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Abstract— Throughout many generations of memory
from DDR1 to DDR3, the internal memory architecture
and the performance related characteristics of DRAM
has experienced little change. Therefore, memory
scheduling algorithm is important to improve total
memory sub-system performance. In this paper, Row
Buffer Locality based Drain Policy (RLDP) is
proposed to enhance the row buffer locality of memory
request sequences. Based on experimental results, the
proposed scheduling algorithm could improve total
execution time by 9.99% compared to FCFS on
average.

I. INTRODUCTION

DRAM (Dynamic Random-Access Memory), the
most commonly used technology for building main
memory for modern computer system, has been a
major performance bottleneck for decades [1].
Throughout many generations of DRAM, from DDR1
to DDRS3, internal memory architecture and
performance-related characteristics of DRAM has
experienced little change [1,2]. Therefore, memory
request scheduling algorithms have been studied to
address the performance bottleneck due to DRAM and
row buffer locality is the key characteristic which
memory request scheduling algorithms exploit [3].

DRAM architecture is segmented into 4 or 8 banks
(DDR2, DDR3 respectively), and each DRAM bank
consists of rows and columns of DRAM cells. Each
bank is accessible through a row buffer (or sense
amplifier) with row address and data in a row buffer
are to be read with column address. Due to this row
buffer which stores data of the most recently accessed
row, the data in the row buffer can be accessed faster
than the data in different rows in the same bank, which
is called row buffer locality [3].

Since Rixner et al. proposed FR-FCFS, memory
scheduling that takes into account of row buffer
locality [4], lots of scheduling ideas have been
published to improve the throughput and the fairness [5,
6, 7, 8, 9, 10, 11]. Write latency involved with tWR
(Write recovery time) is getting worse as technology
scales down and the emerging new memories such as

PCRAM, STT-RAM, and ReRAM have much slower
write performance than current DRAM technology [15].
Performance related with write operation, therefore, is
expected to be a key performance bottleneck in future.

In this paper, we prioritize a request which employs a
benefit of row buffer locality during write drain
operation, resulting in performance improvement. The
proposed write draining policy divides into two parts:
Delayed Drain and RLDP (Row Locality based Drain
Policy). Traditional write draining is to drain writes
when there are no-pending read requests or when the
number of write requests in the write queue exceeds a
specific number. Our observation reveals traditional
write draining policy has more room to be improved by
exploiting row buffer locality of both write and read
requests. In this paper, RLDP (Row Locality based
Drain Policy) is proposed to maximize the benefit of
row buffer locality, combined with the modified
delayed write drain, and the adaptive delayed close
policy.

Our experimental results show that the proposed
algorithm can achieve performance improvement of
9.99% over the baseline memory scheduling algorithm,
FCFS.

I1. PROPOSED ALGORITHM

A. Row Locality based Drain Policy

Write drain algorithm is important for the memory
controller performance. Write drain operation without
considering row buffer hit status of pending requests in
the read queue and write queue can increase the access
or queuing delay by interrupting read requests.

Most efficient conventional write drain scheme so far
is the delayed write drain algorithm [13]. Delayed write
scheme assumes that read request will arrive soon
when the read queue is empty, so that write draining is
delayed for a short time to wait for potential read
request. Write drain is performed if no read request
arrived. When the number of pending write requests in
the write queue exceeds “high watermark™, the write
requests in the queue is compulsorily drained until the
number of pending write requests in the queue reaches
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“low watermark”. However, in the previous write drain
methods, row buffer locality is not considered, so that
the locality of issued request sequence can be broken
by write drain operation.

Figure 1(a) illustrates that the conventional write
drain  mechanism has possibility to degrade
performance. Write drain is started as the number of
write requests in the write queue reaches high
watermark, and it is continued be drained until the
number of write requests in write queue reaches low
watermark. The write requests are represented by WX,
and the read requests are represented by Rx. While R4,
R5 and R9 reference same pages with W0, W1 and W2,
respectively, the pages are closed by W4, W5 and W6
with conventional write drain policy. This leads to
unnecessary row activation when issuing R4, R5 and
R9, thereby degrading performance significantly. In
addition, row buffer locality is attacked when draining
read requests.

