
1

Stride- and Global History-based DRAM Page
Management

Mushfique Junayed Khurshid, Mohit Chainani, Alekhya Perugupalli and Rahul Srikumar
University of Wisconsin-Madison

Abstract—To improve memory system performance, be-
sides greedily scheduling the correct memory command at
the correct time, latencies can be hidden by the use of
predictors for opening/closing pages. This paper presents
a memory scheduler, which is enhanced by speculative
precharging of banks and activation of rows using tech-
niques used for data cache prefetching. A stride detector in
the scheduler essentially detects constant strides in memory
reference addresses and speculatively precharges banks or
activates rows in the row buffer based on those strides. An
additional Global History Buffer structure, similar to the
one used for data cache prefetching, is also used to spec-
ulatively precharge banks. This greedy scheduler, issues
speculative row activates or precharges, only in memory
cycles when no other command residing in the read/write
queue can be issued, so that any mis-speculation has a
minimal effect on the overall performance. The schedulers
performance is evaluated in terms of execution times for
various traces in both 1-channel and 4-channel processor-
memory configurations. Its performance is compared with
that of FR-FCFS memory scheduler in this paper. This
scheduler targets the Performance track of the Mem-
ory Scheduling Championship organized by The Journal
of Instruction Level Parallelism. The authors Mushfique
Junayed Khurshid (Email: khurshid@wisc.edu), Alekhya
Perugupalli and Rahul Srikumar are Masters students,
while Mohit Chainani is an undergraduate student, all in
the ECE department of University of Wisconsin-Madison.

Index Terms—DRAM, Memory Scheduling, Global His-
tory Buffer, Stride detection, Memory Scheduling Cham-
pionship.

I. INTRODUCTION

DRAM(Dynamic Random Access Memory)
memories are very important, especially in

many performance-critical applications such as, in
telecommunications - packet buffer and lookup table
memories, and also in digital imaging applications like
3D games and TVs etc [1]. Furthermore, we can observe
that as systems are becoming more and more complex,
interactions between systems like the processor and
the memory are becoming increasingly significant.
An inefficient memory performance can result in an
overall inefficient system. So we can understand that
the performance of the DRAM is critical. Performance
of memories is improved in contemporary DRAM chips
by organizing the DRAM memories into independent

banks, hence enabling pipelining of several memory
requests. Also each bank has a row buffer which
stores the last accessed row in the bank. This improves
the bandwidth of the memory, but in fact causes the
memory latency to be dependent on the pattern of
memory accesses.

Each bank stores several rows which contains columns
of bits. A particular memory access time is given as
the sum of the following delays - TPR (Precharge time:
time required to precharge the previously accessed
row which is in the row buffer), TRA (Row Activate
time: time required to access one row and copy it into
the row buffer) and TCA (Column Access time: time
required to access the specific column in the row in
the row buffer). If a certain data access requires data
from a row which is already activated and is in the
row buffer, the time required to access that data will
be significantly reduced and will simply be the TCA.
While, if an already activated row is closed before the
next request arrives which requires access to a different
row, the new request will require less time to access
the memory, as it only requires the TRA, and TCA. In
above two cases, the TPR + TRA and TPR respectively,
are hidden by speculative precharging and activation of
rows. This calls for predictors that can predict when to
open certain rows, and when to close certain rows, to
improve overall memory performance, and there had
been research on memory controllers built with such
predictors [1][2][3].

Constant stride detecting prefetching techniques has
been used for predicting future memory addresses
for prefetching for data caches [4][5]. Our scheduler
detects constant strides, using such techniques, in the
memory requests in the read/write queues to predict
future memory references, which enables the scheduler
to either open or close pages. Our scheduler, also uses
a structure similar to the Global History Buffer for data
cache prefetching [6], but uses this to only speculatively
close pages. Apart from these predictor structures, the
scheduler issues commands to the memory greedily.
The predictors only speculatively issue commands to
the memory in memory cycles where no non-speculative
commands in the read/write queues are issuable. Hence
the scheduler is basically divided into three entities :

2

1) Base Scheduler
2) Constant Stride Detecting Open/Close page pre-

dictor
3) Global History Buffer based Close page predictor

Each of the entities issue commands to the mem-
ory, and their issuing power are in the order as

listed. The predictors only issue commands if no com-
mand is issuable by the Base Scheduler.

