Priority Based Fair Scheduling: A Memory Scheduler Design
for Chip-Multiprocessor Systems

Chongmin Li, Dongsheng Wang, Haixia Wang, Yibo Xue

Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
{liismn, wds, hx-wang, yiboxue}@tsinghua.edu.cn

Abstract— Memory is commonly a shared resource for a mod-
ern chip-multiprocessor system. Concurrently running threads
have different memory access behaviors and compete for memory
resources. A memory scheduling algorithms should be designed
to arbitrate memory requests from different threads, provide
high system throughput as well as fairness.

This work proposes a memory scheduling algorithm, Priority-
Based Fair Scheduling (PBFS), which classifies threads memory
access behavior by dynamically updated priorities. Latency-
sensitive threads have top-priority to guarantee system through-
put, and starvation of memory-sensitive threads can be avoided
simultaneously. Simulation results show that compared with a
FCFS scheduler, PBFS improves the system throughput and
fairness metric by 7.4% and 7.7% respectively.

I. INTRODUCTION

The gap between the CPU speed and memory speed keeps
growing as technique advancing. Modern high performance
chip-multiprocessor systems can support tens or hundreds of
threads running concurrently, the latency of off-chip memory
accesses has long been a bottleneck of high performance
memory subsystems. Shared memory is commonly adopted
in modern chip-multiprocessors, a thread may contends with
other threads when accessing memory. A straightforward so-
lution is to increase the number of memory channels and/or
memory banks in a channel. As DRAM has numerous strict
timing constraints, it is critical for the memory controller to
schedule concurrent memory requests to exploit memory level
parallelism [1], [2], [3]. Earlier studies on memory controller
primarily improve memory performance [1], [4], [5], [6].
As more threads are running concurrently in modern CMP
systems, a memory scheduling algorithm should focus on
memory contention as well as promote throughput.

According to threads’ memory access behavior, the threads
can be classified as latency-sensitive threads and bandwidth-
sensitives threads [7]. System throughput benefits more from
prioritizing latency-sensitive threads than memory-sensitive
threads. Memory-sensitive threads are prone to starvation if
less memory-sensitive threads are statically given a higher pri-
ority over them. A good memory scheduler algorithm should
achieve both high throughput and good fairness. In this work,
we propose a memory scheduling algorithm named Priority
Based Fair Scheduling (PBFS) which can provide both fairness
and high throughput. PBF'S gives each thread a priority, which
is updated when performing memory accesses or reaching a
time threshold. On every memory cycle, the memory request
which has the highest thread priority is selected to issue. PBFS

achieves fairness by dynamically updating threads’ priority,

starvation of memory-sensitive threads can be avoided because

the priority of a frequently issued thread decreases rapidly.
The paper makes the following contributions:

« We propose a priority based mechanism for each thread
which helps the scheduler to make decision. Latency-
sensitive threads and bandwidth-sensitive threads can be
classified through different priorities.

o We illustrate that PBF'S can guarantee system throughput
as well as fairness. latency sensitive threads has top-
priority which can be issued as soon as possible. Star-
vation of bandwidth-sensitive thread is avoid by dynamic
priority updating.

e PBFS scheduler is easy to implement, and has low
hardware overhead.

o Evaluation results under two memory configurations
show that PBFS can improve system throughput, fairness
metrics as well as energy-delay-product (EDP).

The rest of this paper is organized as follows. Section II
gives a brief introduction of memory systems. Section III
presents our PBFS design in detail. Section IV and V presents
the experimental methodology and evaluation results. Section
VI discusses the related work and Section VII summarizes the

paper.
II. BACKGROUND

A. Basic DRAM Architecture

Most of modern DRAM systems make use of dual in-line
memory modules (DIMM). A basic DRAM consists of one or
more DRAM channels, each channel has one or more memory
modules. A modern DDR3 channel typically can support 1-2
DIMMs; each DIMM is typically consists of 1-4 ranks; each
rank can be partitioned into multiple (4-16) banks. All banks in
an active rank must sequentially share the data and command
wires of the memory channel while different bank can process
different memory requests in parallel. Figure 1 gives a basic
DRAM system structure, with two DRAM channels. Each
channel has one double ranked DIMM, with eight internal
banks per rank.

