
High Performance Memory Access Scheduling Using
Compute-Phase Prediction and Writeback-Refresh Overlap

Yasuo Ishii†‡ Kouhei Hosokawa† Mary Inaba† Kei Hiraki†
The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, Japan †
NEC Corporation, 1-10, Nisshin-cho, Fuchu-shi, Tokyo, Japan ‡
{yishii, khosokawa, mary, hiraki}@is.s.u-tokyo.ac.jp

ABSTRACT
In this paper, we propose two novel memory access schedul-
ing algorithms: (1) Compute-Phase Prediction and (2)
Writeback-Refresh Overlap. Compute-Phase Prediction is
a fine-grain thread-priority prediction technique. It esti-
mates the execution phase of the thread, whether compute-
intensive or memory-intensive with fine granularity, and
gives higher priority to the read requests from the thread
in the compute-intensive phase. Writeback-Refresh Overlap
issues pending write commands and a refresh command of a
rank of multi-rank DRAM system at a time, so that a rank
of DRAM is refreshed while the memory bus is occupied by
the write requests of the other ranks. This eliminates the
idle time of the memory bus on a multi-rank DRAM system
because the memory controller issues write requests for the
rank that is not refreshing during the time the other rank is
refreshing.

We implement both features on an optimized memory ac-
cess controller, which uses a 2469B budget. We evaluate the
optimized memory controller using the memory scheduling
championship framework. The optimized memory controller
improves the execution time by 7.3%, the energy-delay prod-
uct by 13.6% and the performance-fairness product by 12.2%
over the baseline memory controller.

1. INTRODUCTION
As the semiconductor process technology has been im-

proved, the performance gap between the processor chip and
the DRAM memory system has increased. Modern multi-
core processors generate multiple memory access sequences
that have different processing context from each other. The
memory controllers handle such complicated memory ac-
cesses with avoiding starvation, saving power consumption,
and minimizing the overall running time of all processors. To
achieve this goal, the memory controller should treat each
thread differently depending on its executing phase. Exist-
ing work [3, 4] shows that it is effective to give a higher prior-
ity to the read commands of the compute-intensive phase, in
which the corresponding thread mainly executes the calcula-
tion and issues few memory requests. Besides the executing
phase, DRAM refreshing is the important problem of the
modern memory controllers because the refreshing penalty
increases as the DRAM density increases. Elastic Refreshing
[6] shows that a reduction of the DRAM refreshing penalty
can improve the system throughput.

Based on these previous works, we focus on two
main research themes: Computation-Phase Prediction and
Writeback-Refresh Overlap. First, Compute-Phase Pre-

diction determines the thread-priority with fine-granularity
based on the memory access frequency. When the execution
phase of a thread switches from compute-intensive phase to
memory-intensive phase, Compute-Phase Prediction detects
the transition immediately and changes the thread priority.
Compute-Phase Prediction improves the timeliness of the
phase transition detection, while the existing methods take
millions of cycles. Second, Writeback-Refresh Overlap issues
pending write commands stored in the write queue while a
rank is in a refreshing. Previously, the refresh commands
are issued to all ranks simultaneously, so the bandwidth
is wastefully left idle in the refreshing period. Writeback-
Refresh Overlap strategy can utilize such a wasteful band-
width, leading to the effective processing of the write queue.

This paper is organized as follows. We describe the prob-
lem descriptions in Section 2. In Section 3, we propose
Compute-Phase Prediction and Writeback-Refresh Overlap.
In Section 4, we introduce a detail design of the memory con-
troller for the memory scheduling championship. In Section
5, we evaluate our optimized memory controller. Finally, in
Section 6, we conclude this paper.

2. PROBLEM DESCRIPTION

2.1 Thread-Priority Control
First-Ready First-Come-First-Serve (FR-FCFS) [5] mem-

ory scheduling exploits row-buffer locality by prioritizing the
memory requests that access an already activated row. FR-
FCFS reduces the average memory latency because row-hit
memory access reduces the latency of the activations. How-
ever, FR-FCFS causes unfairness on multi-core processors
because it always prioritizes row-hit memory access.

