
Thread-Fair Memory Request Reordering

Kun Fang, Nick Iliev, Ehsan Noohi, Suyu Zhang, and Zhichun Zhu

Dept. of ECE, University of Illinois at Chicago

{kfang2,niliev4,enoohi2,szhang33,zzhu}@uic.edu

Abstract

As an important part of modern computer system,
the main memory is responsible of storing programs
and data structures needed for executing the programs.
Performance, power consumption and capacity are the
three major factors of a memory system design. Among
them, performance and power consumption can be
improved by carefully reordering concurrent memory
requests to reduce their average latency and wisely
utilizing the memory power-saving modes to reduce
power consumption.

We have implemented a “Thread-Fair” memory
request scheduling policy on top of the USIMM [1]
memory simulation infrastructure to enter the memory
scheduling competition. The scheduler give the read
requests blocking the ROBs’ (reorder buffer) head high
priority when choosing among multiple requests who
want to perform row access. In this way, the most
critical request is serviced faster and none memory in-
tensive thread is less likely being interfered by memory
intensive thread. Also, our scheduler uses a “Read Hit
Queue” and “Write Hit Queue” per memory bank to
group requests hitting on the same row buffer together.
By giving the “hitting group” higher priority over the
“page missing” requests, the scheduler can maximize
the row buffer hit rate and hence reduce average
memory access latency and power consumption. Using
provided single program and multi-thread workloads,
the simulation results indicate that our scheme per-
forms 8.7% than the FCFS baseline. The fairness
metric is improved by 9.1% and the energy delay
product EDP is reduced by 17.3% on average.

1. Introduction

The DRAM sub-system in modern CMPs is a critical
resource which has to be managed in real time as
a shared resource between all active threads running
on all cores. A conventional memory system usually

consists of several memory channels. Each memory
channel can process memory requests and transmit data
independently. Within each channel, several memory
devices form a memory rank to provide a 64-bit data
path and serve requests as a whole. There are normally
4-8 banks per rank and the data can be pin-pointed
by sending the row address and column address to
the destination bank. To get the data, an activation
command needs to be sent to the bank to bring a
row containing the required data to the row buffer
first. Then, a column access command is responsible
to get the required data in/out of the bank. Following
requests to the same row can directly issue column
access commands to drive the data without another
activation. However, if the subsequent request goes to
a new row, a precharge command should be issued
before activation to store the data in the row buffer
back to the bank.

In the uniprocessor era, a single core running a
single thread had un-constrained access to the en-
tire DRAM sub-system. The goal of memory access
scheduling was to maximize DRAM throughput, so
that system throughput could be maximized as well.
The FR-FCFS scheduling policy [9] achieved this
by prioritizing row-hit requests over other requests.
However this policy does not scale well when multiple
threads are active and competing for the same DRAM
resource [5], [8], [2].

Several recent schedulers attempt to improve the
handling of memory requests from multiple competing
threads, so that overall fairness and throughput (quality
of service) are maintained to an acceptable level. For
instance, the stall-time fair memory scheduler [6],
estimates the slowdown of each thread, compared to
when it is running alone in the system, and pri-
oritizes the thread that has been slowed down the
most. Parallelism-aware batch scheduling [7], forms a
batch of requests over a fixed interval, and selects the
thread with the fewest requests to different banks in
each batch to improve system throughput. The ATLAS



scheduler [3] aims to maximize system throughput by
prioritizing threads that have attained the least service
from the memory sub-system.

The Thread Cluster Memory Scheduling algo-
rithm [4], attempts to provide the best throughput and
best fairness to all threads by distinguishing latency or
bandwidth sensitive threads.

Our scheduler implements a “Thread-Fair” schedul-
ing scheme that prioritizes reads which is blocking
the ROB head over the ones queued in the middle of
ROB when opening a row. Hence the pipeline doesn’t
get stuck because of the head request is delayed. This
policy helps the thread fairness by giving each thread
equal opportunity accessing memory banks. Besides of
that, we also prioritize read requests over writes and
tries to exploit row hits as much as possible using a
“Read Hit Queue” and “Write Hit Queue” per memory
bank to group requests hitting on the same row buffer
together. Then the memory controller can choose to
issue column command in a group so unnecessary
bank precharges and activations can be avoided to
reduce memory access latency. If there is no column
access ready in current cycle, which means no row
buffer hits are available and all ROB head are serviced,
the memory controller will issue other commands of
memory requests in the order of their arrival time.

We implement our scheduler on the memory sim-
ulator infrastructure USIMM [1] and use provided
single program and multi-thread workloads to test
our scheduler. The simulation results indicate that our
scheme outperforms the FCFS baseline by 8.7%. The
fairness metric is improved by 9.1% and the energy
delay product EDP is reduced by 17.3% on average.

