
Abstract— Throughout many generations of memory 

from DDR1 to DDR3, the internal memory architecture 

and the performance related characteristics of DRAM 

has experienced little change. Therefore, memory 

scheduling algorithm is important to improve total 

memory sub-system performance. In this paper, Row 

Buffer Locality based Drain Policy (RLDP) is 

proposed to enhance the row buffer locality of memory 

request sequences. Based on experimental results, the 

proposed scheduling algorithm could improve total 

execution time by 9.99% compared to FCFS on 

average. 

I. INTRODUCTION 

DRAM (Dynamic Random-Access Memory), the 

most commonly used technology for building main 

memory for modern computer system, has been a 

major performance bottleneck for decades [1]. 

Throughout many generations of DRAM, from DDR1 

to DDR3, internal memory architecture and 

performance-related characteristics of DRAM has 

experienced little change [1,2]. Therefore, memory 

request scheduling algorithms have been studied to 

address the performance bottleneck due to DRAM and 

row buffer locality is the key characteristic which 

memory request scheduling algorithms exploit [3].  

DRAM architecture is segmented into 4 or 8 banks 

(DDR2, DDR3 respectively), and each DRAM bank 

consists of rows and columns of DRAM cells. Each 

bank is accessible through a row buffer (or sense 

amplifier) with row address and data in a row buffer 

are to be read with column address. Due to this row 

buffer which stores data of the most recently accessed 

row, the data in the row buffer can be accessed faster 

than the data in different rows in the same bank, which 

is called row buffer locality [3]. 

Since Rixner et al. proposed FR-FCFS, memory 

scheduling that takes into account of row buffer 

locality [4], lots of scheduling ideas have been 

published to improve the throughput and the fairness [5, 

6, 7, 8, 9, 10, 11]. Write latency involved with tWR 

(Write recovery time) is getting worse as technology 

scales down and the emerging new memories such as 

PCRAM, STT-RAM, and ReRAM have much slower 

write performance than current DRAM technology [15]. 

Performance related with write operation, therefore, is 

expected to be a key performance bottleneck in future. 

In this paper, we prioritize a request which employs a 

benefit of row buffer locality during write drain 

operation, resulting in performance improvement. The 

proposed write draining policy divides into two parts: 

Delayed Drain and RLDP (Row Locality based Drain 

Policy). Traditional write draining is to drain writes 

when there are no-pending read requests or when the 

number of write requests in the write queue exceeds a 

specific number. Our observation reveals traditional 

write draining policy has more room to be improved by 

exploiting row buffer locality of both write and read 

requests. In this paper, RLDP (Row Locality based 

Drain Policy) is proposed to maximize the benefit of 

row buffer locality, combined with the modified 

delayed write drain, and the adaptive delayed close 

policy. 

Our experimental results show that the proposed 

algorithm can achieve performance improvement of 

9.99% over the baseline memory scheduling algorithm, 

FCFS. 

II. PROPOSED ALGORITHM 

A. Row Locality based Drain Policy 

 Write drain algorithm is important for the memory 

controller performance. Write drain operation without 

considering row buffer hit status of pending requests in 

the read queue and write queue can increase the access 

or queuing delay by interrupting read requests. 

Most efficient conventional write drain scheme so far 

is the delayed write drain algorithm [13]. Delayed write 

scheme assumes that read request will arrive soon 

when the read queue is empty, so that write draining is 

delayed for a short time to wait for potential read 

request. Write drain is performed if no read request 

arrived. When the number of pending write requests in 

the write queue exceeds “high watermark”, the write 

requests in the queue is compulsorily drained until the 

number of pending write requests in the queue reaches 
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“low watermark”. However, in the previous write drain 

methods, row buffer locality is not considered, so that 

the locality of issued request sequence can be broken 

by write drain operation. 

Figure 1(a) illustrates that the conventional write 

drain mechanism has possibility to degrade 

performance. Write drain is started as the number of 

write requests in the write queue reaches high 

watermark, and it is continued be drained until the 

number of write requests in write queue reaches low 

watermark. The write requests are represented by Wx, 

and the read requests are represented by Rx. While R4, 

R5 and R9 reference same pages with W0, W1 and W2, 

respectively, the pages are closed by W4, W5 and W6 

with conventional write drain policy. This leads to 

unnecessary row activation when issuing R4, R5 and 

R9, thereby degrading performance significantly. In 

addition, row buffer locality is attacked when draining 

read requests.  