To improve the fairness and the system throughput, the
memory controller should prioritize the requests from a
specified thread. Generally, the memory controller gives
high priority to the request from a thread in the compute-
intensive phase, in which a thread issues few memory re-
quests, because the progress per memory request from
such thread is larger than that from the thread in the
memory-intensive phase. When the memory controller pri-
oritizes the requests belonging to the compute-intensive
phase, the system throughput and the fairness are im-
proved. However, it requires fine-grain detection of the
execution phase transition to improve the performance be-
cause the phase frequently changes between the compute-
intensive and memory-intensive. The memory controller
cannot give appropriate priority without the timeliness,
which even worsen the performance. Unfortunately, existing



Table 1: Refresh penalty for each DRAM capacity
1G bit 2G bit 4G bit

Refresh cycle (tRFC) 110 ns 160 ns 260 ns
Refresh interval (tREFI) 7800 ns 7800 ns 7800 ns
Penalty (tRFC / tREFI) 1.4 % 2.1 % 3.3 %

thread-priority schemes cannot detect the change of the exe-
cution phase with fine granularity. For example, ATLAS [3]
and Thread Cluster Memory Scheduling [4] determine the
thread-priority on the boundary of each quantum, which
typically takes millions of cycles.

2.2 Penalty of DRAM Refresh
As the density of the DRAM cells increases, the refresh

cycle time (tRFC) also increases. Table 1 shows the rela-
tionship between the DRAM capacity and the refresh cycle
time. On the latest DRAM device, the penalty of the refresh
is 3.3% of the refresh interval time (tREFI). This means that
the modern memory system wastes 3.3% of available mem-
ory bandwidth. Unfortunately, many studies of DRAM con-
trollers have not considered the refresh penalty because its
performance impact was not large. Therefore, most of the
previous memory controllers simply issue the refresh com-
mand when the refresh interval timer has expired. However,
this prevents memory controller from issuing the memory
access during the DRAM refreshing.

Elastic Refresh [6] mitigates the refresh penalty by issuing
the refresh command when the memory bus is idle. However,
this scheme cannot mitigate the penalty while the memory
bus is not idle. Therefore, such existing work cannot resolve
the problem described in this section.

3. SCHEDULING ALGORITHMS
In this section, we propose two novel memory ac-

cess scheduling algorithms: Compute-Phase Prediction and
Writeback-Refresh Overlap.

3.1 Compute-Phase Prediction
Compute-Phase Prediction is a fine-grain thread-priority

prediction technique. It improves the timeliness and the
accuracy of the thread-priority control of Thread Cluster
Memory Scheduling. It categorizes the execution phase of
each thread into one of two types, the compute-intensive
phase and the memory-intensive phase. While Thread Clus-
ter Memory Scheduling categorizes the workload based on
the memory traffic of L2 cache miss and the consumption
of memory bandwidth, Compute-Phase Prediction uses the
committed instruction count at the occurrence of a cache
miss to estimate the execution phase.

Compute-Phase Prediction uses two saturation counters,
the distance counter and the interval counter, to estimate
the execution phase. The interval counter counts the num-
ber of executed instructions from previous cache misses;
therefore this counter is incremented on the commit stage
of the processor pipeline. When the interval counter reaches
the maximum value (Maxinterval), Compute-Phase Predic-
tion assumes that the thread is in the compute-intensive
phase. The distance counter measures the amount of the
off-chip memory traffic. With heavy off-chip memory traffic,
the corresponding thread is assumed to be in the memory-
intensive phase. The distance counter is incremented when

Compute Memory Compute

0 1 2 3 0 1 0Distance Count

Cache Miss

Execution Phase

0 1 2 3 0 1 2 3Interval Count

(A) (B)

2

Figure 1: Overview of Compute-Phase Prediction.
Maxdistance = Maxinterval = 3 in this example.

the cache miss is observed on the private L2 cache and
cleared when the interval counter is saturated. When the
distance counter reaches the maximum value (Maxdistance),
Compute-Phase Prediction assumes that the thread is in the
memory-intensive phase. Each counter counts the executed
instructions instead of the number of processor cycles that
is easily affected on the execution condition. To calculate
the interval counter and the distance counter on each mem-
ory controller, the processor cores attach the committed in-
struction count for the memory requests. This reduces the
communication cost of the run-time information among all
memory channels that is required in Thread Cluster Memory
scheduling.

