the write
rate during read mode and eliminate this detriment to
system performance. We use two selection schemes to
refine Algorithm 1. Bus Prediction anticipates future bus
utilization for a number of cycles and looks for idle
gaps where a write request could be serviced. Random
avoids the complexity of modeling bus utilization and
simply allows a pending write to be serviced with some
probability. These schemes are described in further detail
below.

3.4.1 Write-Leak Selection With Bus Prediction
Our intuitive solution is to select writes to only those
banks which will not conflict with issuable reads. Mem-
ory request addresses are mapped by a fixed scheme to a

3



physical memory bank and row. When a column access
command is issued, a bus reservation vector is updated
to mark the data bus as occupied. If an idle cycle for the
command bus is encountered, Bus Prediction scans the
read/write queues looking for a write request that does
not cause a bank conflict. If one is found, the reservation
vector is checked for a free slot to service the write
request. If a slot is available, the write is selected to
be serviced during read mode. Otherwise, no write is
leaked, leaving the command bus idle during that cycle.

This technique efficiently reduces the frequency of en-
tering drain-write mode, and limits the negative impacts
of write-leaking during the processing of read requests.
One shortcoming of this method is that upcoming re-
quests are not taken into consideration when identifying
conflict-free banks and bus availability. Predicting up-
coming read requests is difficult and is an area for future
work.

3.4.2 Random Write-Leak Selection
As an alternative to Bus Prediction, we adopt a simple
heuristic—a pseudo-random probability limits the write-
rate to a reasonable level. If an idle command bus cycle
is encountered, a modulo of the system clock by a leak-
rate parameter determines whether or not a write will
be selected for service during read mode. If the result
is zero, a scan of the addresses in the read and write
queues is performed as described for the Bus Prediction
scheme. And the first non-conflicting write request is
leaked. Otherwise, the command bus is left idle.

3.5 Design Overhead
Our proposed memory scheduling algorithm is practical
and introduces virtually no overhead to the memory
system. The only computational overhead is in selecting
pre-issuable read commands and leakable write com-
mands. Our selection technique is a simple comparison
of read queue and write queue addresses, and those
comparisons occur only when the command bus would
otherwise be idle. The pseudo-random function used
in our heuristic can be approximated efficiently by a
modulo 2n operation, which can be implemented with
a simple shift operation. Thus, our scheduling algorithm
is implementable and introduces almost no overhead in
practice.

4 EXPERIMENTAL METHODOLOGIES

For our entry into the three competitive tracks of the
2012 JWAC Memory Scheduling Competition, we use
USIMM [2] as our simulation platform. In this sim-
ulator, device level memory commands are issued by
the memory controller based on the current channel,
rank and bank status. Cache-line-interleaving address

Workloads Workloads
blblfrfr1 4C 1Ch1 blblfrfr4 4C 4Ch1

c1c11 2C 1Ch1 c1c14 2C 4Ch1
c1c1c2c21 4C 1Ch2 c1c1c2c24 4C 4Ch2
fafafefe1 4C 1Ch3 fafafefe4 4C 4Ch3
flswc2c21 4C 1Ch4 flswc2c24 4C 4Ch4
stststst1 4C 1Ch5 stststst4 4C 4Ch5

flflswswc2c2fefe4 8C 4Ch1
flflswswc2c2fefeblblfrfrc1c1stst4 16C 4Ch1

TABLE 1: Simulated Workloads

Fig. 1: Performance comparison of PRWL scheduling with
FCFS in one channel memory configuration.

mapping is used in the four-channel configuration to
increase the available channel parallelism and page-
interleaving address mapping is used in the one-channel
configuration to increase the available row locality. Basic
power modelling is provided in the simulator following
Micron’s power calculation methodology. Details of the
power simulation’s parameters are given in [2].

In our experiments, we simulate one, two, four,
eight, and sixteen cores running multi-threaded or multi-
programmed workloads from PARSEC and commercial
transaction processing workloads. The detailed work-
loads are listed in Table 1. For convenience, we use
nC mChk to represent an n-core, m-channel simula-
tion running workload k. The typical FCFS scheduling
algorithm is used as a baseline, and performance (accu-
mulated execution cycles), energy-delay product (EDP),
and performance-fairness product (PFP) are measured
and evaluated. We consider two variations of our algo-
rithm:

• Random—which uses a randomized write leak pol-
icy during read mode.