B. DRAM Commands

The memory commands can be partitioned into two groups,
commands that advance the execution of a pending memory
request (read or write), or commands that manage general

Channel 0

DIMMs

A\

Command

Address |
‘ Data

G —

Channel 1

MC O

B Ranko

CPUs

[] Rank1

Row Decoder

Command

Address .
‘ Data

 G—

MC1

L

\ Column Mux /

Fig. 1: Basic DRAM structure, with two independent channels , one double ranked DIMM per channel, and eight internal

banks per rank.

DRAM state. There are four commands which advance the
execution of a memory request:

e PRE: Precharge the bitline of a bank so a new row can
be read out.

o ACT: Bring the contents of a bank’s DRAM row into the
bank’s row buffer.

¢ CLO-RD: Bring a cache line from the row buffer to the
processor.

¢« CLO-WR: Write a cache line from the processor to the
row buffer.

DRAM state management commands include five memory
commands, as follows:

« PWR-DN-FAST: Puts a rank into the low-power-mode
with quick exit times.

« PWR-DN-SLOW: Puts a rank into the precharge-power-
down (slow) mode with longer time to transition into the
activate state.

o« PWR-UP: Brings a rank out of low-power mode.

o Refresh: Forces a refresh to multiple rows in all banks
in a rank.

o PRE-ALL: Forces a precharge to all banks in a rank.

When the memory system is not busy, PWD-DN-FAST and
PWR-DN-SLOW commands can put memory ranks into low-
power-mode to save power. PWR-UP command is needed
to bring a rank out of low-power-mode. As DRAM is non-
persistent, periodically refresh is needed to maintain the data
integrity (Refresh). To design a memory scheduler, various
timing constraints must be met. Details about these constrains
can be found in [8].

C. Address Mapping

The address mapping policy determines the extent of par-
allelism that can be leveraged within the memory system.
In this paper, a cache line is placed entirely in one bank,
and two different processor-memory configuration are studied.
The first configuration places consecutive cache lines in the
same row and tries to maximize row buffer hits. The second
configuration tries to maximize memory access parallelism

by scattering consecutive blocks across channels, ranks, and
banks. More system details can be found in Section IV.

There is a row buffer in each bank to store the last row
accessed within the bank. When there is a read or write
command, one row must be copied into the bank’s row buffer
(ACT), then complete the read or write operation. If the
following requests to the same bank can be serviced by data
already in the open row buffer, the request consumes less
time and energy. For a following request to a different row,
current contents in row buffer must be written back to the
DRAM arrays (PRE). If a following memory command hits
the row buffer, it take less latency and energy to complete the
operation.

D. Typical Schedulers

Here we introduce two typical schedulers which results will
be evaluated together with our design.

FCFS: FCFS assumes that the read queue is ordered by
request arrival time, the scheduler simply scans the read queue
sequentially until it finds an instruction that can issue in the
current cycle. A separate write queue is maintained, when the
write queue size exceeds a high water mark, writes are drained
similarly until a low water mark is reached. The scheduler
switches back to handling reads at that time. Write queue will
be drained if there is no pending reads.

Close: This policy is an approximation of a true close-page
policy. In every idle cycle, the scheduler issues precharge
operations to banks that last serviced a column read/write.
Unlike a true close-page policy, the precharge is not issued
immediately after the column read/write and we dont look for
potential row buffer hits before closing the row.

III. MEMORY SCHEDULER DESIGN
A. Ranking Requests with Threads’ Priorities

Kim et al. [7] classified threads into latency-sensitive cluster
and bandwidth-sensitive cluster. Latency-sensitive threads are
computationally intensive which get low number of memory
requests. The performance of latency-sensitive threads is sen-
sitive to memory request latency. Bandwidth-sensitive threads

have more memory requests and spend a large portion of their
time for waiting the memory responses.