Figure 1 shows an example of the prediction. We as-
sume both Maxinterval and Maxdistance are 3 in this ex-
ample. After the third cache miss is observed in Figure
1(A), the corresponding thread is treated as the memory-
intensive phase because the amount of the off-chip memory
traffic (L2 cache misses) exceeds the threshold. After the
series of the cache misses is finished in Figure 1(B), the in-
terval counter starts to count. When the interval counter
achieves Maxinterval, the corresponding thread is treated
as the compute-intensive phase because enough instructions
are executed without heavy off-chip memory traffic.

We compare Compute-Phase Prediction with Thread
Cluster Memory Scheduling, which is the latest memory ac-
cess scheduling strategy. Figure 2 shows the memory traf-
fic of Blackscholes. Each plot is the memory traffic per
1000 instructions. In Figure 2, the background color of the
compute-intensive phase is gray and the background color
of the memory-intensive phase is white. Thread Cluster
Memory Scheduling cannot detect several memory-intensive
phases, as shown in Figure 2(A), and several compute-
intensive phases, as shown in Figure 2(B), because its predic-
tion result is not updated with fine granularity. On the other
hand, Compute-Phase Prediction categorizes those parts ap-
propriately (the detailed parameters are shown in Section 5)
because its algorithm uses the instruction count distance of
the cache misses.

3.2 Writeback-Refresh Overlap
As described in previous section, all memory commands

are stalled during the DRAM refresh, when the memory
controller issues the refresh commands for all ranks simul-
taneously. Figure 3(A) shows a typical refresh situation;
the memory controller issues the refresh command when the
tREFI timer is expired.1

1We assume that the refresh commands for multiple ranks
are issued simultaneously because this policy is simple and
reasonable. The memory controllers are allowed to issue
refresh commands rank by rank, but this often increases the
stall time of the read requests to access the refreshing rank.



0

10

20

30

40

50

60

70

80

90

100
M

is
s 

p
e

r 
K

il
o

 I
n

st
ru

ct
io

n
s 

(M
P

K
I)

Predicted Compute-Phase

(A) (B) (A)

(1) Thread Cluster Memory Scheduling

(2) Compute-Phase Prediction

0

10

20

30

40

50

60

70

80

90

100

M
is

s 
p

e
r 

K
il

o
 I

n
st

ru
ct

io
n

s 
(M

P
K

I)

(A) (B) (A)
(2) Compute-Phase Prediction

Figure 2: Phase prediction results for Blackscholes.
The background of the compute-intensive phase is
gray and the background of the memory-intensive
phase is white.

To mitigate the refresh penalty of modern DRAM devices,
we propose Writeback-Refresh Overlap. Figure 3(B) shows
the refresh strategy of Writeback-Refresh Overlap; the mem-
ory controller schedules the refresh commands, overlapped
with the write commands. To saturate the limited mem-
ory bus, Writeback-Refresh Overlap holds many write com-
mands on the command queue in order to find row-buffer
locality from pending memory requests for the rank that is
not refreshing. To retain pending write commands effec-
tively, the memory controller with Writeback-Refresh Over-
lap prioritizes the issuing of the write commands for the
rank that is the next refresh target. On Writeback-Refresh
Overlap, the refresh commands are overlapped with write
commands instead of read commands. This is because the
pending read commands cause the waiting processor to stall,
whereas the write commands do not cause processor stall be-
cause the processor cores do not need to wait for the reply.
For this characteristic, write requests can be delayed for the
sake of committing read requests, and they are flushed at
the next refresh period. The implementation of Writeback-
Refresh Overlap uses the extended memory controller state
for coarse-grain scheduling control and priority policy to
control the pending write commands.

Writeback-Refresh Overlap can collaborate with the other
techniques. When the memory controller uses much larger
write buffer by using virtual write queue feature [7], the
memory controller utilizes the limited memory bus much
more efficiently because the memory controller finds the row-
buffer locality from the much larger write queue. Even if
there are not enough pending write commands, the prefetch
requests can also be utilized to saturate the memory bus.
As shown in the other study [2], stream prefetching is an
efficient way to improve performance.

tRFCtREFI

Rank 0

Rank 1

Writeback

Refresh

Bus

Read/Write

Write Only

(A) Normal Refresh Scheme

(B) Writeback-Refresh Overlap

Rank 0

Rank 1

Bus

Figure 3: Overview of Writeback-Refresh Overlap

Write Queue (WQ)