• Bus Prediction—which ensures that leaked writes
will not conflict with any read for the data bus.

5 EXPERIMENTAL RESULTS

In this section, we use the metrics for the three com-
petitive tracks provided by JWAC MSC to evaluate our
proposed scheduling algorithms. Table 2 summarizes the
results of our algorithms on the competition workloads.

4



Workload Config Sum of exec times (10 M cyc) Max slowdown EDP (J.s)
FCFS Random Bus Prediction FCFS Random Bus Prediction FCFS Random Bus Prediction

MT-canneal 1 chan 418 381 400 NA NA NA 4.23 3.60 3.93
MT-canneal 4 chan 179 160 161 NA NA NA 1.78 1.42 1.44
bl-bl-fr-fr 1 chan 149 141 141 1.20 1.14 1.13 0.50 0.45 0.45
bl-bl-fr-fr 4 chan 80 75 75 1.11 1.03 1.04 0.36 0.31 0.31

c1-c1 1 chan 83 81 81 1.12 1.09 1.09 0.41 0.39 0.39
c1-c1 4 chan 51 47 47 1.05 0.96 0.96 0.44 0.37 0.37

c1-c1-c2-c2 1 chan 242 221 223 1.48 1.37 1.39 1.52 1.28 1.30
c1-c1-c2-c2 4 chan 127 115 116 1.18 1.18 1.09 1.00 0.81 0.82

c2 1 chan 44 43 43 NA NA NA 0.38 0.37 0.36
c2 4 chan 30 27 27 NA NA NA 0.50 0.41 0.41

fa-fa-fe-fe 1 chan 228 208 208 1.52 1.37 1.39 1.19 0.99 1.00
fa-fa-fe-fe 4 chan 106 95 96 1.22 1.08 1.09 0.64 0.51 0.52

fl-fl-sw-sw-c2-c2-fe-fe 4 chan 295 259 261 1.40 1.20 1.22 2.14 1.62 1.65
fl-fl-sw-sw-c2-c2-fe-fe- 4 chan 651 576 594 1.90 1.65 1.77 5.31 4.13 4.37
-bl-bl-fr-fr-c1-c1-st-st

fl-sw-c2-c2 1 chan 249 227 229 1.48 1.31 1.32 1.52 1.23 1.25
fl-sw-c2-c2 4 chan 130 119 120 1.13 1.04 1.04 0.99 0.81 0.81
st-st-st-st 1 chan 162 151 152 1.28 1.19 1.19 0.58 0.51 0.51
st-st-st-st 4 chan 86 80 80 1.14 1.07 1.07 0.39 0.34 0.34
Overall 3312 3005 3054 1.30 1.18 1.20 23.88 19.54 20.25

PFP: 3438 PFP: 2835 PFP: 2903

TABLE 2: Key metrics for the FCFS baseline and our proposed schedulers Random and Bus Prediction. c1 and
c2 represent commercial transaction-processing workloads, MT-canneal is a 4-threaded version of canneal, and the
other workload abbreviations are single-threaded PARSEC programs.

(a) Maximum Slowdown Comparison. (b) PFP Comparison.

Fig. 3: Comparison of the maximum slowdown and PFP between PRWL and FCFS baseline.

Fig. 2: Performance comparison of PRWL scheduling with
FCFS in four channel memory configuration.

5.1 Performance

Figure 1 and Figure 2 summarize the performance results
of simulation runs for the baseline FCFS scheduler and
our two scheduler variations on the one- and four-
channel memory configurations, respectively. In the one-
channel configuration, Random consistently outperforms

Bus Prediction except for some variations introduced by
the randomness. Random shows 6.6% improvement on
average over FCFS and 9.1% in the best case. This
is due to Random’s higher overall write leakage rate
compared to Bus Prediction, which more strictly limits
the PRE’s issued for writes, and timely precharge is
generally beneficial to system performance.

In the four-channel configuration, Random outper-
forms Bus Prediction with much less variation com-
pared to the one-channel configuration. The average
performance improves by 10.0% and 9.2% for Ran-
dom and Bus Prediction, respectively. The best-case
performance improves by 12.3% and 11.4% for our
two scheduling policies. Because cache-line-interleaving
address mapping is applied to the four-channel configu-
ration, program row locality is lower in terms of DRAM
device addresses. Random has a higher write leak rate,
so more PRE’s are issued, which favors the cache-

5



Fig. 4: EDP and power comparison for one-channel configu-
ration.