In order to consider row buffer locality for write drain 

operation, the RLDP (Row Locality based Drain Policy) 

is proposed. Figure 1(b) shows how the proposed 

algorithm utilizes the row buffer locality in write-to-

read switching. While conventional write drain policy 

issues write requests until the number of the write 

requests in the write queue reaches low watermark, the 

proposed write drain policy issues write requests until 

the “row hit” write requests in the write queue are 

completely consumed.  

The pseudo code of RLDP is described in Figure 2. If 

the number of write requests in the write queue reaches 

high watermark, write drain is started. Once write drain 

is started, “row hit” write requests are issued 

consecutively, even if there exists pending read 

requests in the read queue. Write to read switching is 

occurred only when there is no “row hit” write requests 

in the write queue with “row hit” read request in the 

read queue. Same policy is applied for read to write 

switching so that row locality interference is to be 

reduced during request drain. 

B. Delayed Write Drain & Delayed Close 

The RLDP is combined with delayed write drain [13] 

and delayed close policy [17] in order to increase 

performance and utilize row buffer locality.  

Delayed write drain is applied adaptively based on 

historical request density. If the number of the requests 

is large enough, performing the write request in the 

write queue without delay is more effective than 

waiting for the incoming read request. Requests are 

observed per 10k CPU cycles, and if the number of the 

requests for a channel exceeds 200, delayed write drain 

policy is disabled. 

Per-bank delayed close scheduling algorithm 

references row hit rate periodically in order to 

determine whether postpone a precharge or not. In 

previous research [17], per-bank adaptive delayed close 

is performed based on prediction result (success or fail). 

This scheme is very simple, but historical statistics 

can‟t be fully considered. In order to consider historical 

information, the number of the read commands and the 

active commands for read is observed for each bank. If 

a read command is issued to the DRAM, “read history 

counter” is incremented while if an active command for 

read request is issued to the DRAM, “read history 

counter” is decremented.  For every 10k CPU cycle, 

according to the value of “read history counter”, 

delayed close policy is selectively applied. If the value 

of the “read history counter” exceeds zero, the delayed 

close scheme is applied to the corresponding bank. 

Otherwise, pure close policy is applied. The “read 

history counter” is attenuated by 0.5 for every 1M CPU 

cycle, and the same scheme is applied to the write case 



as well. 

III. EXPERIMENTAL RESULTS 

A. Basic Algorithms 

The proposed algorithm is combined with 

conventional close policy, and FR-FCFS. Close 

scheduling policy is an approximation of a true close-

page policy. In every idle cycle, the scheduler issues 

precharge operations to banks that last serviced a 

column read/write. Unlike a true close-page policy, the 

precharge is not issued immediately after the column 

read/write. FR-FCFS first tries to issue request of any 

open row hits, and then first come request. In order to 

increase bank-level parallelism, read queue is scanned 

sequentially from head in queue until issuable request 

in the current cycle is found.  

B. Execution Time 

Figure 3 shows the total execution time of the 

proposed algorithm. The simulation is performed using 

USIMM1.3 [16] and PARSEC [18] traces. For the 

multi core cases, total execution time is calculated by 

adding each execution time of all cores. Figure 4 shows 

the simulation results of the base algorithms and the 

proposed scheduling algorithm. All the total execution 

time is normalized to the execution time of the FCFS 

scheduling algorithm.  

Among the proposed algorithm, “RLDP+DELAYED-

CLOSE” shows best improvement in terms of the 

execution time. Compare to the FCFS scheduling 

algorithm, the DELAYED-CLOSE scheduling 

algorithm enhances the execution time by 6.86%, the 

RLDP scheduling algorithm enhances the execution 

time by 8.78% and RLDP + DELAYED-CLOSE 

scheduling algorithm improves the execution time by 

9.99%. DELAYED-CLOSE scheduling algorithm 

shows an improvement in 1-channel configuration 

because the algorithm is designed to selectively delay 

precharge command, expecting potential row hit. 

RLDP scheduling algorithm shows an improvement for 

all cases. 

C. Hit Rate 

Figure 5 and 6 shows the row hit rate of the read and 

the write requests respectively for each scheduling 

algorithm. For the case of the RLCP scheduling 

algorithm, the average row hit rate of the write requests 

is dramatically enhanced from -22.78% to 7.27%, and 

the average row hit rate of the read requests is 

enhanced slightly from 19.11% to 19.46%, compare to 

the CLOSE+FR-FCFS scheduling algorithm. These 

results indicate that conventional write drain policy 

hurts the row buffer locality of the write requests. For 

the case of the DELAYED-CLOSE scheduling 

algorithm, the average row hit rate of the write requests 

increased from -22.78% to -12.14% and the average 

row hit rate of the read requests is increased from  

19.11% to 21.31%. It is shown that DELAYED-



CLOSE scheduling algorithm effectively utilizes the 

row buffer locality for both read and write request.  