In Priority-Based Fair Scheduler (PBES), a thread’s priority
is an integer ranges from -1 to a positive number (n). The
priority of each thread can be divided into four categories.

o Top-priority (n): Read requests from threads with top-
priority need to be served as soon as possible.

o Bottom-priority (0): Threads have bottom-priority are
memory-sensitive and a number of requests have been
served recently.

e Medium-priority (1 to n-1): Threads have medium-
priority may be either latency-sensitive or memory-
sensitive. One or several read requests from the corre-
sponding tread have been served recently.

e Idle-priority (-1): When a thread doesn’t issue memory
request during last time interval, it’s priority is set to idle-
priority. The thread may either be busy in computing or
be idle.

On every memory cycle, the scheduler traverses the read
request queue to find if there is a request with top priority
can be served. If there is no request with top-priority or the
request has top-priority can not be issued immediately, the
scheduler chooses an issuable request from the read queue in
order. The thread priorities are updated either on issuing a
request or on arriving a periodically time threshold. Detailed
updating mechanism is given in Section III-B.

In PBFS, a thread which has top-priority is treated as
latency-sensitive thread. Memory scheduler tries to serve it’s
requests as soon as possible. Bottom-priority means a threads
maybe memory sensitive, it’s requests are not served until all
requests with top-priority are issued (or can’t issue in current
cycle). A medium-priority thread can either be upgraded to
a top-priority thread or be downgraded to a bottom priority
thread, which is depend on whether its read request is served
by the scheduler or not. An idle-priority thread is either a
latency sensitive thread which doesn’t have memory request
for some time or an inactive thread.

B. Priority Updating Rules

The threads’ priorities updating rules in PBFS are as fol-
lows:

o If there is a read request with Idle priority, which means
the first read request from corresponding thread after a
time interval, it’s priority is change to top priority directly.

e When there is no request in read queue has the top
priority, the priorities of all threads with medium or
bottom priority are increased by one, so at least one core’s
priority reaches top priority.

o When a read request is issued, the corresponding thread
priority minus by one.

o When there is no request from a thread in the last time
interval, the thread priority is set to idle-priority.

When idle threads are identified, the value of top-priority

is adjusted in accordance to fit the number of active threads.
At the same time, the value of top-priority is also adjusted

Thread A Ra Ra

0 1
Rq| |Rq| [Rq Rq| |Rq
1||2]]3 7|8

. Rq| [Ra| [Ra| [Ra Rq Ra| [Ra] [Ra

Execution 1/l2(|o]|3 5 1|l7]|8

1{2|3]afs |67

Thread B

0 89|11
Mem. Cycle <

Y 01
Priority A 222|122 |2]|2|1|2(2]2
Priority B 1|ofofofofo|ofo|o|o|o]oO

(a) Case A: Thread A has two memory request sequence, each sequence

contains one memory request.
Ra|[Ra Ra|[Ra] [Ra
2 3|l4]]s
Ra| Rg| |Rq Rg Rq| |Rq
1(|2]|3 5 70| 8
. Ra| [Rq| |Ra||Ra| [Ra| |Rq Rq| [Rg
Execution 1(f2(|o]l2]13]]2 3|5
12 4|5

Thread A

Thread B

El

B
U1 5
EJ
3]
E
D &

Mem. Cycle 0 3 6|7 |8 9|21]2 f1]1]|1

¥ 0|12 (3]|4]5
Priority A 22 21222 f2]2af2|a]|2|a]2]2]2
Priority B 1fofofofa|a|a|afafa]|2a|2]|21]1]|o]o

(b) Case B: Thread A has two memory request sequence, each sequence
contains three memory requests.

Fig. 2: Examples of fairness, the next memory cycle of
underlined cycle increase both threads’ priorities first.

by PBFS according to the threads’ memory behavior. When
different threads have unbalance memory requests, top-priority
is increased to give more chance to the latency-sensitive
threads and vice versa.