Fig. 5: EDP and power comparison for four-channel configu-
ration.

line-interleaving address mapping. Therefore, the per-
formance improvement of Random in the four-channel
configuration is much higher than that in the one-channel
configuration, and Random continues to perform better
than Bus Prediction. Across all experiments, the overall
performance improvement is 9.26% for Random and
7.78% for Bus Prediction.

5.2 Fairness Evaluation

Figure 3 presents the maximum slowdown and PFP for
our PRWL scheduling algorithms compared to FCFS.
All results are normalized to the FCFS baseline. As
shown in Figure 3a, the maximum slowdown seen with
PRWL is better than FCFS, which means that our PRWL
scheduling algorithms improve the scheduling of all
threads, not just certain ones. Figure 3b illustrates the
overall PFP on all workloads except for the one-core
configurations. On average, PRWL outperforms FCFS
by 16.2% and 14.9% for Random and Bus Prediction,
respectively. This rises to 24.3% and 22.8% in the eight-
core configuration. PFP improvements arise mainly from
improved performance since our fundamental scheduling
principle is still first-come, first-served in PRWL.

5.3 Energy Consumption

Figure 4 and Figure 5 present the power consumption
and EDP comparison between PRWL and FCFS for one-
channel and four-channel workloads. The dots in the
figures represent power consumption for each algorithm
and the bars show EDP reduction. As stated earlier,
our PRWL algorithms improve system performance over

FCFS for all workloads. Power consumption is slightly
increased but not consistently. Our proposed PRWL
algorithms reduce average EDP by 12.5% and 11.4%
in the one-channel configurations for Random and Bus
Prediction, respectively, and by 18.4% and 17.3% in
the four-channel configuration. The best case savings
is 24.1% for Random on the eight-core, four-channel
workload. These improvements stems from a significant
increase in the row buffer hit rate for writes. For exam-
ple, the write hit rate is increased from -46.8% in FCFS
to -2.6% in Random for the 4C 4Ch2 workload. Other
workloads show similar improvement. This saves power
while at the same time increasing system performance.

6 CONCLUSION AND FUTURE WORK

Memory access latency is a major bottleneck in system
performance today. We propose optimizations to FCFS
which interleave read and write requests and carefully
select which read and write requests to issue in the
other mode. This reduces the frequency that drain-write
mode is entered and also partially increases read-write
parallelism, which improves overall system performance,
EDP, and PFP for all the MSC simulation configurations.
Our interleaving algorithm introduces almost no over-
head to the memory controller, which makes it practical
for real world implementation.

Our current PRWL algorithm is designed for inter-
thread scheduling. However, we expect that PRWL
would improve intra-thread scheduling as well. We have
done preliminary investigations of phase-prediction opti-
mizations and will continue to pursue this technique for
future work.

REFERENCES
[1] Design guide for two ddr3-1066 udimm systems. Technical report,

Micron Technology Inc., 2009.
[2] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley,

A. Udipi, A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti.
USIMM: the Utah SImulated Memory Module. Technical report,
University of Utah, 2012. UUCS-12-002.

[3] J. Huh, D. Burger, and S. W. Keckler. Exploring the design space
of future cmps. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT), PACT
’01, 2001.

[4] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-optimizing
memory controllers: A reinforcement learning approach. In
Proceedings of the International Symposium on Computer Archi-
tecture (ISCA), pages 39 –50, June 2008.

[5] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems - Cache,
DRAM, Disk. 2008.

[6] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory
access behavior. In Proceedings of the International Symposium
on Microarchitecture (MICRO), pages 65 –76, Dec. 2010.

[7] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens. Memory
access scheduling. In Proceedings of the 27th International
Symposium on Computer Architecture (ISCA), pages 128 –138,
June 2000.

[8] Z. Zhu and Z. Zhang. A performance comparison of dram
memory system optimizations for smt processors. In Proceedings
of the International Symposium on High-Performance Computer
Architecture (HPCA), pages 213 – 224, Feb. 2005.

6