Read Queue (RQ)

Core

M
U
X

DRAM

Controller Logic

Thread Priority

Controller State

REFI

Interval 

Counter

Distance

Counter

Refresh Q (RefQ)
REFI

TIMER

Figure 4: Overview of the optimized controller

4. IMPLEMENTATION
We implement Compute-Phase Prediction and Writeback-

Refresh Overlap on the optimized memory controller. Fig-
ure 4 shows a block diagram of the controller. The mem-
ory controller has several states to determine coarse-grain
scheduling policy. The memory controller also employs sev-
eral queues to store the memory requests from each proces-
sor core. The actual memory requests are pushed to the
read command queue (RQ) and the write command queue
(WQ). For Compute-Phase Prediction, the number of the
committed instructions is attached to the memory requests.
This additional information is stored in the thread-priority
control block. The Refresh command queue (RefQ) holds
the refresh commands that are scheduled in the next refresh
timing window. The refresh commands are pushed to the re-
fresh queue when the refresh interval timer has expired. The
controller logic uses the information stored in the controller
to determine the next issuing command.

4.1 Controller State
In Writeback-Refresh Overlap, the memory controller has

to saturate the memory bus by writing data during the
DRAM refresh. To saturate the memory bus, the memory
controller has to hold enough pending write commands in
the write command queue. To realize this feature, the mem-
ory controller employs four internal states: READ, WRITE,
BEFORE REFRESH, and REFRESH. The state diagram is
shown in Figure 5. On READ, the controller schedules read
requests to minimize the stall time of the processor cores.



READWRITE
BEFORE

REFRESH
REFRESH

#WQ > θR→W
AND

#RefQ = 0

#WQ > θR→W
AND

#RefQ > 0

(refresh time is expired) OR (#WQ < θRef→R)#WQ < θW→R

issue

REFRESH

command

Figure 5: State diagram of the memory controller

On WRITE, the controller schedules write requests so that
they do not spill over to the write command queue. As de-
scribed in the previous work [7], the controller divides the
read phase and the write phase to minimize the turnaround
time (tWTR penalty) of the bus. On BEFORE REFRESH,
the controller stops issuing memory requests for the rank,
which is the next refresh target. On REFRESH, the con-
troller issues the pending write commands to a rank that is
not refreshing.

The state transition from READ to BEFORE REFRESH
or WRITE is performed when the number of pending
write commands in the write command queue is over the
specified threshold (θR→W ). The state transits to BE-
FORE REFRESH when the controller has at least one
scheduled refresh, and when the number of pending write
commands to the rank that is not the target of the next re-
fresh occupies more than a half of the write command queue.
Otherwise, the controller state simply transits to WRITE.
Once the state transits to BEFORE REFRESH, the con-
troller stops all memory requests for the rank of the refresh
target. When the refresh conditions for the rank of the re-
fresh target are met, the controller issues a refresh command
and transits to REFRESH. When the amount of the pending
write commands becomes smaller than the specified thresh-
old (θW→R, θRef→R), REFRESH and WRITE are changed
to READ. The state transition from REFRESH to READ
also occurs when the refresh cycle time (tRFC) has expired.

4.2 Priority of Memory Requests
The controller categorizes the memory requests into two

priority levels. The priority policies are different between
the read requests and the write requests. We first describe
priority strategy for read requests, and then describe that
for write requests. To track the priority level, each read
command has three additional flags: the timeout flag, the
priority-level flag, and the row-buffer locality flag. These
flags are attached to all read / write commands.

4.2.1 Read Requests
Our memory controller determines the priority of pend-

ing request commands based on the thread-priority by using
Compute-Phase Prediction. Each processor core attaches
the number of committed instructions in order to determine
the execution phase (memory-intensive phase or compute-
intensive phase) of the corresponding thread. When the read
requests arrive at the memory controller, they compare their
addresses with the addresses of the other pending commands
and mark the row-buffer locality flags on the commands that
are accessing the same row. This address check is mainly
performed for the merging of read commands and for the

forwarding of write data. The memory controller also up-
dates the priority of the existing memory requests in the
request queues.