C. Fairness Concern

In PBFS, a memory requests from a thread which is latency-
sensitive are prioritized over a request from bandwidth-
sensitive core. Previous studies show that prioritizing latency
sensitive threads which access memory infrequently can in-
crease the overall system throughput [9], [7]. Assuming an
example system with one latency-sensitive/less bandwidth-
sensitive thread (A) and a bandwidth-sensitive thread (B),
both threads’ priorities are set to top-priority (2), as shown in
Figure 2. In Case A, thread A is a latency-sensitive thread.
When thread A issued a request and lose its top-priority,
according to the priority updating rules, its priority will soon

[| Ichannel.cfg | 4channel.cfg |

Priority monitor 4 4
Request counter 4 4
Open row monitor 2%8 2%8
Priority upper/lower bound 2 2
Top priority 1 1
Total | 27 (108Bytes) | 27 (108Bytes)

TABLE I: Per channel storage overhead of PBFS

TABLE II: Memory system configurations

Parameter 1channel.cfg 4channel.cfg
Processor clock speed 3.2GHz 3.2GHz
Processor ROB size 128 160
Processor retire width 2 4
Processor fetch width 4 4
Processor pipeline depth 10 10
Memory bus speed 800 MHz (plus DDR) 800 MHz (plus DDR)
DDR3 Memory channels 1 4
Ranks per channel 2 2
Banks per Rank 8 8
Rows per bank 32768 x NUMCORES 32768 x NUMCORES
Columns (cache lines) per row 128 128
Cache line size 64 Bytes 64 Bytes
Address bits 32 + log(NUMCORES) 34+log(NUMCORES)
Write queue capacity 64 96
Address mapping | row:rank:bank:chnl:col:blkoff | row:col:rank:bank:chnl:blkoff
Write queue bypass latency 10 cpu cycles 10 cpu cycles

be upgraded to top-priority because of following requests
from thread B. PBF'S avoids starvation of bandwidth-sensitive
threads by limiting the number of requests belong to latency-
sensitive thread. As show in Figure 2b, thread A is marked
as latency-sensitive thread at the beginning. When thread A
consecutively issue two request, the priority of thread B is the
same as thread A. A request from either thread A or thread B
can be issued at the next memory cycle. If the next request is
still from thread A, thread B will get top-priority, otherwise a
request from thread B will be issued (the case of this example).
Anyway, thread B avoids starvation.

As mentioned in Section II, if a memory request hits the row
buffer in a bank, both time and power are saved. However, if
a row buffer is unlikely to yield future hit, closing the row and
precharging the bitlines is beneficial as the bank can quickly
serve a new memory request. In this work, we close an open
row when there is no request needs to issue.

D. Implementation and Hardware Overhead

PBFS needs hardware support to: 1) record the priority of
each thread, 2) monitor the threads’ behavior (read counts
within a time interval) and 3) maintain the flags that whether
a row buffer can close or not. Table I gives the major storage
overhead for the two main memory configurations with 4
threads in our evaluation. If we use 4-bytes for each counter,
the total storage overhead of each channel is 108-bytes, which
is relatively small. PBFS needs additional logic to rank and
update threads’ priority and other monitors. More counters are
needed when the number of threads increases, but the storage
overhead is still small compared with the memory capacity.

IV. EXPERIMENTAL SETUP

We use the Usimm [8] simulation infrastructure to build
our memory system scheduler. Table II gives the system
configurations used in our evaluation.

The traces used in our simulation are gathered from 10
different benchmarks listed in table III through simics [10].
The 10 traces are used to form 10 different workloads. All 10
workloads are run with 4channel.cfg, and the first 8 workloads
are also run under lchannel.cfg. The memory workloads and
corresponding traces used are given in table IV.

