
Abstract— Throughout many generations of memory

from DDR1 to DDR3, the internal memory architecture

and the performance related characteristics of DRAM

has experienced little change. Therefore, memory

scheduling algorithm is important to improve total

memory sub-system performance. In this paper, Row

Buffer Locality based Drain Policy (RLDP) is

proposed to enhance the row buffer locality of memory

request sequences. Based on experimental results, the

proposed scheduling algorithm could improve total

execution time by 9.99% compared to FCFS on

average.

I. INTRODUCTION

DRAM (Dynamic Random-Access Memory), the

most commonly used technology for building main

memory for modern computer system, has been a

major performance bottleneck for decades [1].

Throughout many generations of DRAM, from DDR1

to DDR3, internal memory architecture and

performance-related characteristics of DRAM has

experienced little change [1,2]. Therefore, memory

request scheduling algorithms have been studied to

address the performance bottleneck due to DRAM and

row buffer locality is the key characteristic which

memory request scheduling algorithms exploit [3].

DRAM architecture is segmented into 4 or 8 banks

(DDR2, DDR3 respectively), and each DRAM bank

consists of rows and columns of DRAM cells. Each

bank is accessible through a row buffer (or sense

amplifier) with row address and data in a row buffer

are to be read with column address. Due to this row

buffer which stores data of the most recently accessed

row, the data in the row buffer can be accessed faster

than the data in different rows in the same bank, which

is called row buffer locality [3].

Since Rixner et al. proposed FR-FCFS, memory

scheduling that takes into account of row buffer

locality [4], lots of scheduling ideas have been

published to improve the throughput and the fairness [5,

6, 7, 8, 9, 10, 11]. Write latency involved with tWR

(Write recovery time) is getting worse as technology

scales down and the emerging new memories such as

PCRAM, STT-RAM, and ReRAM have much slower

write performance than current DRAM technology [15].

Performance related with write operation, therefore, is

expected to be a key performance bottleneck in future.

In this paper, we prioritize a request which employs a

benefit of row buffer locality during write drain

operation, resulting in performance improvement. The

proposed write draining policy divides into two parts:

Delayed Drain and RLDP (Row Locality based Drain

Policy). Traditional write draining is to drain writes

when there are no-pending read requests or when the

number of write requests in the write queue exceeds a

specific number. Our observation reveals traditional

write draining policy has more room to be improved by

exploiting row buffer locality of both write and read

requests. In this paper, RLDP (Row Locality based

Drain Policy) is proposed to maximize the benefit of

row buffer locality, combined with the modified

delayed write drain, and the adaptive delayed close

policy.

Our experimental results show that the proposed

algorithm can achieve performance improvement of

9.99% over the baseline memory scheduling algorithm,

FCFS.

II. PROPOSED ALGORITHM

A. Row Locality based Drain Policy

 Write drain algorithm is important for the memory

controller performance. Write drain operation without

considering row buffer hit status of pending requests in

the read queue and write queue can increase the access

or queuing delay by interrupting read requests.

Most efficient conventional write drain scheme so far

is the delayed write drain algorithm [13]. Delayed write

scheme assumes that read request will arrive soon

when the read queue is empty, so that write draining is

delayed for a short time to wait for potential read

request. Write drain is performed if no read request

arrived. When the number of pending write requests in

the write queue exceeds “high watermark”, the write

requests in the queue is compulsorily drained until the

number of pending write requests in the queue reaches

The Compact Memory Scheduling Maximizing

Row Buffer Locality
Young-Suk Moon, Yongkee Kwon, Hong-Sik Kim,

Dong-gun Kim, Hyungdong Hayden Lee, Kunwoo Park

SK Hynix Inc.

{youngsuk.moon, yongkee.kwon, hongsik.kim,

donggun.kim, hyungdong.lee, kunwoo.park } @ skhynix.com

“low watermark”. However, in the previous write drain

methods, row buffer locality is not considered, so that

the locality of issued request sequence can be broken

by write drain operation.