We also add extra priority to the read commands that
have low memory-level-parallelism (MLP). When the num-
ber of the read commands in one memory controller becomes
less than the threshold (θMLP ), the memory controller in-
creases the priority of these memory read commands like
Minimalist [2]. As well as the MLP, the pending requests
are promoted to priority requests when the memory requests
stay in the read command queue for more than θpriority cy-
cles. This is to avoid the starvation of the corresponding
processor core. When a read request stays the command
queue for a long time (θtimeout cycles), the controller gives
maximum priority to the requests.

When the read command that belongs to the compute-
intensive phase is pushed to the read command queue, all
read commands that come from the same thread are pro-
moted to priority requests, in order to minimize memory
access latency. Otherwise, the priority read commands are
not updated.

4.2.2 Write Requests
The priority of the write command is different from that

of the read commands, because the latency of the write re-
quests does not affect the execution time. We try to control
the row-buffer locality through prioritizing the write com-
mands for the rank that is the next refresh target. This
scheduling policy increases the pending write commands for
the other rank that is not the next refresh target. This
helps to increase the row-hit write commands during the
next DRAM refresh. Moreover, the memory controller mod-
ifies the priority by using the controller state. On READ,
the controller gives higher priority to the write commands
whose row-buffer locality flag is not set, because it is trying
to schedule read access. Thus, the controller saves the row-
hit commands that occupy the memory bus for a long time
(typically tens of cycles).

This helps to increase the number of the pending write
commands to the rank that is not the target of the next re-
fresh. During REFRESH, the available memory bandwidth
is mainly restricted by the tFAW and tRRD. Therefore, the
controller has to exploit row-buffer locality to improve the
available memory bandwidth. On WRITE, the controller
gives higher priority to the write commands with a row-
buffer locality flag, in order to maximize the write traffic.
This priority is determined by the number of requests that
access the same row. The threshold of the priority is deter-
mined by the number of activations that are issued during
the current tFAW timing window.

4.3 Request Scheduling
We describe the scheduling policy of the memory requests.

Our memory controller is optimized to schedule read / write
requests from each core. To support optimized memory
scheduling, the memory controller also issues other com-
mands (refresh, precharge, and autoprecharge).

4.3.1 Read / Write Commands
The memory controller determines which command to is-

sue, based on the memory controller state and the request
priority. The overall rule for priority control is shown in
Table 2. On READ, the read commands are first priori-



Table 2: Scheduling priority policy. The old requests are prioritized within the same priority level.
(A) READ STATE (B) OTHER STATE

Priority Req. Normal Req. Priority Req. Normal Req. Comments
Timeout Read Request 1 (Highest) 1 (Highest) 2 2 Request lifetime > θtimeout

Low-MLP Read Request 2 2 3 3 #RQ of the thread < θMLP

Read Data (Row-Hit) 3 6 4 5 Row-hit read requests
Read Activate / Precharge 4 7 6 Not Issue
Write Data (Row-Hit) 5 5 1 (Highest) 1 (Highest) Row-hit write requests
Write Activate / Precharge 8 9 (Lowest) 7 8 (Lowest)

Table 3: Parameters of the optimized controller
θR→W (WQ size * 3/4)
θW→R (WQ size * 1/2) − 6
θRef→R (WQ size * 1/4) + 2
Maxdistance 13 memory requests
Maxinterval (compute-intensive) 220 instructions
Maxinterval (memory-intensive) 970 instructions
θMLP 2 requests
θpriority 100,000 cpu cycles
θtimeout 1,000,000 cpu cycles

tized. In the other states (WRITE, BEFORE REFRESH,
and REFRESH), the write commands are first prioritized.
“Not Issue” indicates that the corresponding requests are
never issued in the corresponding controller state. Activate
/ precharge commands with normal priority for the next re-
fresh target rank are prioritized over the requests for the
other ranks.

4.3.2 Refresh Commands
Refresh commands are issued in the following two cases:

the state is BEFORE REFRESH, and the read command
queue is empty. On BEFORE REFRESH, a refresh com-
mand is immediately issued if all conditions to issue the
refresh command are met. When the read command queue
is empty, the memory controller schedules the refresh com-
mands, such as Elastic Refresh [6]. The refresh command
is issued after the idle delay time, which is proportional to
the number of the scheduled refresh commands. During the
refresh, the other rank drains the pending write commands.
These scheduling priorities are higher than the normal read
/ write command. After the refresh command is finished,
the next refresh is scheduled for the other rank. When the
refresh commands have not been issued before the deadline,
the memory controller stops all operations and issues refresh
commands (force refresh mode).