TABLE IV: Workload description

name | description

mix-1 | comm?2
mix-2 | comml comml
mix-3 | comml comml comm2 comm?2
mix-4 | MTO-canneal MT1-canneal
MT?2-canneal MT3-canneal
mix-5 | fluid swapt comm2 comm?2
mix-6 | face face ferret ferret
mix-7 | black black freq freq
mix-8 | stream stream stream stream
mix-9 | fluid fluid swapt swapt
comm?2 comm? ferret ferret
mix-10 | fluid fluid swapt swapt
comm?2 comm? ferret ferret
black black freq freq
comml comml stream stream

V. EVALUATION
We compare PBFS with two typical implementations, FCFS
and Close. Three metrics are taken in the evaluation: the sum
of threads execution time, the threads’ max slowdown and the
energy-delay-product (EDP). All results all given in Table V.

A. Execution Time

The proposed PBFS scheduler gets 7.4% and 3.3% execu-
tion time reduction over the baseline FCFS design and Close

TABLE III: Benchmark trace description

Trace Description

black A single-thread run from PARSEC’s blackholes

face A single-thread run from PARSEC’s facesim

ferret A single-thread run from PARSEC’s ferret

fluid A single-thread run from PARSEC’s fluidanimate

freq A single-thread run from PARSEC’s freqmine

stream A single-thread run from PARSEC’s streamcluster

swapt A single-thread run from PARSEC’s swaption
comm1 A trace from a server-class transaction-processing workload
comm?2 A trace from a server-class transaction-processing workload

MT#*-canneal | A for-thread run from PARSEC’s cannel, organized in for files, MTO-cannel to MT3-cannel

TABLE V: Comparison of key metrics on baseline and proposed schedulers. cl and c2 represent commercial transaction-
processing workloads, MT-canneal is a 4-threaded version of canneal, and the rest are single-threaded PARSEC programs.
“Close” represents an opportunistic close-page policy that precharges inactive banks during idle cycles.

‘Workload Config | Sum of exec times (10 M cyc) Max slowdown EDP (J.s)
FCFS | Close | Proposed FCFS | Close | Proposed | FCFS | Close | Proposed
MT-canneal 1 chan 418 404 397 NA NA NA 4.23 3.98 3.94
MT-canneal 4 chan 179 167 164 NA NA NA 1.78 1.56 1.50
bl-bl-fr-fr 1 chan 149 147 142 1.20 1.18 1.14 0.50 0.48 0.46
bl-bl-fr-fr 4 chan 80 76 76 1.11 1.05 1.05 0.36 0.32 0.32
cl-cl 1 chan 83 83 82 1.12 1.11 1.10 041 0.40 0.40
cl-cl 4 chan 51 46 47 1.05 0.95 0.97 0.44 0.36 0.38
cl-cl-c2-c2 1 chan 242 236 227 1.48 1.46 1.43 1.52 1.44 1.34
cl-cl-c2-¢c2 4 chan 127 118 117 1.18 1.10 1.10 1.00 0.85 0.85
c2 1 chan 44 43 43 NA NA NA 0.38 0.37 0.36
c2 4 chan 30 27 28 NA NA NA 0.50 0.39 0.42
fa-fa-fe-fe 1 chan 228 224 211 1.52 1.48 1.39 1.19 1.14 1.02
fa-fa-fe-fe 4 chan 106 99 97 1.22 1.15 1.11 0.64 0.56 0.54
fl-fl-sw-sw-c2-c2-fe-fe | 4 chan 295 279 264 1.40 1.31 1.23 2.14 1.88 1.70
fl-fl-sw-sw-c2-c2-fe-fe- | 4 chan 651 620 586 1.90 1.80 1.69 5.31 4.76 4.34
-bl-bl-fr-fr-c1-c1-st-st
fl-sw-c2-¢c2 1 chan 249 244 229 1.48 1.43 1.33 1.52 1.44 1.28
fl-sw-c2-c2 4 chan 130 121 121 1.13 1.06 1.06 0.99 0.83 0.85
st-st-st-st 1 chan 162 159 154 1.28 1.25 1.20 0.58 0.56 0.53
st-st-st-st 4 chan 86 81 81 1.14 1.08 1.08 0.39 0.35 0.35
1 chan | 1577 | 1538 1483 1.35 1.32 1.26 10.34 | 9.82 9.33
PFP: 1501 | PFP: 1438 | PFP:1320
4 cha:n | 1735 1634 1582 1.27 1.19 1.16 13.53 | 11.87 11.25
PFP: 1936 | PFP: 1711 | PFP: 1615
Overall 3312 | 3173 3065 1.30 1.24 1.21 23.88 | 21.70 20.58
PFP: 3438 | PFP: 3149 | PFP: 2934