2. Scheduler Design

2.1. Scheduling Policy

The “Thread-Fair” memory request scheduling pol-
icy tries to let each thread has equal opportunity
being serviced by memory system. This is achieved
by giving the requests generated by the head entry of
ROB higher priority when opening a row. The requests
coming from the ROB head will be serviced faster and
pipeline will less likely being blocked. The “Thread-
Fair” policy ensures each thread is not heavily delayed
by memory system if some memory intensive workload
is executing.

The other factor we would like to optimize it row
hit. Because row buffer hits have much shorter latency
and consume less power than row buffer misses, our
scheduler tries to exploit row buffer hits as much as
possible. We build one “Row Hit Queue” for read

requests and another one for write requests on memory
bank to group requests to the same row together so that
row buffer hits can be picked out and be prioritized.
Another important issue that we want to optimize is to
reduce the latency between row transitions. If a request
misses on an open row, it will issue a precharge com-
mand followed by an activation to bring the required
data into row buffer. In this case, the request’s access
latency will be long. On the other hand, simple close-
page policy will eliminate any chance of row hits.
Thus, we decide to use a clever page management
scheme that works perfectly with the Row Hit Queue.
It closes an open row after the last column hit to the
row is issued. In this way, the following request does
not need to do the precharge operation while at the
same time, possible row hits are maximized.

In summery, our scheduler performs following rules
in order:

1) Read is processed before writes (read first) un-
less the “write first” rule is triggered.

2) When the write queue is about to be full (with
only four free entries) , process writes before
reads until the write queue has at least fourteen
free entries (write first).

3) When at “read first”, try to issue row hits first;
if there are no row hits, try to issue request
generated by ROB head in round-robin.

4) If the requests from ROB is already in service,
issue reads based on FCFS; and if no reads can
be processed, issue write hits.

5) When at “write first”, try to issue row hits first;
if there are no row hits, issue writes based on
FCFS; and if no writes can be processed, issue
read hits.

6) Auto-precharge the open row together with the
last column access if there are no requests pend-
ing on the open row.

2.2. Scheduling Implementation

Firstly, the memory controller will maintain two
queues, one for reads and the other for writes to track
all the requests received from the last level cache.
We call them “Read Queue” (RQ) and “Write Queue”
(WQ). Secondly, to find out and reorder the requests
to the same row so that the row buffer hit rate is
optimized, we build a “Read Row Hit Queue” (RRHQ)
and a “Write Row Hit Queue” (WRHQ) for each
bank. Also, a “Read Pending queue” (RPQ) and a
“Write pending queue” (WPQ) are setup for every
bank to store requests mapped to it. Every time when a
request is inserted into the memory controller, its index
of the Read/Write Queue in memory controller and



row address will also be inserted into the Read/Write
Pending Queue of its mapped bank. So basically the
requests are queued on its mapped bank. As shown
in Figure 1, each request index is queued on the
destination bank and linked to itself in the memory
controller queue so that the full request information
can be fetched.

In order to maximize the row hits, a scheduling
policy is implemented for each bank based on its
current status. Because read requests are more critical
than write requests, the scheduler will always try to
prioritize reads over writes unless the write queue in
memory controller is about to be full. If the num-
ber of free entries in the write queue is below a
pre-determined threshold, the scheduler will prioritize
writes over reads to free some space for incoming
writes and prevent processor stall due to write queue
full. In our scheduler, we set the threshold for starting
write over read to when the write queue has filled
up 60 out of the total 64 entries. At this point, all
write requests get higher priority than read requests.
When the write queue has less than 50 entries filled,
the scheduler will change back to read first mode.

At read first, each bank will check its own state. If it
is closed, memory controller first check if any requests
generated by the ROB head is still not serviced and
matches the closed bank. If yes, they will be issued
at the highest priority. This is where the “Thread-Fair”
scheduling is enforced. The ROB head information can
be get by passing from CPU to memory controller
the request ID or physical address of ROB head each
time the ROB retires a read instruction. To simplify
the hardware, and preventing the CPU transmitting
the ROB head information, a simplified scheme can
assume the oldest request from each thread is coming
from the ROB head. Modern CPU tries to get the
instruction level parallelism by aggressively exploiting
out-of-order and runahead execution. These techniques
somewhat make the oldest request not be the ROB
head. However, the oldest request is very likely to
be close to the ROB head so the approximation is
effective.

If no, it will pick the first request in RPQ as the
best candidate to issue a activation command. If the
memory controller picks the request to process, then
for each memory cycle, requests in RPQ of this bank
are scanned and the RQ indexes of any requests whose
row addresses matches that in the row buffer will be
inserted into RRHQ. In this way, all the read requests
hitting on the open row will be grouped into the
RRHQ. At the same time, requests in WPQ are scanned
and all hitting WQ indexes will be inserted into the
WRHQ. If the bank is activated, the best candidate

request is picked from RRHQ. If RRHQ is empty,
the best candidate request is picked from WRHQ.
Scheduling using RRHQ and WRHQ is for the purpose
of maximizing row hit and is called Hit-First.