II. SCHEDULER

A. Base Scheduler

Everytime the memory switches from writing/reading
a column to the row buffer, to reading/writing a column
from the row buffer, a write to read delay tWTR/read to
write delay tRTW is required for bus direction switching.
Hence our scheduler serves read and write requests in
bursts. Write requests are served in bursts whenever
number of write requests in the queue exceeds the High
Watermark of 40, until the number of write requests
in the queue reach the Low Watermark of 20 - which
we refer to as the write drain mode. In this write drain
mode, only write requests are served. But in case no
write request commands are issuable in one memory
cycle, the scheduler only attempts to serve the precharge
or activate row commands pending in the read queue,
as long as the target bank involved does not conflict
with any pending write commands. However, when in
non-write mode, when no read request commands are
issuable in a memory cycle, the base scheduler attempts
to issue ONLY precharge commands from the write
queue, whose bank does not conflict with any pending
read requests. This is because a row activate command
from the write queue may slow down a future read
request due to conflicting bank. Since in a program,
number of reads is generally higher than number of
writes, the probability of this occuring is higher than
the other way round. In write drain mode, Column
Read commands from the read queue are not entertained
because of the bus switching delay caused. Same is true
for Column Write commands, when there are no issuable
read commands in non-write mode. When attempting a
command from the read queue in non-write drain mode,
and a command from the write queue in write drain
mode, the scheduler follows a FR-FCFS policy (gives
first priority to row buffer hits, otherwise FCFS).

We can observe that in many stages of the scheduling,
the scheduler makes a decision based on whether a
particular bank is used by any pending read/write request
or not. A table called Isused is used to keep track of
whether a particular bank is used by a pending request
or not. The table has an entry for every bank in the
memory. The Isused entry is zero if the bank is not used

Fig. 1. Stride Table structure that records detected strides, indexed
by Instruction PC

Fig. 2. Each entry of a stride table, and the size of each field in the
entry

by any pending request, is one if the bank is used by one
or more pending read requests, is two if it is used by one
or more pending write requests and is three if it is used
by atleast one read and atleast one write request. This
way, the scheduler keeps track at any time, which banks
are targeted by any the pending read/write requests in
the read/write queue and make decisions accordingly.

B. Constant Stride Detecting Open/Close page predictor

For constant stride detection, a Stride Table as in
Figure 1 is maintained. It can contain 1024 entries, and
is indexed by the 10 LSBs of the Instruction Program
Counter of the memory request. Each entry, as in Fig-
ure 2, in the stride table contains a last stride value,
previous address accessed, and a detected bit. When the
scheduler looks through the read/write queue, existing
constant strides between memory references having same
instruction pc are recorded using this structure. When a
stride value for a particular memory reference is same as
the last stride value in the Stride Table entry, the detected
bit is set. The Figure 2 shows the stride table entries and
its data types.

Initially, as the base scheduler looks through the
read/write queue for row buffer hits, the corresponding
stride table entry values are ALL initialized to zero.
When the base scheduler looks through the read/write
queue again for any other issuable commands, the con-
stant stride detection in the current read/write queue
takes place. When no commands are issuable, the pre-
dictor basically runs through all the corresponding Stride
table entries for the read/write requests in the read/write
queues when in non-write/write mode. For every entry
for which the detected bit is set, the predictor attempts
opening or closing rows of the banks corresponding to
physical addresses of a + s, a + 2s....a + ds, where a
is the previous address value in the stride table entry, s

3

Fig. 3. Global History Buffer structure used for close page prediction

Fig. 4. Entry in the Global History Buffer and size of each field in
the entry

is the stride value in the stride table entry and d is the
depth of striding speculation. Our analysis showed an
optimum depth of 7, which we chose for our scheduler.
If a particular speculative memory access is in a different
channel, the corresponding access details are stored in a
separate array called the TobeIssued array, which can
be read in by the scheduler of that particular channel,
and hence executed, only when it cannot issue any other
command with the basic scheduler or the predictors.

C. Global History Buffer based Close page predictor

This predictor, as mentioned before, uses a structure
similar to the Global History Buffer structure used for
data cache prefetching [6] as in Figure 3. This structure
has got two levels:

1) Index Table (IT): This has 1024 entries. This is ac-
cessed with a key, the 8 LSBs of which are the xor
of the instruction pc value and the memory address
of the memory request, and the top 2 MSBs of
which is the thread id of the memory request. The
entries in the IT points to corresponding Global
History Buffer entry.