In order to consider row buffer locality for write drain
operation, the RLDP (Row Locality based Drain Policy)
is proposed. Figure 1(b) shows how the proposed
algorithm utilizes the row buffer locality in write-to-
read switching. While conventional write drain policy
issues write requests until the number of the write
requests in the write queue reaches low watermark, the
proposed write drain policy issues write requests until
the “row hit” write requests in the write queue are
completely consumed.

The pseudo code of RLDP is described in Figure 2. If
the number of write requests in the write queue reaches
high watermark, write drain is started. Once write drain
is started, “row hit” write requests are issued
consecutively, even if there exists pending read
requests in the read queue. Write to read switching is
occurred only when there is no “row hit” write requests
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Figure 2 Flow Chart of the RLDP

in the write queue with “row hit” read request in the
read queue. Same policy is applied for read to write
switching so that row locality interference is to be
reduced during request drain.

B. Delayed Write Drain & Delayed Close

The RLDP is combined with delayed write drain [13]
and delayed close policy [17] in order to increase
performance and utilize row buffer locality.

Delayed write drain is applied adaptively based on
historical request density. If the number of the requests
is large enough, performing the write request in the
write queue without delay is more effective than
waiting for the incoming read request. Requests are
observed per 10k CPU cycles, and if the number of the
requests for a channel exceeds 200, delayed write drain
policy is disabled.

Per-bank delayed close scheduling algorithm
references row hit rate periodically in order to
determine whether postpone a precharge or not. In
previous research [17], per-bank adaptive delayed close
is performed based on prediction result (success or fail).
This scheme is very simple, but historical statistics
can’t be fully considered. In order to consider historical
information, the number of the read commands and the
active commands for read is observed for each bank. If
a read command is issued to the DRAM, “read history
counter” is incremented while if an active command for
read request is issued to the DRAM, “read history
counter” is decremented. For every 10k CPU cycle,
according to the value of “read history counter”,
delayed close policy is selectively applied. If the value
of the “read history counter” exceeds zero, the delayed
close scheme is applied to the corresponding bank.
Otherwise, pure close policy is applied. The “read
history counter” is attenuated by 0.5 for every 1M CPU
cycle, and the same scheme is applied to the write case



Sum of exec times(10M cyc) Max Slowdown EDP(J.s)
Workload Config
FCFS Close | Proposed FCFS Close Proposed | FCFS | Close | Proposed
MT-canneal 1 chan 418 404 377 NA NA NA 4.23 3.98 3.49
MT-canneal 4 chan 179 167 157 NA NA NA 1.78 1.56 1.37
bl-bl-fr-fr 1 chan 149 147 140 1.20 1.18 1.12 0.50 0.48 0.44
bl-bl-fr-fr 4 chan 80 76 74 1.11 1.05 1.02 0.36 0.32 0.30
cl-cl 1 chan 83 83 79 1.12 1.11 1.06 0.41 0.40 0.37
cl-cl 4 chan 51 46 46 1.05 0.95 0.94 0.44 0.36 0.35
cl-cl-c2-c2 1 chan 242 236 217 1.48 1.46 1.35 1.52 1.44 1.22
cl-cl-c2-¢c2 4 chan 127 118 113 1.18 1.10 1.06 1.00 0.85 0.78
c2 1 chan 44 43 42 NA NA NA 0.38 0.37 0.35
c2 4 chan 30 27 26 NA NA NA 0.50 0.39 0.37
fa-fa-fe-fe 1 chan 228 224 206 1.52 1.48 1.37 1.19 1.14 0.97
fa-fa-fe-fe 4 chan 106 99 92 1.22 1.15 1.06 0.64 | 0.56 0.49
fl-N-sw-sw-c2-c2-fe-fe 4 chan 295 279 261 1.40 1.31 1.21 2.14 1.88 1.65
ﬂb':;‘l‘f:‘“;rcjzlz:::: 4chan| 651 620 581 1.90 1.80 1.68 531 | 476 | 417
fl-sw-c2-c2 1 chan 249 244 224 1.48 1.43 1.30 1.52 1.44 1.20
fl-sw-c2-¢2 4 chan 130 121 117 1.13 1.06 1.03 0.99 | 0.83 0.78
st-st-st-st 1 chan 162 159 151 1.28 1.25 1.18 0.58 0.56 0.50
st-st-st-st 4 chan 86 81 79 1.14 1.08 1.05 0.39 0.35 0.33
Overall 3312 3173 2981 130 124 L7 23.88 [ 21.70 | 19.11
PFP: 3438 | PFP: 3149 | PFP: 2791

Figure 3 Comparison of Key Metrics on Baseline and Proposed Schedulers

as well.