The scheduling of Hit-First when WQ is about to be
full is very similar to the policy at read first except that
the candidate request to issue activation command is
picked from WPQ and the candidate hit is first picked
from WRHQ and then from RRHQ if WRHQ is empty.

Each bank will check the timing constraint of the
selected request and inform the memory channel when
the request is ready to issue. For each channel, it will
look through the candidate requests picked by each
bank and set their priorities based on the same Read-
First, Hit-First policy. If more than one banks pick
requests at the same priority level, the highest priority
goes to the one with the oldest request (FCFS). The
memory controller will process the request with the
highest priority in each channel and let the bank issue
command accordingly.

2.3. Page Management

There are two basic policies for row buffer man-
agement: open page and close page. If the row buffer
is left open after a column access, the following
requests to the same row can fetch/store data to the
row buffer without issuing precharge or activation
command. Thus, the access latency can be reduced.
However, requests to the same bank but different rows
will take longer to finish than under the close page
policy, which closes the row buffer (precharges) right
after a column access. We decide to use a greedy
algorithm that working together with our scheduler to
group memory requests to the same row together. If
there is pending requests to the open row, the page is
left open to maximize row hits. If there is no pending
request to the latest accessed row, an auto-precharge
command is issued together with a column read/write
command to close the page so that requests to the same
bank but different rows will not to penalized by the
precharge command. Because each bank has RRHQ
and WRHQ, the policy can be simplified to: if the
current column access is the last request of RRHQ and
WRHQ, an auto-precharge command is issued together
with this column access.

2.4. Hardware Cost

We estimate the hardware cost based on a 4-channel
memory system with 2 ranks per channel and 8 banks
per rank. So there are totally 64 banks in the memory
system. The RPQ and WPQ are 32 entries for each



������

����������

�	
��������

�������
�

�������

�
���

�������	

�	
�����
�

�������

�
���

�������	

����������
�������

�	
��������
�������

������

�������
�

�������

�
���

�������	

�	
�����
�

�������

�
���

�������	

����������
�������

�	
��������
�������

Figure 1: Overview of scheduler implementation.

bank and each entry will contain 6-bit RQ/WQ (64-
entry) index and 16-bit row address (65536 rows).
Thus, the total storage overhead for RPQ and WPQ
is 11KB. The RRHQ and WRHQ only stores RQ/WQ
index, which is 6-bit. If they are 32-entry queues, the
total overhead is 3KB. The total storage overhead of
our scheduler is 14KB.

3. Experimental Results

We test our proposed scheduler on a memory simu-
lation infrastructure: USIMM [1]. The simulator read-
ing traces generated by CPU functional simulation and
model DDR SDRAM memory system in detail. The
timing model and power model are both implemented.

Running the competition trace and configuration
provided by USIMM developer the simulation results
for 1 channel and 4 channel are shown in table 1.
The recommended metrics (Sum of execution time;
Max slowdown and EDP) were used to compare the
scheduler with the baseline.

The performance of our proposed scheduler out-
performs the FCFS from 2.5% to 13.3% (8.7% on
average). The overall execution time reduces by 9.7%.
This is the result of grouping row hits and letting reads
bypass writes. The read page hit rate ranges from 0.2%
(c2-4channel) to 64% (fa-fa-fe-fe-1channel), which
shows our scheduler did a good job of grouping row
hits for 1 channel configuration. The low hit rate on
4channel is because the memory mapping is changed



Workload Config Sum of exec times Max slowdown EDP (J.s)
(10 M cyc)

FCFS Close Proposed FCFS Close Proposed FCFS Close Proposed
MT-canneal 1 chan 418 404 377 NA NA NA 4.23 3.98 3.48
MT-canneal 4 chan 179 167 155 NA NA NA 1.78 1.56 1.34
bl-bl-fr-fr 1 chan 149 147 140 1.20 1.18 1.13 0.50 0.48 0.44
bl-bl-fr-fr 4 chan 80 76 74 1.11 1.05 1.03 0.36 0.32 0.31

c1-c1 1 chan 83 83 81 1.12 1.11 1.09 0.41 0.40 0.39
c1-c1 4 chan 51 46 47 1.05 0.95 0.95 0.44 0.36 0.36

c1-c1-c2-c2 1 chan 242 236 219 1.48 1.46 1.37 1.52 1.44 1.24
c1-c1-c2-c2 4 chan 127 118 114 1.18 1.10 1.06 1.00 0.85 0.79