design respectively. The top two reductions are 10.5% from
Mix-9 (8 threads) and 9.8% from Mix-10 (16 threads), both
running at 4-channels configuration. For the execution time
of other workloads on 4-channels, PBFS gets results close to
Close design. Both PBFS and Close outperform the FCFS
design on all workloads in both configurations.

B. Fairness metric

In this evaluation, the fairness metric is defined as the
maximum slowdown for any thread in the workload, relative
to a single-program execution of that thread with an FCFS
scheduler (a high number is bad). The average max slowdown
are 1.30, 1.24 and 1.21 respectively for FCF'S, Close and PBFS

designs. Workloads on 1-channel configuration has higher
max slowdown than 4-channel configuration as there are
more contentions in 1-channel configuration. The maximum
slowdown for 1-channel configuration are 1.52, 1.48 and 1.39
in Mix-6. Mix-10 has maximum threads concurrently running,
thus it gets max slowdown in all three designs.

C. Energy-delay-product

Compared with FCFS, our proposed PBFS scheduler re-
duces EDP by 13.8%, while Close gets 9.1% EDP reduction
against FCFS. The maximum reduction of PBFS is 20.5%
which comes from Mix-9, and the next is 18.3% from Mix-10.
Workloads under 1-channel configuration has less EDP reduc-

tion than workloads under 4channel.cfg where the maximum
EDP reduction is 15.8% on Mix-5.

VI. RELATED WORK

We discuss some of the most relevant prior work in the
following.

Memory scheduler designs that do not distinguish requests
from different threads [11], [12]. These works were mainly
tested for single threaded, vector or streaming architectures,
and aimed to maximize DRAM throughput. For multi-threaded
context, thread-unaware scheduling policies were not as effi-
cient as before and prone to starvation [13], [7].

Thread aware memory schedulers were designed in recent
studies which improved fairness as well as QoS. Fair queueing
memory schedulers[14], [13] used variants of the fair queueing
algorithm to construct a memory scheduler which provides
QoS to each thread. Stall-time fair memory scheduler (STFM)
[5] estimates the slowdown of each thread when running alone
and prioritizes the thread which has most slowdown. The main
propose of these works are to maximize fairness.

Parallelism-aware batch scheduling (PAR-BS)[6] groups
memory requests into batches and older batches gets higher
priority over younger batches. PAR-BS some times implicitly
leads to unfairness when memory-intensive threads insert too
many requests into a bach.

ATLAS [9] aims to get maximum system throughput.
threads attained least memory service get the highest priority.
Thread Cluster Memory Scheduling (TCM) [7] divides threads
into two separate clusters, latency-sensitive and bandwidth
sensitive cluster, and employs different memory scheduling
policies in each cluster and periodically shuffles the priority
ordering among the threads in the bandwidth sensitive cluster.

Ipek et al. [15] propose self-optimizing memory controller
based on reinforcement learning (RL) to pick the actions that
maximize the desired long-term objective function. MORSE
[16] improves Ipek et al.’s work, the new designed scheduler
has the capability of targeting arbitrary figures of merit.

VII. CONCLUSIONS

We have presented Priority-Based Fair scheduler (PBF-
S), a memory controller scheduling technique that elegantly
leverage memory throughput and fairness through a con-
cise priority-based scheduler design. Through dynamical-
ly priority updating mechanism, PBFS prioritizes latency-
sensitive threads over bandwidth-sensitive threads. Starvation
of memory-sensitive threads is avoided as there is no latency-
sensitive thread can consecutively issue a number of memory
request. The implementation of PBFS is easy and the hardware
overhead is small.