4.3.3 Precharge Commands
The memory controller also issues precharge requests to

the already opened row. The aggressive precharge command
is issued when the corresponding row meets the following
conditions: there are no pending read / write commands
to the row and the corresponding rank allows at least one
activation command in the current tFAW timing window.
The memory controller issues autoprecharge commands with
read / write commands when the scheduled read / write
commands do not have other read / write commands that
can access the same row. To detect such requests, the row-
buffer locality flag is used. The flag is set when the suc-
cessive read / write commands have arrived at the memory

Table 4: Hardware budget count. Total hardware
budget count is 2469B for 16-core, 4-channel system.
We assume 160 read requests per core and 96 write
requests per channel for our evaluation.
(A) Per-Request
Resource Budget
Row-hit Status 1-bit
Priority Level 1-bit
Timeout Status 1-bit

Per-Request 3-bit

Total Budget 1104B

(B) Per-Channel
Resource Budget
Controller State 2-bit
Last access bank 3-bit
Last access rank 1-bit
Refresh Control 18B
tFAW Tracking 64.5B
Core Tracking 258B
Per-Channel 341.25B

Total Budget 1365B

controller. This is feasible because the incoming command
checks the addresses of all read / write commands that have
already been stored in the read / write queue to support
read-merging and write-data forwarding.

5. PERFORMANCE EVALUATION

5.1 Controller Configuration
We implement our optimized controller on the mem-

ory scheduling championship framework [1]. This con-
troller uses both Compute-Phase Prediction and Writeback-
Refresh Overlap. The evaluation environment provides two
configurations, which differ in the number of their memory
channels. In addition, each configuration uses different ad-
dress mapping, write queue size, and core configuration. We
change several parameters in order to adapt to each mem-
ory configuration. Table 3 shows the basic parameters of
the memory controller. Each parameter is described in the
previous section. We use different Maxinterval values for the
compute-intensive phase and the memory-intensive phase.

Table 4 shows the total hardware cost of the memory con-
troller. The optimized controller attaches additional storage
for each memory request and for each memory controller.
The table shows the budget amount for the 4-channel con-
figurations. The maximum number of read commands is
estimated through the number of the entries in the reorder
buffer. In the 4-channel configuration, we assume 160 read
requests, which is the number of reorder buffer entries, and
is also the maximum number of in-flight requests. The total
budget is 2469B which is much less than 68KB.

5.2 Evaluation Result
We evaluate the optimized memory controller using the

memory scheduling championship framework. The evalu-



Table 5: Comparison of key metrics on baseline and proposed memory controllers.
Workload Config Sum of exec times (10 M cyc) Max slowdown EDP (J.s)

FCFS Close Proposed FCFS Close Proposed FCFS Close Proposed

MT-canneal 1 chan 418 404 367 NA NA NA 4.23 3.98 3.76
MT-canneal 4 chan 179 167 156 NA NA NA 1.78 1.56 1.35
bl-bl-fr-fr 1 chan 149 147 137 1.20 1.18 1.10 0.50 0.48 0.42
bl-bl-fr-fr 4 chan 80 76 74 1.11 1.05 1.02 0.36 0.32 0.30

c1-c1 1 chan 83 83 78 1.12 1.11 1.05 0.41 0.40 0.36
c1-c1 4 chan 51 46 46 1.05 0.95 0.94 0.44 0.36 0.36

c1-c1-c2-c2 1 chan 242 236 213 1.48 1.46 1.33 1.52 1.44 1.23
c1-c1-c2-c2 4 chan 127 118 113 1.18 1.10 1.06 1.00 0.85 0.78

c2 1 chan 44 43 42 NA NA NA 0.38 0.37 0.34
c2 4 chan 30 27 27 NA NA NA 0.50 0.39 0.39

fa-fa-fe-fe 1 chan 228 224 200 1.52 1.48 1.33 1.19 1.14 0.92
fa-fa-fe-fe 4 chan 106 99 92 1.22 1.15 1.06 0.64 0.56 0.49