Figure 1(a) illustrates that the conventional write

drain mechanism has possibility to degrade

performance. Write drain is started as the number of

write requests in the write queue reaches high

watermark, and it is continued be drained until the

number of write requests in write queue reaches low

watermark. The write requests are represented by Wx,

and the read requests are represented by Rx. While R4,

R5 and R9 reference same pages with W0, W1 and W2,

respectively, the pages are closed by W4, W5 and W6

with conventional write drain policy. This leads to

unnecessary row activation when issuing R4, R5 and

R9, thereby degrading performance significantly. In

addition, row buffer locality is attacked when draining

read requests.

In order to consider row buffer locality for write drain

operation, the RLDP (Row Locality based Drain Policy)

is proposed. Figure 1(b) shows how the proposed

algorithm utilizes the row buffer locality in write-to-

read switching. While conventional write drain policy

issues write requests until the number of the write

requests in the write queue reaches low watermark, the

proposed write drain policy issues write requests until

the “row hit” write requests in the write queue are

completely consumed.

The pseudo code of RLDP is described in Figure 2. If

the number of write requests in the write queue reaches

high watermark, write drain is started. Once write drain

is started, “row hit” write requests are issued

consecutively, even if there exists pending read

requests in the read queue. Write to read switching is

occurred only when there is no “row hit” write requests

in the write queue with “row hit” read request in the

read queue. Same policy is applied for read to write

switching so that row locality interference is to be

reduced during request drain.

B. Delayed Write Drain & Delayed Close

The RLDP is combined with delayed write drain [13]

and delayed close policy [17] in order to increase

performance and utilize row buffer locality.

Delayed write drain is applied adaptively based on

historical request density. If the number of the requests

is large enough, performing the write request in the

write queue without delay is more effective than

waiting for the incoming read request. Requests are

observed per 10k CPU cycles, and if the number of the

requests for a channel exceeds 200, delayed write drain

policy is disabled.

Per-bank delayed close scheduling algorithm

references row hit rate periodically in order to

determine whether postpone a precharge or not. In

previous research [17], per-bank adaptive delayed close

is performed based on prediction result (success or fail).

This scheme is very simple, but historical statistics

can‟t be fully considered. In order to consider historical

information, the number of the read commands and the

active commands for read is observed for each bank. If

a read command is issued to the DRAM, “read history

counter” is incremented while if an active command for

read request is issued to the DRAM, “read history

counter” is decremented. For every 10k CPU cycle,

according to the value of “read history counter”,

delayed close policy is selectively applied. If the value

of the “read history counter” exceeds zero, the delayed

close scheme is applied to the corresponding bank.

Otherwise, pure close policy is applied. The “read

history counter” is attenuated by 0.5 for every 1M CPU

cycle, and the same scheme is applied to the write case

as well.

III. EXPERIMENTAL RESULTS

A. Basic Algorithms

The proposed algorithm is combined with

conventional close policy, and FR-FCFS. Close

scheduling policy is an approximation of a true close-

page policy. In every idle cycle, the scheduler issues

precharge operations to banks that last serviced a

column read/write. Unlike a true close-page policy, the

precharge is not issued immediately after the column

read/write. FR-FCFS first tries to issue request of any

open row hits, and then first come request. In order to

increase bank-level parallelism, read queue is scanned

sequentially from head in queue until issuable request

in the current cycle is found.

B. Execution Time

Figure 3 shows the total execution time of the

proposed algorithm. The simulation is performed using

USIMM1.3 [16] and PARSEC [18] traces. For the

multi core cases, total execution time is calculated by

adding each execution time of all cores. Figure 4 shows

the simulation results of the base algorithms and the

proposed scheduling algorithm. All the total execution

time is normalized to the execution time of the FCFS

scheduling algorithm.

Among the proposed algorithm, “RLDP+DELAYED-

CLOSE” shows best improvement in terms of the

execution time. Compare to the FCFS scheduling

algorithm, the DELAYED-CLOSE scheduling

algorithm enhances the execution time by 6.86%, the

RLDP scheduling algorithm enhances the execution

time by 8.78% and RLDP + DELAYED-CLOSE

scheduling algorithm improves the execution time by

9.99%. DELAYED-CLOSE scheduling algorithm

shows an improvement in 1-channel configuration

because the algorithm is designed to selectively delay

precharge command, expecting potential row hit.