2) Global History Buffer (GHB): It has 512 entries,
and it is a FIFO table (circular buffer), which
contains the 512 most recent miss addresses. Each
entry in the GHB has a link pointer that connects
it to the previous GHB entry that has the same
Index Table key.

Our GHB only keeps the addresses of read requests. We
attempted to keep another GHB for write requests also,
but it did not give us any performance gain. Combining
the GHBs accurately would be more complex, as the
read and write queues are separate and to combine their

TABLE I
MEMORY REQUIREMENTS FOR SCHEDULER

Entity Size
Isused 16*16*32*2B=16KB
Stride Table 1024*(12B+1b)=(12K+128)B
ToBeIssued 16*20B=320B
GHB 512*32B=16KB
Index Table 1024*8B=8KB
Total (52K+448)B

requests into GHB would require a merge and sort (in
terms of time stamp), which would require too much
resources and would be impractical for a speculative
action. Also, since the scheduler schedules reads and
writes in bursts, a combined read-write GHB is unnec-
essary. The scheduler pushes the new memory requests
in the Global History Buffer at the beginning of every
memory cycle. Then, in case the Base Scheduler and
the Constant Stride Detecting Open/Close page predictor
fails to issue any memory command, the GHB based
close page predictor tries to issue speculative precharges.
It goes to the head of the GHB table (which is the latest
memory request pushed), and follows its link pointer to
any previous occurrence of it in the GHB table. If it finds
it, the predictor moves downward along the GHB (which
gives it the next miss addresses, essentially potential
memory request predictions - greyed entries in Figure 3)
and speculatively closes pages (as long as its bank does
not conflict with that of any read/write pending requests.
The predictor attempts issuing commands till a depth of
20 and for a width of 3. Depth of 20 means for each
previous occurence of a miss address, we attempt to
close pages corresponding to 20 instructions following
that occurence. While a width of 3 means that 3 previous
occurences are tried. A GHB entry is shown in Figure 4.
It contains the GHB entry number, the thread id (since
prediction must be same thread as the latest memory
reference), the physical address of the memory reference,
the instruction PC value and the link pointer.

III. IMPLEMENTATION

The implementation of the base scheduler is pretty
straight forward, since it is similar to FR-FCFS, with
write drain mode as presented earlier. The Stride Detect-
ing consists of a an indexed Stride Table. The TobeIssued
array has 16 entries (as many as maximum number
of channels), which stores pending speculative memory
commands of different channels as predicted by the
constant stride prediction. The GHB structure imple-
mentation can be very similar to that in the data cache
prefetching case[6]. A simple state machine maintains
the GHB in a FIFO manner, updating its contents every
memory cycle. The new address is added to the GHB
and its head is made to point to it. The link address of

4

TABLE II
BENCHMARK TRACES

Trace Abbreviation
PARSECs blackscholes bl
PARSECs facesim fa
PARSECs ferret fe
PARSECs fluidanimate fl
PARSECs freqmine fr
PARSECs stream st
PARSECs swaptions sw
Server-class transaction processing workload -1 c1
Server-class transaction processing workload -2 c2
PARSECs canneal (4 threads) MTc

this new GHB head is made to point to the Index Table
entry. Finally the Index table entry is updated to the
newly added entrys address. As GHB entries are evicted,
we detect its Index Table entry, and either delete that
entry if it is same as the address to be evicted, and if
not, we traverse along the links corresponding to this
Index Table entry along the GHB, until we find the miss
address which is linked to the address to be evicted. We
label its link as NULL. We are given a budget of 68KB,
and the Table I shows how the scheduler design meets
the criterion.

IV. EXPERIMENTAL RESULTS

The memory scheduler is simulated using the simula-
tion infrastructure - USIMM (Utah Simulated Memory
Module) to evaluate the scheduler [7]. The USIMM
provides for two system configurations [7]. One is a
smaller scale processor with one memory channel, while
the other one is a more aggressive processor with 4
memory channels. Various different work loads are run
to evaluate the performance. The traces, from PARSEC
[8] and others, are tabulated in Table II along with their
abbreviations. All are single thread traces except for the
one as labelled.

Different combinations of the above traces are exe-
cuted in both 1-channel and 4-channel configurations
as multi-threaded workloads. The metric used is the
SUM of Execution times of ALL the individual threads
in a particular workload. The results are tabulated in
Table III. The trace abbreviations as in Table II are used
to represent the multi-threaded workloads. The execution
time is given in terms of processor cycles.