c2 1 chan 44 43 43 NA NA NA 0.38 0.37 0.36
c2 4 chan 30 27 27 NA NA NA 0.50 0.39 0.40

fa-fa-fe-fe 1 chan 228 224 206 1.52 1.48 1.37 1.19 1.14 0.98
fa-fa-fe-fe 4 chan 106 99 94 1.22 1.15 1.08 0.64 0.56 0.50

fl-fl-sw-sw-c2-c2-fe-fe 4 chan 295 279 260 1.40 1.31 1.21 2.14 1.88 1.63
fl-fl-sw-sw-c2-c2-fe-fe- 4 chan 651 620 579 1.90 1.80 1.66 5.31 4.76 4.14
-bl-bl-fr-fr-c1-c1-st-st

fl-sw-c2-c2 1 chan 249 244 225 1.48 1.43 1.29 1.52 1.44 1.19
fl-sw-c2-c2 4 chan 130 121 118 1.13 1.06 1.03 0.99 0.83 0.79
st-st-st-st 1 chan 162 159 151 1.28 1.25 1.19 0.58 0.56 0.51
st-st-st-st 4 chan 86 81 79 1.14 1.08 1.05 0.39 0.35 0.33
Overall 3312 3173 2990 1.30 1.24 1.18 23.88 21.70 19.17

PFP 3438 3149 2816

Table 1: Comparison of key metrics on baseline and proposed schedulers. c1 and c2 represent commercial
transaction-processing workloads, MT-canneal is a 4-threaded version of canneal, and the rest are single-threaded
PARSEC programs. “Close” represents an opportunistic close-page policy that precharges inactive banks during
idle cycles.

to exploit MLP instead of row hitting rate.
Our “Thread-Fair” scheduler also does well on the

fairness metric. It improves the max slowdown of
threads for 9.1% (from 3.1% to 13.6%). Our “Thread-
Fair” scheduler give concurrent running threads equal
opportunities to retire the ROB head entry so the
following “instructions” is less blocked. All workloads
produces the squared deviation of slowdown for all
threads for less than 2%. The only exception is the
16-thread workload which has a squared deviation of
9.8%. The result show that our proposed scheduler
can well manage concurrent threads’ slowdown and
avoiding some of them running too fast or too slow.

Our scheduler can also improve the energy delay
product. Compared to FCFS, the EDP is improved
from 5.2% to 24.6% (17.3% on average). It is be-
cause the smart auto-precharge can maximize the bank
precharge time and grouping hits can also reduce
operation power.

4. Conclusion

In this paper, we proposed a memory request re-
ordering scheme to enter the memory scheduling con-
test. The scheduler can improve thread fairness and
system performance by monitoring and prioritizing the

requests from ROB head. By grouping requests hitting
the same row buffer, our scheduler can efficiently
reduce memory access latency. The result show our
scheme performs much better than the competition
baseline.

References

[1] N. Chatterjee, R. Balasubramonian, M. Shevgoor,
S. Pugsley, A. Udipi, A. Shafiee, K. Sudan, M. Awasthi,
and Z. Chishti. USIMM: the Utah SImulated Memory
Module. Technical report, University of Utah, 2012.
UUCS-12-002.

[2] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana.
Self-optimizing memory controllers: A reinforcement
learning approach. In Proceedings of the 35th Annual In-
ternational Symposium on Computer Architecture, pages
39–50, 2008.

[3] Y. Kim, D. Han, O. Mutlu, and M. Harchol-balter. Atlas:
A scalable and high-performance scheduling algorithm
for multiple memory controllers. In Proceedings of
the 16th International Symposium on High Performance
Computer Architecture (HPCA), pages 1–12, 2010.

[4] Y. Kim, M. Papamichael, O. Mutlu, and M. H. Balter.
Thread cluster memory scheduling: Exploiting differ-
ences in memory access behavior. In Proceedings of



the 43nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 65–76, 2010.

[5] T. Moscibroda and O. Mutlu. Stall-Time Fair Mem-
ory Access Scheduling for Chip Multiprocessors. In
Proceedings of the 40th International Symposium on
Microarchitecture, Dec. 2007.

[6] O. Mutlu and T. Moscibroda. Stall-time fair mem-
ory access scheduling for chip multiprocessors. In
Proceedings of the 40th International Symposium on
Microarchitecture, pages 146–160, December 2007.

[7] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness
of shared DRAM systems. In Proceedings of the 35th
Annual International Symposium on Computer Architec-
ture, pages 63–74, 2008.

[8] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith.
Fair Queuing CMP Memory Systems. In Proceedings of
the 39th International Symposium on Microarchitecture,
pages 208–222, Dec. 2006.

[9] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and
J. D. Owens. Memory access scheduling. In Proceed-
ings of the 27th International Symposium on Computer
Architecture, pages 128–138, June 2000.


