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ABSTRACT
With the rapid advances in semiconductor process technol-
ogy and microarchitecture, the speed gap between the clock
cycle time of processor cores and that of memory systems
has increased significantly. To solve this problem, mem-
ory system should be efficiently managed. In general, since
a thread with fewer requests has a large capability to im-
prove the total execution performance by being prioritized
over the other threads with many requests, these lightweight
threads should be more prioritized over the heavy threads.
This paper describes our high-performance and fair mem-
ory scheduler employing 3 distinct prioritizing algorithms:
(1) Thread Clustering, (2) Read Density Survey, and (3)
PC-based Gain Estimation. We combined distinct priori-
tizing schemes to dynamically deal the multi-grain changes
of program behaviors. The evaluation result shows that our
memory scheduler improves the performance by 10.9% in av-
erage compared with First-Come First-Served (FCFS) mem-
ory scheduling.

1. INTRODUCTION
The performance of processor cores is rapidly improving
with the technology scaling. However, long latency and inef-
ficient bandwidth of memory system are critical bottlenecks
in the performance[7][8]. Memory scheduling on DRAM is
one of remarkable issues to affect the performance on mod-
ern processors. In modern chip-multiprocessors (CMP), not
only the system throughput of memory system, but also fair-
ness among programs sharing the resources should be seri-
ously considered. To further improve the overall throughput
and fairness in memory systems, we need a clever scheduler
exploiting differences in application behaviors.

State-of-art memory scheduling algorithms improve the mem-
ory performance by increasing the bandwidth utilization and

decreasing the latency. Conflict on row buffer seriously in-
creases memory access latency[10][1]. Close-Page Policy[9]
is an effective policy to reduce the latency on row buffer
conflicts by aggressively precharging. Importance of each
memory request is different depending the application char-
acteristics. Criticality-aware reordering of requests is good
to improve the total throughput. ATLAS[5] is a throughput-
oriented scheduler that periodically reorders the priorities
of each thread serving memory requests. Every thread has
a priority based on the served amount of requests. Mem-
ory controller prioritizes a thread with the fewest service
amounts over the others for each period. Thread Clus-
ter Memory Scheduling (TCM)[6] is thread-behavior-aware
scheduler to improve both the system throughput and the
fairness. In TCM, threads are clustered into 2 groups: light
thread cluster and heavy thread cluster. In order to improve
the total system throughput, higher priorities are assigned
to the light threads over the heavy threads. Priorities of
heavy threads are shuffled for every interval period to im-
prove manage the fairness among whole the threads.

This paper describes our high-performance and fair memory
scheduling scheme employing 3 distinct algorithms: coarse-
grain thread prioritization, fine-grain thread prioritization,
and instruction-level prioritization. Combining multiple al-
gorithms improves the memory performance and the fair-
ness among multiple applications by dynamically detecting
multi-grain behavior changes in programs.

For higher bandwidth utilization, we optimized the drain
mode of write requests. In the default scheduler, write re-
quests are issued in coarse-grain. A write request will be
issued when the read queue on the channel is empty or the
write queues is filled with much requests. In order to lever-
age the bank-level parallelism, we adopted fine-grain write-
drain mode in our scheduler. A write request in the write
queue is processed if the destination bank of the request is
idle. However, a read request should be prioritized over a
write request to progress the application execution[3]. Too
aggressive processing of writes may occur row conflicts with
the other read requests and will degrade the total perfor-
mance. To avoid these read-write conflicts, the scheduler
waits for a phase with no read requests to the write destina-
tion bank. To issue a write request destined to each bank,



the scheduler waits a certain period after the write request
is ready to be issued and all the read requests to the write
destination bank were issued.

This fine-grain write draining is very effective to improve
the total performance in bandwidth sensitive situations. In
addition to these optimizations for bandwidth, row buffer
management is very important to improve performance[4].
Activate commands are often issued to prepare the data on
row buffer to increase the row buffer hit rate, and precharge
commands are aggressively issued to reduce row buffer con-
flicts.

2. IMPLEMENTATION
2.1 Thread Priority
Our scheduler is made up from 3 distinct algorithms to treat
differences of thread behaviors and instruction behaviors:
(1) Thread Cluster, (2) Read Density Survey and (3) PC-
based Gain Estimation. A priority score to determine the
each priority is assigned to each thread for every DRAM
cycle by these schemes. A read request from a thread with
higher priority score is processed earlier than a read request
from a thread with lower priority. Assigning the different
priorities to each thread according to its behavior type im-
proves the chip-level fairness and the program performance.