These workloads were also run using an FR-FCFS
scheduler, in the two memory system configurations to
compare with our scheduler. Overall, our scheduler gave
a 3.69% decrease in execution time, when compared to
FR-FCFS. The percentage decrease in execution time,
used as a metric here, is given by the following equation:

% decrease in Exec. time =
EFR−FCFS − E

EFR−FCFS
∗ 100

TABLE III
WORKLOADS AND TOTAL EXECUTION CYCLES

No. Workload 1-channel 4-channel
1 MTc 4039625764 1713795068
2 bl-bl-fr-fr 1462590705 767061157
3 c1-c1 819168979 474230867
4 c1-c1-c2-c2 2360998257 1182314394
5 c2 427719792 272913013
6 fa-fa-fe-fe 2223741393 1000324222
7 fl-sw-c2-c2 2427112764 1214903047
8 st-st-st-st 1585047277 820932361
9 fl-fl-sw-sw-c2-c2-fe-fe 2785766266
10 fl-fl-sw-sw-c2-c2-fe-fe- 6178767813

bl-bl-fr-fr-c1-c1-st-st
Grand Total 31757013139

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

11

%
 d

ec
re

as
e

in
 T

ot
al

 E
xe

c.
 ti

m
e

Workload No.

 1-channel
 4-channel

Fig. 5. Decrease in Execution time for various workloads in both
1-channel and 4-channel configurations

EFR−FCFS is the total execution time for FR-FCFS
scheduler, while E is the total execution time for our
scheduler. The percentage decrease in execution time for
our memory scheduler when compared to FR-FCFS, for
each of the workloads as numbered in Table III and for
both 1-channel and 4-channel configurations are shown
in Figure 5. Even though that on average our scheduler
showed a 3.69% less time for all workloads, we can
observe that the percentage decrease in execution times
for all workloads in 1-channel and 4-channel configura-
tion is quite unbalanced. The performance improvement
over FR-FCFS is much higher in 4-channel configuration
than in 1-channel configuration. We get a maximum of
11.04% decrease in execution time for one workload in
4-channel configuration, when compared to FR-FCFS
in the same configuration. On average, in 4-channel
configuration, our scheduler reduces the execution time
by 6.11% over FR-FCFS.

V. CONCLUSION

In this paper, we presented a memory scheduler, which
greedily issues commands to the memory, and also uses

5

techniques used for data cache prefetching to specu-
latively precharge/activate rows. We demonstrated that
the scheduler is easily implementable, and its memory
requirement also is below the given budget of 68KB.
When compared with FR-FCFS memory scheduler, over-
all, our scheduler decreases the execution time by 3.69%.
A maximum execution time decrease of 11.04% is
observed, and in a 4-channel configuration, we observe
an average execution time decrease of 6.11%. We can
see that multiple memory channel systems make our
scheduler give greater improvement over FR-FCFS than
in single memory channel systems.

VI. ACKNOWLEDGMENT

The authors would like to thank Prof. Mikko Lipasti
of University of Wisconsin-Madison for his helpful sug-
gestions and guidance.

REFERENCES

[1] V.V. Stankovic and N.Z. Milenkovic. DRAM Controller with a
Complete Predictor: Preliminary Results, 2005.

[2] B. Fanning. Method for Dynamically Adjusting a Memory Sys-
tem Paging Policy. United States Patent, Number 6604186-B1,
2003.

[3] O. Kahn and J. Wilcox. Method for Dynamically Adjusting
a Memory Page Closing Policy, 2004. United States Patent,
Number 6799241-B2, 2004.

[4] J.W.C. Fu and J.H. Patel. Stride directed prefetching in scalar
processors. In Proceedings of the 25th International Symposium
on Microarchitecture, 1992.

[5] S. Kim, A. Veidenbaum, Stride-directed Prefetching for Sec-
ondary Caches, In 1997 International Conference on Parallel
Processor, 1997.

[6] K. Nesbit and J.E. Smith, Data Cache Prefetching Using a Global
History Buffer. In Proceedings of the 10th Annual International
Symposium on High Performance Computer Architecture, pp.
144-154, July 2001.

[7] USIMM: the Utah Simulated Memory Module.
http://www.cs.utah.edu/ rajeev/pubs/usimm.pdf

[8] Christian Bienia. Ph.D. Thesis. Princeton University, January
2011.