RLDP scheduling algorithm shows an improvement for

all cases.

C. Hit Rate

Figure 5 and 6 shows the row hit rate of the read and

the write requests respectively for each scheduling

algorithm. For the case of the RLCP scheduling

algorithm, the average row hit rate of the write requests

is dramatically enhanced from -22.78% to 7.27%, and

the average row hit rate of the read requests is

enhanced slightly from 19.11% to 19.46%, compare to

the CLOSE+FR-FCFS scheduling algorithm. These

results indicate that conventional write drain policy

hurts the row buffer locality of the write requests. For

the case of the DELAYED-CLOSE scheduling

algorithm, the average row hit rate of the write requests

increased from -22.78% to -12.14% and the average

row hit rate of the read requests is increased from

19.11% to 21.31%. It is shown that DELAYED-

CLOSE scheduling algorithm effectively utilizes the

row buffer locality for both read and write request.

The row hit rate of the write request for the whole

simulation runtime is captured in Figure 7. Simulation

is performed for the 4-channel configuration and four

multi-threaded canneal traces. The row hit rate is

calculated for every 100k cycles which is represented

by the circle and the cross. The circle represents the

row hit rate of the write request with the CLOSE+FR-

FCFS scheduling algorithm, and it is lower than zero

for the considerable duration of the simulation time.

The cross represents the row hit rate of the write

request with the proposed scheduling algorithm, and it

shows better result compare to the circle due to

elimination of unnecessary active commands.

Briefly, the RLDP scheduling algorithm improves the

row hit rate of the write requests dramatically, and the

DELAYED-CLOSE scheduling algorithm improves the

row hit rates of both read and write requests. Therefore,

the cost of the row conflict is reduced so that the

performance improves. Compared to the CLOSE+FR-

FCFS scheduling algorithm, the row hit rate of the

write request is increased from -22.78% to 11.50%, and

the row hit rate of the read requests is increased from

19.11% to 21.32%. The proposed scheduling algorithm

improves the row hit rates of both read and write

requests, especially for the write request.

D. Write Caused Interference

Figure 8 shows how the write caused interference is

reduced by the proposed algorithm. The left side of the

graph indicates the amount of time when the number of

the pending requests in the write queue exceeds high

watermark. Right side of the graph indicates the

frequency of the read/write switching that is calculated

by adding the read-to-write switching frequency and

the write-to-read switching frequency. For the “HIGH

WATERMARK RESIDENCE TIME” of the proposed

algorithm is reduced by 69% and 59.57%, compare to

the FCFS scheduling algorithm and the CLOSE+FR-

FCFS scheduling algorithm, respectively. The “READ-

WRITE SWITCHING FREQUENCY” of the proposed

algorithm is increased by 33.78% and 24.67%,

compare to the FCFS scheduling algorithm and the

CLOSE+FR-FCFS scheduling algorithm, separately.

“HIGH WATERMARK RESIDENCE TIME”

represents the un-wanted read to write switching

frequency that hurts row buffer locality. In contrast to

the conventional scheduling algorithm, the read/write

switching of the proposed algorithm is performed at

proper time with low timing overhead, by preventing

the potential row conflict in the future. By reducing un-

wanted read/write switching frequency, the total

number of row conflict can be decreased which leads to

performance improvement.

E. Hardware Overhead & Complexity

The hardware overhead of the proposed scheduling

algorithm is shown in Figure 9. The recent_colacc is

the per-bank register that indicates whether a certain

bank is a precharge candidate or not. The refreshes is

the per-bank register that stores the number of refresh

commands issued in 8*tREFI refresh window. The

dd_counter is the per-channel register that is used for

delayed write drain.

The read_history_counter is the register that stores

the difference between the number of the read and the

active for read. The write_history_counter is the

register that stores the difference between the number

of the write and the active for write. The contents of

both counters are reduced by half for every 1M

processor cycle (0.25M memory cycle). The

request_density_counter is the per channel counter that

tracks the read and write commands issued to the

DRAM during a certain period. The

delayed_close_valid_r and the delayed_close_valid_w

are the per-bank registers that indicate whether the

corresponding bank is the candidate for delayed close

or not. The delayed_close_counter_r and the

delayed_close_counter_w are the per-bank counter

used for delayed close policy. Additional registers are

needed to store constant value that is referenced

periodically to update registers. Total number of

registers required to implement the proposed

scheduling algorithm is about 3.3k.