Figure 1 shows the thread prioritizing mechanism of our
scheduler. Our scheduler has 2 scheduling stages of the read
requests. In beginning of scheduling, the scheduler selects a
thread by PC-based gain estimation to pursue instruction-
level differences of program behavior. If any gainful requests
with large capability to progress the program are found, the
scheduler prioritizes these requests than the others. If gain-
ful requests were not found by PC-based gain estimation, the
scheduler then selects a candidate request by thread-level
prioritization. In this paper, to optimize the gainfulness of
scheduler, we decided to take advantage of this metric in
the top two threads. To pursue thread-level differences of
program behavior, we use two schemes to determine the pri-
orities. The total priority score to determine each thread
priority is calculated as sum of two scores by these schemes.
The priority score to pursue the coarse-grain the changes
of thread behaviors are assigned by thread clustering. The
priority score to pursue the fine-grain changes of thread be-
haviors are assigned by read density survey.

The following sections describe key schemes of our scheduler
to assign the thread priorities.

2.1.1 Thread Clustering
Thread Cluster Memory (TCM) Scheduling is a high per-
formance memory scheduler with good fairness by employ-
ing different scheduling policies for each thread behavior.
We used this scheduling algorithm to improve the total per-
formance of all threads with keeping the fairness. A key
insight described in the paper of TCM is that prioritiz-
ing the latency-sensitive threads over the bandwidth sen-
sitive threads achieves higher performance than prioritizing
the bandwidth sensitive threads over the latency sensitive
threads. Latency sensitive thread is defined as a thread caus-
ing infrequent cache-misses, and, on the other hand, band-
width sensitive thread is defined as a thread causing frequent

cache misses. In TCM, all the running threads are clustered
into 2 groups, a latency sensitive cluster and a bandwidth
sensitive cluster, based on the number of requests from each
thread for every last quantum time (quantum is a predeter-
mined certain time interval period. about 1M cycles in our
scheduler). For higher throughput of the system, memory
requests of latency sensitive threads are prioritized over the
other requests of bandwidth sensitive threads. Each prior-
ity of bandwidth sensitive threads is shuffled for each short
interval time (about 1K cycles in our scheduler).

We use a modified version of original TCM algorithm to
optimize for this contest. The number of latency sensitive
threads is dynamically determined in our scheduler. Latency
sensitive threads are determined according to the amount
of read requests in the last quantum and the amount of
read requests from the beginning of the program from each
thread.

2.1.2 Request Density Survey
TCM cannot follow small changes of a program’s phase be-
cause it determines the thread priorities by using the sum
of requests in the past interval period. We employ a fine-
grain prioritization mechanism to follow small changes of the
thread behavior. In order to determine the priority score
of each thread, the memory controller counts the number
of read requests in each read queue for every DRAM cy-
cle. Lower priority score is assigned to a thread containing
many read requests, and higher priority score is assigned to
a thread containing fewer requests.

2.1.3 PC-based Gain Estimation
Each cache-miss instruction has different capability to progress
the program. A thread will significantly progress, when
some particular cache-miss instructions are processed in not
only latency sensitive situations but also bandwidth situ-
ations. We referred to these particular cache-miss instruc-
tions with large capability to progress a program as ”Gainful
Instructions”. To improve the total throughput, gainful in-
structions should be prioritized over the other cache-miss
instructions.

In order to deal with these instruction-level differences, we
propose Program-Counter-based (PC-based) gain estimation
mechanism that uses the cache-miss history to estimate the
gain of each cache-miss instruction when it is processed. Fig-
ure 2 shows the architecture of Gain History Table (GHT) to
track the gains of past cache-miss load instructions. GHT
is a full-way set-associative CAM structure of valid bit, a
program counter tag and a saturated reference counter for
each entry. A GHT is prepared for each thread (or core).
When a new cache-miss of load occurs, the memory con-
troller refers the GHT by using the PC of the instruction
in order to estimate the gain value of a cache-miss instruc-
tion. If there is an entry of it, GHT returns the value of its
reference counter. The memory controller uses this value to
calculate the priority score at instruction-level.

