## Lecture: Deep Networks and CNNs

 Topics: wrap-up of deep networks, accelerator basics, Diannao accelerator

- Resources: http://www.cs.utah.edu/~rajeev/cs7960/notes/
- Canvas/registration

## **Deep Networks for Image Classification**

• MNIST: 784-pixel images of hand-written digits; 50K training images; 10K testing images

• ILSVRC: e.g., 1000 categories, 1.2 million training images, 150K test images, top-5 criterion



 Modern deep learning is better than humans on both MNIST (>99%) and ILSVRC top-5 (>95%)



## Accuracies

- Baseline: single hidden layer with 100 neurons: 97.8%
- CNN: added 20 5x5 filters and a 2x2 max-pool: 98.78%
- CNN: added 40 20x5x5 filters and 2x2 max-pool: 99.06%
- CNN: substitute sigmoid with ReLU: 99.23%
- CNN: expand the training data: 99.37%
- CNN: adding two fully-connected layers: 99.43%
- CNN: 1000 neurons in fully-connected layers: 99.47%
- CNN: adding dropout: 99.60%
- CNN: voting among an ensemble of 5 nets: 99.67%

(ILSVRC winners have 152 layers)

Many ways to avoid over-fitting in fully-connected networks (conv layers don't need these because the weights are shared): L2 regularization, dropout, expanded inputs.

## Glossary

- Sigmoid activation function:  $f(x) = 1/(1+e^{-x}) provides a smooth step function; tanh is similar.$
- ReLU activation function: f(x) = max (0,x) it allows the output to grow larger than 1, and has a larger σ' of 0 or 1.
- Softmax activation function:  $f(z_j) = e^{z_j}/\sum_k e^{z_k} it's$  normalizing the neuron outputs in a layer so they sum to 1 and the largest neuron sticks out
- Feature map and filter: a filter or kernel is the grid of weights; a feature map is the resulting set of values when a filter is applied to a set of inputs
- Max pooling: extracts the largest value in a 2D input grid
- L2 pooling: computes the square root of the sum of squares of the values in a 2D input grid
- L2 regularization: includes the weights in the cost function during training so we're trying to not only reduce the error, but also the values of the weights
- Expanded inputs: to avoid over-fitting, the (say) 50K training images are expanded to 250K images. Each image is shifted slightly to the left/right/top/bottom.
- Dropout: some activation functions are randomly dropped during training (to avoid overfitting).
- DNN/CNN: CNNs use shared kernels for all neurons in a feature map, while DNNs use private kernels for each neuron in a feature map.
- SVM: a mathematical approach to incrementally define hyperplanes that separate clusters an alternative way to classify inputs into different categories.

- The neurons in MLPs and CNNs do not have state every input image results in brand new computations with no memory of previous images.
- An LSTM is better suited for speech/text processing where interpreting a new syllable or pronoun may depend on past inputs.
- Recurrent neural networks (RNNs, where a layer's output feeds back as input for the next computation) have evolved into LSTMs

#### **LSTM**s



Image credit: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- Software optimizations: loop ordering, tiling
- Hardware techniques: prefetching, SIMD units, neardata processing, ...

```
for n = 1 to N Do all images
for k = 1 to K Do all output feature maps
for c = 1 to C Do all input feature maps
for w = 1 to W Do all horizontal pixels in output fmap
for h = 1 to H Do all vertical pixels in output fmap
for r = 1 to R Do all horizontal pixels in kernel
for s = 1 to S Do all vertical pixels in kernel
out[n][k][w][h] +=
in[n][c][w+r-1][h+s-1] *
filter[k][c][r][s];
```

#### Figure 3: 7-dimensional CNN loop nest.

## Data Access Pattern – Classifier Layer



### **Tiling to Reduce Data Fetches**



## Tiling – Convolution Layer

#### 2x2 kernel



- Deep learning: many layers, large amounts of data moving between layers, many synaptic weights
- Most prior work did little to address the high cost of bringing data to/from memory – DianNao uses tiling, buffering, prefetching to reduce these costs – DaDianNao does even better
- Focus only on inference for now
- Programmable, so it can adapt to algorithm tweaks

# Spatially Unfolded Design

- Implement the full neural network with dedicated latches, multipliers, adders, and sigmoid units
- Reasonable for small networks, e.g., 90-10-10 network can be implemented with 974x lower energy than a general-purpose core



Figure 9. Full hardware implementation of neural networks.

