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Lecture: Deep Networks and CNNs

• Topics: wrap-up of deep networks, accelerator basics,
Diannao accelerator

• Resources: http://www.cs.utah.edu/~rajeev/cs7960/notes/ 
• Canvas/registration
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Deep Networks for Image Classification

• MNIST: 784-pixel images of hand-written digits; 50K
training images; 10K testing images

• ILSVRC: e.g., 1000 categories, 1.2 million training images,
150K test images, top-5 criterion
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Deep Learning Success

• Modern deep learning is better than humans on both
MNIST (>99%) and ILSVRC top-5 (>95%)
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Accuracies

• Baseline: single hidden layer with 100 neurons: 97.8%
• CNN: added 20 5x5 filters and a 2x2 max-pool: 98.78%
• CNN: added 40 20x5x5 filters and 2x2 max-pool: 99.06%
• CNN: substitute sigmoid with ReLU: 99.23%
• CNN: expand the training data: 99.37%
• CNN: adding two fully-connected layers: 99.43%
• CNN: 1000 neurons in fully-connected layers: 99.47%
• CNN: adding dropout: 99.60%
• CNN: voting among an ensemble of 5 nets: 99.67%

(ILSVRC winners have 152 layers)

Many ways to avoid over-fitting in fully-connected networks (conv layers
don’t need these because the weights are shared): L2 regularization,
dropout, expanded inputs. 
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Glossary

• Sigmoid activation function: f(x) = 1/(1+e-x) – provides a smooth step function; tanh is similar.
• ReLU activation function: f(x) = max (0,x) – it allows the output to grow larger than 1, and has a 

larger σ’ of 0 or 1.
• Softmax activation function: f(zj) = ezj/Σkezk -- it’s normalizing the neuron outputs in a layer so they 

sum to 1 and the largest neuron sticks out
• Feature map and filter: a filter or kernel is the grid of weights; a feature map is the resulting set of 

values when a filter is applied to a set of inputs
• Max pooling: extracts the largest value in a 2D input grid
• L2 pooling: computes the square root of the sum of squares of the values in a 2D input grid
• L2 regularization: includes the weights in the cost function during training so we’re trying to not only 

reduce the error, but also the values of the weights
• Expanded inputs: to avoid over-fitting, the (say) 50K training images are expanded to 250K images.  

Each image is shifted slightly to the left/right/top/bottom.
• Dropout: some activation functions are randomly dropped during training (to avoid overfitting).
• DNN/CNN: CNNs use shared kernels for all neurons in a feature map, while DNNs use private kernels 

for each neuron in a feature map.
• SVM: a mathematical approach to incrementally define hyperplanes that separate clusters – an 

alternative way to classify inputs into different categories.



6

LSTMs

•The neurons in MLPs and CNNs do not have state –
every input image results in brand new computations 
with no memory of previous images.

•An LSTM is better suited for speech/text processing 
where interpreting a new syllable or pronoun may 
depend on past inputs.

•Recurrent neural networks (RNNs, where a layer’s 
output feeds back as input for the next computation) 
have evolved into LSTMs
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LSTMs

1. Forget gate
2. New info to 

be retained

3. Strength of new info

4. Convert cell states to (-1, 1)

5. What part of
the cell must
be output

Image credit: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Accelerator Basics

•Software optimizations: loop ordering, tiling

•Hardware techniques: prefetching, SIMD units, near-
data processing, …
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Loop Nesting

Do all images 
Do all output feature maps

Do all input feature maps 
Do all horizontal pixels in output fmap 

Do all vertical pixels in output fmap 
Do all horizontal pixels in kernel 

Do all vertical pixels in kernel 

Source:  “SCNN: An Accelerator for Compressed-Sparse Convolutional Neural Networks,” A. Parashar et al., ISCA 2017 
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Data Access Pattern – Classifier Layer
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Tiling to Reduce Data Fetches
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Tiling – Convolution Layer

2x2 kernel
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DianNao Intro

• Deep learning: many layers, large amounts of data
moving between layers, many synaptic weights

• Most prior work did little to address the high cost of
bringing data to/from memory – DianNao uses tiling,
buffering, prefetching to reduce these costs –
DaDianNao does even better

• Focus only on inference for now

• Programmable, so it can adapt to algorithm tweaks
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Spatially Unfolded Design

• Implement the full neural network with dedicated latches,
multipliers, adders, and sigmoid units

• Reasonable for small networks, e.g., 90-10-10 network
can be implemented with 974x lower energy than a
general-purpose core
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Scalability

Spatially unfolded approach does not scale well
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DianNao Approach

• Place data in memory and prefetch “tiles” into buffers

• Each data type has a different requirement, so
implement multiple buffers

• The ALUs must be time-multiplexed across several 
neurons



17

DianNao
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Design Summary

• Different bit widths for each buffer (Tn = 16, 64 entries)
• Separate “scratchpads” avoid tags/unpredictability/conflicts,

and improve latency, parallelism
• 256 parallel multiplies (16 neurons, each with 16 inputs)
• 16 parallel accumulates (each is a tree with 15 adders)
• Partial sums if necessary
• Sigmoid (or any function) is implemented with piecewise

linear interpolation – 16 hard-wired segments and
coefficients can be programmed into a small table

• Control processor has a number of instructions that 
specify how data is loaded/accessed in buffers 

• Memory bandwidth/energy bottleneck and Amdahl’s Law 



19

Reasoning about Performance, Power
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Fixed Point Arithmetic

• DianNao uses 16b fixed-point arithmetic; much more efficient 
than 32b floating-point arithmetic, and little impact on accuracy
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Fixed Point Error Rates
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Precision Analysis for DNNs

Min bits required per layer for accuracy within 1%
Source: Proteus, Judd et al., WAPCO’16
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Implementation Details/Results

• Cycle time of 1.02ns, area of 3mm2, 485mW power
• The NFU is composed of 8 pipeline stages
• Peak activity is nearly 500 GOP/s
• 44KB of RAM capacity
• Buffers are about 60% of area/power, while NFU is ~30%
• Energy is 21x better than a SIMD baseline; this is limited

because of the high cost of memory accesses
• Big performance boosts as well: higher computational

density, tiling, prefetching
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Benchmarks
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DianNao Conclusions

• Tiling to reduce memory traffic
• Efficient NFU and buffers to reduce energy/op and prefetch
• Even with these innovations, memory is the bottleneck,

especially in a small accelerator with few pins
• For example, each classifier layer step needs 256 new

synaptic weights (512 bytes), while 4 memory channels
can only bring in 64 bytes per cycle

• Energy consumed by the DianNao pipeline per cycle = 500pJ
• Energy per cycle for fetching 64 bytes from memory = 35nJ

(70 pJ/b for DDR3 at 100% utilization, Malladi et al., ISCA’12)

It’s all about the memory bandwidth/energy !!!
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The GPU Option

• Modest (but adequate) memory capacities (a few giga-bytes)

• High memory bandwidth, e.g., 208 GB/s (NVIDIA K20M)

• But, high compute-to-cache ratio on the chip

• Therefore, average GPU power of ~75 W, plus expensive
memory accesses  GPU card TDP of ~225W

• A GPU out-performs DianNao by ~2X
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