Figure 3 shows how to update the GHT. The last cache-miss
instruction of load is recorded in the Last Read Request
(LRR) table that consists of PC of last cache-miss load in-
struction and its gain count. Gain count in LRR is incre-
mented for every DRAM cycle if no following cache-miss load



6 4 5 2

Thread 0 Thread 1 Thread 2 Thread 3

7 1 3 4

Thread 4 Thread 5 Thread 6 Thread 7

# Waiting Read Requests 

Priority Score 4 12 8 20 0 24 16 12

Thread ID 5 7 41 0 23 6

Latency Sensitive Threads Bandwidth Sensitive Threads

Higher Priority Score Lower Priority Score (with shuffling)
Thread ID 0 1 2 3 4 5 6 7

Priority Score 2 3 0 16 1 16 4 16

Thread ID 0 1 2 3 4 5 6 7

Total Priority Score 6 15 8 36 1 42 20 28

Thread Clustering

Requset Density

Thread level Priority Thread5 > Thread3 > Thread7 > Thread6 > Thread1 > Thread2 > Thread0 > Thread4

Thread level priority

4 2

Thread 0 Thread 1 Thread 2 Thread 3

1 3

Thread 4 Thread 5 Thread 6 Thread 7

Gain Count
(Ref Count from GHT)

Priority Score 0 0 4 2 0 1 0 3

PC-based Gain Estimation
Instruction level priority

Instruction level Priority Thread2 > Thread7 > Thread3 > Thread5 > Thread0 = Thread1 = Thread4 = Thread6

Figure 1: Priority score calculation in our scheduler. 3 distinct algorithms are used to determine the priority.
At the beginning of scheduling, PC- based gain estimation is used to select a prioritized thread. Then, the
thread with higher priority score is the more prioritized than the lower ones. Priority score is calculated by
thread clustering and read density survey.
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Figure 2: GHT: Gain History Table

instruction comes. When a following cache-miss load occurs,
instruction in LRR is candidate to commit to the GHT. If
the gain count in LRR is greater than the threshold value
(TH GAIN in the figure), the instruction is committed. If
there is not a corresponding entry for the instruction in the
GHT, a new entry is allocated. If there is a corresponding
entry, the value of reference counter is incremented. Oth-
erwise, if the gain count in LRR is less than the threshold
value and there is a corresponding entry in the GHT, the
value of reference counter is decremented1.

2.2 Write Optimization
When the write queue is not so crowded, the default close
policy tries to issue write requests only if the read queue is
empty, otherwise it deals with read requests first. However,
this policy often bumps into apparently inefficient cases that

1In some cases, not decrementing the value of reference
count achieves higher performance than the decrementing
case. In our scheduler, the decrement value is variable, 0 or
larger.
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Figure 4: Wait Cycles for Write

the controller keeps waiting for issuing read requests while
issuable write requests exist in unrelated banks.

So we first divide the condition for starting to write. This
means that our scheduler tries to drain write requests in
banks where no read requests exist, though the read queue
is not empty. It enables to increase chances to drain write re-
quests and improves the performance especially with bandwidth-
sensitive workloads.

On the other hand, aggressive write drain causes another
problem particularly with latency-sensitive workloads. When
a read request arrives right after issuing a precharge or ac-
tivate command to the same bank for writing, the request
will be delayed. And to make matters worse, if the inter-
ruption occurs before issuing the actual write command, the
request will be cancelled and cannot be removed from the
write queue. Therefore a single write request can be in-
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terrupted multiple times, and it causes a terrible effect on
latencies.

To avoid the interruptions, it is desirable for the scheduler to
drain write requests when a read request to the same bank
is less likely to come. Our idea for achieving this is to wait
some cycles to begin to issue a precharge or active command
for writing.

We made an experiment to see if our idea is useful. We
successively record the cycles between the time the first
precharge or activate command for writing becomes ready
after the completion of read requests in a bank and the time
the next read request to the same bank arrives at the read
queue. Then we define and enumerate NR[i] as the number
of times the next read request does not come until i or more
cycles. We also define Rk,l as the proportion of arrival of
the request in the next l cycles when we wait k cycles for
issuance of a precharge or activate for writing. Using the
array NR, We can calculate Rk,l according to the following
equation: Rk,l = 1 - NR[k + l] / NR[k] Since it takes 22
(tRP + tRCD) cycles for a DRAM to complete a precharge
and activation, we can estimate the probability of interrup-
tion at Rk,22. Thus, we enumerate NR with various settings
and inspect relationships between k and Rk,22.

Figure 4 shows relationships with four settings: 2 threads
/ 1 channel, 4 threads / 1 channel, 4 threads / 4 channels,
and 8 threads / 4 channels. The x-axis stands for k, the
number of waiting cycles, and the y-axis stands for Rk,22

or the estimated probability of interruption. Workloads are
several mixes of body, black, fluid, and canneal. The left
edge of the graphs show that 10%-22% of the write requests
are likely to be interrupted by a new read request if we issue
precharge or activate commands for writing right after they
are ready.