11l1. EXPERIMENTAL RESULTS

A. Basic Algorithms

The proposed algorithm is combined with
conventional close policy, and FR-FCFS. Close
scheduling policy is an approximation of a true close-
page policy. In every idle cycle, the scheduler issues
precharge operations to banks that last serviced a
column read/write. Unlike a true close-page policy, the
precharge is not issued immediately after the column
read/write. FR-FCFS first tries to issue request of any
open row hits, and then first come request. In order to
increase bank-level parallelism, read queue is scanned
sequentially from head in queue until issuable request
in the current cycle is found.

B. Execution Time

Figure 3 shows the total execution time of the
proposed algorithm. The simulation is performed using
USIMM1.3 [16] and PARSEC [18] traces. For the
multi core cases, total execution time is calculated by
adding each execution time of all cores. Figure 4 shows
the simulation results of the base algorithms and the
proposed scheduling algorithm. All the total execution
time is normalized to the execution time of the FCFS
scheduling algorithm.

Among the proposed algorithm, “RLDP+DELAYED-

CLOSE” shows best improvement in terms of the
execution time. Compare to the FCFS scheduling
algorithm, the  DELAYED-CLOSE scheduling
algorithm enhances the execution time by 6.86%, the
RLDP scheduling algorithm enhances the execution
time by 8.78% and RLDP + DELAYED-CLOSE
scheduling algorithm improves the execution time by
9.99%. DELAYED-CLOSE scheduling algorithm
shows an improvement in 1-channel configuration
because the algorithm is designed to selectively delay
precharge command, expecting potential row hit.
RLDP scheduling algorithm shows an improvement for
all cases.

C. HitRate

Figure 5 and 6 shows the row hit rate of the read and
the write requests respectively for each scheduling
algorithm. For the case of the RLCP scheduling
algorithm, the average row hit rate of the write requests
is dramatically enhanced from -22.78% to 7.27%, and
the average row hit rate of the read requests is
enhanced slightly from 19.11% to 19.46%, compare to
the CLOSE+FR-FCFS scheduling algorithm. These
results indicate that conventional write drain policy
hurts the row buffer locality of the write requests. For
the case of the DELAYED-CLOSE scheduling
algorithm, the average row hit rate of the write requests
increased from -22.78% to -12.14% and the average
row hit rate of the read requests is increased from
19.11% to 21.31%. It is shown that DELAYED-
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Figure 6 Row Hit Rate of the Read Request

CLOSE scheduling algorithm effectively utilizes the
row buffer locality for both read and write request.

The row hit rate of the write request for the whole
simulation runtime is captured in Figure 7. Simulation
is performed for the 4-channel configuration and four
multi-threaded canneal traces. The row hit rate is
calculated for every 100k cycles which is represented
by the circle and the cross. The circle represents the
row hit rate of the write request with the CLOSE+FR-
FCFS scheduling algorithm, and it is lower than zero
for the considerable duration of the simulation time.
The cross represents the row hit rate of the write
request with the proposed scheduling algorithm, and it
shows better result compare to the circle due to

elimination of unnecessary active commands.