Our simulation results on both 1 channel and 4 channels
memory configurations show that PBFS can achieve 7.4%
execution time reduction over the baseline FCF'S design. PBFS
also provides around 7.7% promotion on fairness metric. And
the EDP metric is reduced by 13.8%. Overall, we believe this
research is a viable approach to scale future memory system.

ACKNOWLEDGMENT

The authors acknowledge the support of the Nature Sci-
ence Foundation of China under Grant No. 60833004,
60970002, and the National 863 High-Tech Programs of
China(No.2012AA010905, 2012AA012609).

REFERENCES

[1] V. Cuppu and B. Jacob, “Concurrency, latency, or system overhead:
which has the largest impact on uniprocessor dram-system perfor-
mance?” in Proceedings of the 28th annual international symposium
on Computer architecture, ser. ISCA °01, 2001, pp. 62-71.

[2] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A performance compar-
ison of contemporary dram architectures,” in Proceedings of the 26th
annual international symposium on Computer architecture, ser. ISCA
’99, 1999, pp. 222-233.

[3] Z. Zhu and Z. Zhang, “A performance comparison of dram memory
system optimizations for smt processors,” in High-Performance Com-
puter Architecture, 2005. HPCA-11. 11th International Symposium on,
feb. 2005, pp. 213 — 224.

[4] 1. Hur and C. Lin, “Adaptive history-based memory schedulers,” in
Proceedings of the 37th annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 37, 2004.

[5] O.Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling
for chip multiprocessors,” in Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 40, 2007,
pp. 146-160.

[6] M. Onur and M. Thomas, “Parallelism-aware batch scheduling: En-
hancing both performance and fairness of shared dram systems,” in
Proceedings of the 35th Annual International Symposium on Computer
Architecture, ser. ISCA °08, 2008, pp. 63-74.

[71 Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
cluster memory scheduling: Exploiting differences in memory access
behavior,” in Proceedings of the 2010 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, ser. MICRO 43, 2010, pp.
65-76.

[8] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. H. Pugsley,
A. N. Udipi, A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti,
“Usimm: the utah simulated memory module.” [Online]. Available:
http://www.cs.utah.edu/ rajeev/pubs/usimm.pdf

[9] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable
and high-performance scheduling algorithm for multiple memory con-
trollers,” in High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on, jan. 2010, pp. 1 —12.

[10] Wind River Simics Full System Simulator. http://www.windriver.com
/products/simics/.

[11] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in Proceedings of the 27th annual inter-
national symposium on Computer architecture, ser. ISCA 00, 2000, pp.
128-138.

[12] J. Shao and B. Davis, “A burst scheduling access reordering mechanism,”
in High Performance Computer Architecture, 2007. HPCA 2007. IEEE
13th International Symposium on, feb. 2007, pp. 285 -294.

[13] K. Nesbit, N. Aggarwal, J. Laudon, and J. Smith, “Fair queuing
memory systems,” in Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on, dec. 2006, pp. 208 —222.

[14] N. Rafique, W.-T. Lim, and M. Thottethodi, “Effective management
of dram bandwidth in multicore processors,” in Parallel Architecture
and Compilation Techniques, 2007. PACT 2007. 16th International
Conference on, sept. 2007, pp. 245 -258.

[15] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in Proceedings
of the 35th Annual International Symposium on Computer Architecture,
ser. ISCA *08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 39-50. [Online]. Available: http://dx.doi.org/10.1109/ISCA.2008.21

[16] J. Mukundan and J. Martinez, “Morse: Multi-objective reconfigurable
self-optimizing memory scheduler,” in High Performance Computer
Architecture (HPCA), 2012 IEEE 18th International Symposium on, feb.
2012, pp. 1 -12.