It is not complex to design the control logic. Because

RLDP scheduling algorithms only searches for the

write queue and read queue so as to find a row hit

request, it is easy to implement with small control logic

and comparators. For the case of the delayed close

scheduling algorithm, the difference between the

read/write command and the active for read/write

command is considered. It is easy to implement

because the control logic only needs to check if the

counter exceeds zero in order to apply delayed close.

IV. CONCLUSION

RLDP scheduling algorithm is proposed to utilize the

row buffer locality. The proposed scheduling algorithm

improves the row hit rate of both write request and read

request. The number of the active command is reduced

so that the total execution time is improved by the

amount of 5.64% and 9.99% compare to the

CLOSE+FR-FCFS scheduling algorithm, and FCFS

scheduling algorithm, respectively.

REFERENCES

[1] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems -

Cache, DRAM, Disk. Elsevier, Chapter 7, 2008

[2] JEDEC. JEDEC standard: DDR/DDR2/DDR3

STANDARD (JESD 79-1,2,3)

[3] Chang Joo Lee. DRAM-Aware Prefetching and Cache

Management, HPS Technical Report, TR-HPS-2010-004,

University of Texas, Austin, December, 2010.

[4] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.

Owens. Memory access scheduling. In Proceedings of ISCA,

2000.

[5] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian,

and A. Davis. Handling the Problems and Opportunities

Posed by Multiple On-Chip Memory Controllers. In

Proceedings of PACT, 2010.

[6] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-

Balter. Thread Cluster Memory Scheduling: Exploiting

Differences in Memory Access Behavior. In Proceedings of

MICRO, 2010.

[7] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory

Access Scheduling for Chip Multiprocessors. In Proceedings

of MICRO, 2007.

[8] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch

Scheduling - Enhancing Both Performance and Fairness of

Shared DRAM Systems. In Proceedings of ISCA, 2008.

[9] C. Lee, O. Mutlu, V. Nerasiman, and Y. N. Patt,

„„Prefetch-Aware DRAM Controllers,‟‟ In Proceedings of

MICRO, 2008.

[10] I. Hur and C. Lin, Adaptive History-Based Memory

Schedulers. In Proceedings of MICRO, 2004.

[11] D. Kaseridis, J. Stuecheli, and L. John. Minimalist

Open-page: A DRAM Page-mode Scheduling Policy for the

Many-core Era In Proceedings of MICRO, 2007.

[12] J. Stuecheli, D. Kaseridis, D. Daly, H. Hunter, and L.

John. The Virtual Write Queue: Coordinating DRAM and

LastLevel Cache Policies. In Proceedings of ISCA, 2010.

[13] C. Natarajan et al. A study of performance impact of

memory controller features in multi-processor server

environment. In Proceedings of WMPI, 2004.

[14] N. Chatterjee, N. Muralimanohar, R. Balasubramonian,

A. Davis, and N. Jouppi. Staged Reads : Mitigating the

Impact of DRAM Writes on DRAM Reads. In Proceedings of

HPCA, 2012.

[15] B. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting

Phase Change Memory as a Scalable DRAM Alternative. In

Proceedings of ISCA, 2009.

[16] N. Chatterjee and R. Balasubramonian and M. Shevgoor

and S. Pugsley and A. Udipi and A. Shafiee and K. Sudan and

M. Awasthi and Z. Chishti. USIMM: the Utah SImulated

Memory Module. 2012.

[17] http://www.anandtech.com/show/3851/everything-you-

always-wanted-to-know-about-sdram-memory-but-were-

afraid-to-ask/6

[18] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The

PARSEC Benchmark Suite: Characterization and

Architectural Implications. In Proceedings of PACT, 2008

http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask/6
http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask/6
http://www.anandtech.com/show/3851/everything-you-always-wanted-to-know-about-sdram-memory-but-were-afraid-to-ask/6