fl-fl-sw-sw-c2-c2-fe-fe 4 chan 295 279 257 1.40 1.31 1.21 2.14 1.88 1.58
fl-fl-sw-sw-c2-c2-fe-fe- 4 chan 651 620 579 1.90 1.80 1.64 5.31 4.76 4.06
-bl-bl-fr-fr-c1-c1-st-st

fl-sw-c2-c2 1 chan 249 244 220 1.48 1.43 1.26 1.52 1.44 1.14
fl-sw-c2-c2 4 chan 130 121 117 1.13 1.06 1.02 0.99 0.83 0.77
st-st-st-st 1 chan 162 159 147 1.28 1.25 1.16 0.58 0.56 0.48
st-st-st-st 4 chan 86 81 78 1.14 1.08 1.04 0.39 0.35 0.33
Overall 3312 3173 2941 1.30 1.24 1.16 23.88 21.70 19.06

PFP: 3438 PFP: 3149 PFP: 2721

ation result is shown in Table 5. As shown in the table,
our optimized memory controller consistently outperforms
the other scheduling algorithms. It reduces the system ex-
ecution time by 7.3% over closed page policy, which shows
the best performance in the baseline. Our controller also
improves the performance-fairness product (PFP) by 13.6%
and the energy-delay product (EDP) by 12.2%.

6. CONCLUDING REMARKS
We have proposed two new memory scheduling algorithms

to improve system throughput. Proposed methods are
Compute-Phase Prediction and Writeback-Refresh Overlap.
Compute-Phase Prediction utilizes thread behavior to pri-
oritize requests that belong to the compute-intensive phase.
As shown in Figure 2, Compute-Phase Prediction estimates
the execution phase of the thread more accurately than ex-
isting prediction algorithms. The proposed prediction algo-
rithm adapts to the execution phase of the thread with fine
granularity, and the memory controller prioritizes the appro-
priate access to the memory. We also propose Writeback-
Refresh Overlap. We schedule DRAM refresh commands
that can be overlapped with pending write commands. This
improves the efficiency of the bandwidth on the memory
bus. Writeback-Refresh Overlap reduces the penalty of the
refresh in high density DRAM devices. These two methods
are implemented in our optimized memory controller.

We evaluated the optimized controller through simula-
tions using the memory scheduling championship frame-
work. Experimental results show that our optimized con-
troller improves the execution time by 7.3%, the energy-
delay product by 13.6%, and the performance-fairness prod-
uct by 12.2%. Compute-Phase Prediction and Writeback-
Refresh Overlap can be also applied to the other scheduling
policies. Exploring more efficient scheduling algorithms is
our future work.

7. REFERENCES
[1] N. Chatterjee, R. Balasubramonian, M. Shevgoor,

S. Pugsley, A. Udipi, A. Shafiee, K. Sudan, M. Awasthi,

and Z. Chishti. USIMM: the Utah SImulated Memory
Module. Technical report, University of Utah, 2012.
UUCS-12-002.

[2] D. Kaseridis, J. Stuecheli, and L. K. John. Minimalist
open-page: a dram page-mode scheduling policy for the
many-core era. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-44 ’11, pages 24–35, New
York, NY, USA, 2011. ACM.

[3] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter.
Atlas: A scalable and high-performance scheduling
algorithm for multiple memory controllers. In
HPCA’10, pages 1–12, 2010.

[4] Y. Kim, M. Papamichael, O. Mutlu, and
M. Harchol-Balter. Thread cluster memory scheduling:
Exploiting differences in memory access behavior. In
Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO
’43, pages 65–76, Washington, DC, USA, 2010. IEEE
Computer Society.

[5] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and
J. D. Owens. Memory access scheduling. In Proceedings
of the 27th annual international symposium on
Computer architecture, ISCA ’00, pages 128–138, New
York, NY, USA, 2000. ACM.

[6] J. Stuecheli, D. Kaseridis, H. C.Hunter, and L. K. John.
Elastic refresh: Techniques to mitigate refresh penalties
in high density memory. In Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pages 375–384,
Washington, DC, USA, 2010. IEEE Computer Society.

[7] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and
L. K. John. The virtual write queue: coordinating dram
and last-level cache policies. In Proceedings of the 37th
annual international symposium on Computer
architecture, ISCA ’10, pages 72–82, New York, NY,
USA, 2010. ACM.