However, if we wait for only 40 cycles to issue them, the
probability of interruption decreases sharply. Also, it con-
tinues to decrease almost monotonically when the number
of waiting cycles increases up to about 100 cycles. So it is
possible to avoid the interruption by waiting some cycles for
issuance of precharge or activate commands for writing.

2.3 Row Buffer Management
Efficient row buffer management reduces the memory access
latency. Increasing row buffer hit rate and decreasing row
buffer conflicts achieves smaller memory access latency. A
general memory access needs a row activate command and a
column read/write command. If the current row address in
a bank is different from the row address of following request,
a precharge command is issued before the following row is
activated. The overhead of a precharge takes long period,
and it suffers the performance.

Close-Page Policy is an efficient policy to reduce conflicts
on row buffers by aggressive precharges. When a column
read/write request is issued, the corresponding row buffer is
precharged to avoid row buffer conflicts. Using aggressive
activate command is another way to reduce memory access
latency. If the row address of a new request is the same as
the current opened row address already, the memory access
spends just short time for column read/write. Decreasing of
latency activating a row buffer improves the memory perfor-
mance. In order to improve the row buffer hit rate for the
higher performance, in our scheduler, if any issuable read
requests do not exist in the read queue of each channel, the
memory controller activates corresponding row of the next
candidate read request from the most prioritized thread.

3. EVALUATION
Table 1 shows the evaluation result of our scheduler in per-
formance, PFP and EDP.

3.1 Performance
We evaluated the performance of our scheduler by using
usimm version 1.3 of DRAM timing model simulator, in 2
configurations of 1channel 4GB DDR3 memory and 4chan-
nel 4GB DDR3 memory. We used several mixed workloads
for the evaluations: 1,2,4 thread(s) workload in 1channel
model and 1,2,4,8,16 thread(s) workload in 4channel model.

Figure 5 shows the performance improvement from FCFS
scheduler and Close scheduler, which are included in usimm
simulator kit[2]. Performance is defined as total execution
time to finish whole the applications in each configuration.
Our scheduler improves the performance 14.2% in maximum
and 10.9% in average from FCFS scheduler. It improves the
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Figure 6: PFP

performance 8.8% in maximum and 6.2% in average from
Close scheduler. This result shows that our scheduling pol-
icy is good in 1 channel memory and in 4 channels memory
with same or more than 4 threads. So our scheduler is very
effective especially in bandwidth sensitive situations.

3.2 PFP
Figure 6 shows the improvement of PFP (Performance-Fairness
Product) from FCFS scheduler and Close scheduler. Our
scheduler improves the PFP 13.8% in maximum and 10.5%
in average from FCFS scheduler. This result shows that our
scheduling policy is also very good in PFP metric due to its
high performance in bandwidth sensitive situations.

3.3 EDP
Figure 7 shows the improvement of EDP (Energy-Delay Prod-
uct) from FCFS scheduler and Close scheduler. Our sched-
uler improves the EDP 30.7% in maximum and 18.9% in
average from FCFS scheduler. Though our scheduler re-
quires the extra hardware budget for implementation, it can
reduce the total EDP, which derives from the performance
improvement.

3.4 Hardware Cost
We evaluated the hardware cost for the implementation of
our scheduler in terms of storage budgets.

TCM requires a 20-bits read counter per thread, a 5-bits
priority counter per thread, a 64-bits total read counter per
thread and a 64-bits latest read time register per thread.
Therefore the total storage budget required for TCM is 2448
bits (306 bytes).

GHT and LRR require extra storage budgets to track the
history of past cache-misses. In our scheduler, the number
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Figure 7: EDP

of GHT entries is 512 per thread. The size of a entry is 40-
bits (1 bit for valid bit, 32 bits for PC, 7 bits for saturated
reference counter). Therefore, total storage budget of GHTs
for 16-threads is totally 327,680 bits (40 bits x 512 entries x
16 threads, 40K bytes). LRR is a small register table of up
to 64 bits (32 bits for PC and 32 bits gain count).

OTHER components require a 8-bits counter of wait cycles
for drain writes per bank (512 bits, 64 bytes).

TOTAL BUDGET is up to 41K bytes in the 16 threads
setting. It satisfies the competition rule, up to 68K bytes.

4. CONCLUSION
This paper described our memory scheduler combining the 3
distinct algorithms. Our scheduler aims to improve the per-
formance, the good fairness and the good energy efficiency
by employing multi-grain prioritization mechanisms. The
evaluation result showed that our scheme improves the per-
formance 10.9% in average from FCFS scheduler. The result
showed that our scheme improves the PFP value 10.5% in
average from FSFS scheduler in the same configuration. The
result also showed that our scheme improves the EDP value
18.9% in average from FCFS scheduler.
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