Briefly, the RLDP scheduling algorithm improves the
row hit rate of the write requests dramatically, and the
DELAYED-CLOSE scheduling algorithm improves the
row hit rates of both read and write requests. Therefore,
the cost of the row conflict is reduced so that the
performance improves. Compared to the CLOSE+FR-
FCFS scheduling algorithm, the row hit rate of the
write request is increased from -22.78% to 11.50%, and
the row hit rate of the read requests is increased from
19.11% to 21.32%. The proposed scheduling algorithm
improves the row hit rates of both read and write
requests, especially for the write request.
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Figure 7 Row Hit Rate of the Write Request

D. Write Caused Interference

Figure 8 shows how the write caused interference is
reduced by the proposed algorithm. The left side of the
graph indicates the amount of time when the number of
the pending requests in the write queue exceeds high
watermark. Right side of the graph indicates the
frequency of the read/write switching that is calculated
by adding the read-to-write switching frequency and
the write-to-read switching frequency. For the “HIGH
WATERMARK RESIDENCE TIME” of the proposed
algorithm is reduced by 69% and 59.57%, compare to
the FCFS scheduling algorithm and the CLOSE+FR-
FCFS scheduling algorithm, respectively. The “READ-
WRITE SWITCHING FREQUENCY” of the proposed
algorithm is increased by 33.78% and 24.67%,
compare to the FCFS scheduling algorithm and the
CLOSE+FR-FCFS scheduling algorithm, separately.
“HIGH WATERMARK RESIDENCE TIME”
represents the un-wanted read to write switching
frequency that hurts row buffer locality. In contrast to
the conventional scheduling algorithm, the read/write
switching of the proposed algorithm is performed at
proper time with low timing overhead, by preventing
the potential row conflict in the future. By reducing un-
wanted read/write switching frequency, the total
number of row conflict can be decreased which leads to
performance improvement.

#Total |Information - -

Register Bit CH |RANK BANK
recent_colacc 64 1 4 2 8
refreshes 256 4 4 2 8
dd_counter 8 2 4
read_history_counter 1216 19 4
write_history counter 1216 19 4 2 8
request_density _counter 28 7 4
delayed_close_valid_r 64 1 4 2 8
delayed_close_valid_w 64 1 4 2 8
delayed_close_counter r 192 3 4 2 8
delayed_close_counter w 192 3 4 2 8
DD_MAX 2 counting 2
HIT_RATE UDPATE_PERIOD 10 counting 1,000
COUNTER_ATTENUATION_PERIOD 18 counting 1M/4
DENSITY_UPDATE_PERIOD 9 counting 500
REQUEST_DENSITY_THRESHOLD 4 counting 10
CLOSE_DELAYING_TIME 3 counting 7

Total 3282

Figure 9 Hardware Overhead of the Proposed
Algorithm

E. Hardware Overhead & Complexity

The hardware overhead of the proposed scheduling
algorithm is shown in Figure 9. The recent_colacc is
the per-bank register that indicates whether a certain
bank is a precharge candidate or not. The refreshes is
the per-bank register that stores the number of refresh
commands issued in 8*tREFI refresh window. The
dd_counter is the per-channel register that is used for
delayed write drain.

The read_history_counter is the register that stores
the difference between the number of the read and the
active for read. The write_history_counter is the
register that stores the difference between the number
of the write and the active for write. The contents of
both counters are reduced by half for every 1M
processor cycle (0.25M memory cycle). The
request_density _counter is the per channel counter that
tracks the read and write commands issued to the
DRAM during a  certain period.  The
delayed close_valid_r and the delayed close valid_w
are the per-bank registers that indicate whether the
corresponding bank is the candidate for delayed close
or not. The delayed close counter r and the
delayed_close_counter_w are the per-bank counter
used for delayed close policy. Additional registers are
needed to store constant value that is referenced



periodically to update registers. Total number of
registers required to implement the proposed
scheduling algorithm is about 3.3k.

It is not complex to design the control logic. Because
RLDP scheduling algorithms only searches for the
write queue and read queue so as to find a row hit
request, it is easy to implement with small control logic
and comparators. For the case of the delayed close
scheduling algorithm, the difference between the
read/write command and the active for read/write
command is considered. It is easy to implement
because the control logic only needs to check if the
counter exceeds zero in order to apply delayed close.

IV. CONCLUSION

RLDP scheduling algorithm is proposed to utilize the
row buffer locality. The proposed scheduling algorithm
improves the row hit rate of both write request and read
request. The number of the active command is reduced
so that the total execution time is improved by the
amount of 5.64% and 9.99% compare to the
CLOSE+FR-FCFS scheduling algorithm, and FCFS
scheduling algorithm, respectively.
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