The row hit rate of the write request for the whole 

simulation runtime is captured in Figure 7. Simulation 

is performed for the 4-channel configuration and four 

multi-threaded canneal traces. The row hit rate is 

calculated for every 100k cycles which is represented 

by the circle and the cross. The circle represents the 

row hit rate of the write request with the CLOSE+FR-

FCFS scheduling algorithm, and it is lower than zero 

for the considerable duration of the simulation time. 

The cross represents the row hit rate of the write 

request with the proposed scheduling algorithm, and it 

shows better result compare to the circle due to 

elimination of unnecessary active commands.  

Briefly, the RLDP scheduling algorithm improves the 

row hit rate of the write requests dramatically, and the 

DELAYED-CLOSE scheduling algorithm improves the 

row hit rates of both read and write requests. Therefore, 

the cost of the row conflict is reduced so that the 

performance improves. Compared to the CLOSE+FR-

FCFS scheduling algorithm, the row hit rate of the 

write request is increased from -22.78% to 11.50%, and 

the row hit rate of the read requests is increased from 

19.11% to 21.32%. The proposed scheduling algorithm 

improves the row hit rates of both read and write 

requests, especially for the write request.  

 

 

 

 

 



D. Write Caused Interference 

Figure 8 shows how the write caused interference is 

reduced by the proposed algorithm. The left side of the 

graph indicates the amount of time when the number of 

the pending requests in the write queue exceeds high 

watermark. Right side of the graph indicates the 

frequency of the read/write switching that is calculated 

by adding the read-to-write switching frequency and 

the write-to-read switching frequency. For the “HIGH 

WATERMARK RESIDENCE TIME” of the proposed 

algorithm is reduced by 69% and 59.57%, compare to 

the FCFS scheduling algorithm and the CLOSE+FR-

FCFS scheduling algorithm, respectively. The “READ-

WRITE SWITCHING FREQUENCY” of the proposed 

algorithm is increased by 33.78% and 24.67%, 

compare to the FCFS scheduling algorithm and the 

CLOSE+FR-FCFS scheduling algorithm, separately. 

“HIGH WATERMARK RESIDENCE TIME” 

represents the un-wanted read to write switching 

frequency that hurts row buffer locality.  In contrast to 

the conventional scheduling algorithm, the read/write 

switching of the proposed algorithm is performed at 

proper time with low timing overhead, by preventing 

the potential row conflict in the future. By reducing un-

wanted read/write switching frequency, the total 

number of row conflict can be decreased which leads to 

performance improvement.   

E. Hardware Overhead & Complexity 

The hardware overhead of the proposed scheduling 

algorithm is shown in Figure 9. The recent_colacc is 

the per-bank register that indicates whether a certain 

bank is a precharge candidate or not. The refreshes is 

the per-bank register that stores the number of refresh 

commands issued in 8*tREFI refresh window. The 

dd_counter is the per-channel register that is used for 

delayed write drain.  

The read_history_counter is the register that stores 

the difference between the number of the read and the 

active for read. The write_history_counter is the 

register that stores the difference between the number 

of the write and the active for write. The contents of 

both counters are reduced by half for every 1M 

processor cycle (0.25M memory cycle). The 

request_density_counter is the per channel counter that 

tracks the read and write commands issued to the 

DRAM during a certain period. The 

delayed_close_valid_r and the delayed_close_valid_w 

are the per-bank registers that indicate whether the 

corresponding bank is the candidate for delayed close 

or not. The delayed_close_counter_r and the 

delayed_close_counter_w are the per-bank counter 

used for delayed close policy. Additional registers are 

needed to store constant value that is referenced 



periodically to update registers. Total number of 

registers required to implement the proposed 

scheduling algorithm is about 3.3k.  

It is not complex to design the control logic. Because 

RLDP scheduling algorithms only searches for the 

write queue and read queue so as to find a row hit 

request, it is easy to implement with small control logic 

and comparators. For the case of the delayed close 

scheduling algorithm, the difference between the 

read/write command and the active for read/write 

command is considered. It is easy to implement 

because the control logic only needs to check if the 

counter exceeds zero in order to apply delayed close.   

IV. CONCLUSION  

RLDP scheduling algorithm is proposed to utilize the 

row buffer locality. The proposed scheduling algorithm 

improves the row hit rate of both write request and read 

request. The number of the active command is reduced 

so that the total execution time is improved by the 

amount of 5.64% and 9.99% compare to the 

CLOSE+FR-FCFS scheduling algorithm, and FCFS 

scheduling algorithm, respectively.  
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