## Scalability

#### Spatially unfolded approach does not scale well



Figure 10. Energy, critical path and area of full-hardware layers.

- Place data in memory and prefetch "tiles" into buffers
- Each data type has a different requirement, so implement multiple buffers
- The ALUs must be time-multiplexed across several neurons

## DianNao



## **Design Summary**

- Different bit widths for each buffer (Tn = 16, 64 entries)
- Separate "scratchpads" avoid tags/unpredictability/conflicts, and improve latency, parallelism
- 256 parallel multiplies (16 neurons, each with 16 inputs)
- 16 parallel accumulates (each is a tree with 15 adders)
- Partial sums if necessary
- Sigmoid (or any function) is implemented with piecewise linear interpolation – 16 hard-wired segments and coefficients can be programmed into a small table
- Control processor has a number of instructions that specify how data is loaded/accessed in buffers
- Memory bandwidth/energy bottleneck and Amdahl's Law

## Reasoning about Performance, Power

• DianNao uses 16b fixed-point arithmetic; much more efficient than 32b floating-point arithmetic, and little impact on accuracy

| Туре                                    | Area $(\mu m^2)$ | Power ( $\mu W$ ) |
|-----------------------------------------|------------------|-------------------|
| 16-bit truncated fixed-point multiplier | 1309.32          | 576.90            |
| 32-bit floating-point multiplier        | 7997.76          | 4229.60           |

**Table 2.** Characteristics of multipliers.

## **Fixed Point Error Rates**

| Туре                  | Error Rate |
|-----------------------|------------|
| 32-bit floating-point | 0.0311     |
| 16-bit fixed-point    | 0.0337     |





**Figure 12.** 32-bit floating-point vs. 16-bit fixed-point accuracy for UCI data sets (metric: log(Mean Squared Error)).

## **Precision Analysis for DNNs**

| Network      | Data                              | Weights   |
|--------------|-----------------------------------|-----------|
|              | (Per Layer)                       | (Uniform) |
| LeNet[12]    | 2,4,3,3                           | 7         |
| Convnet[13]  | 8,7,7,5,5                         | 9         |
| AlexNet[14]  | 10,8,8,8,8,8,6,4                  | 10        |
| NiN[15]      | 10,10,9,12,12,11,11,11,10,10,10,9 | 10        |
| GoogLeNet[4] | 14,10,12,12,12,12,11,11,11,10,9   | 9         |

TABLE I: Minimum precision, in bits, for data and weights for a set of neural networks.



Min bits required per layer for accuracy within 1% Source: Proteus, Judd et al., WAPCO'16

## Implementation Details/Results

- Cycle time of 1.02ns, area of 3mm2, 485mW power
- The NFU is composed of 8 pipeline stages
- Peak activity is nearly 500 GOP/s
- 44KB of RAM capacity
- Buffers are about 60% of area/power, while NFU is ~30%
- Energy is 21x better than a SIMD baseline; this is limited because of the high cost of memory accesses
- Big performance boosts as well: higher computational density, tiling, prefetching

## **Benchmarks**

| Layer  | $N_x$ | $N_y$ | $K_x$ | $K_y$ | $N_i$ | $N_o$ | Description              |
|--------|-------|-------|-------|-------|-------|-------|--------------------------|
| CONV1  | 500   | 375   | 9     | 9     | 32    | 48    | Street scene parsing     |
| POOL1  | 492   | 367   | 2     | 2     | 12    | -     | (CNN) [13], (e.g.,       |
| CLASS1 | -     | -     | -     | -     | 960   | 20    | identifying "building",  |
|        |       |       |       |       |       |       | "vehicle", etc)          |
| CONV2* | 200   | 200   | 18    | 18    | 8     | 8     | Detection of faces in    |
|        |       |       |       |       |       |       | YouTube videos (DNN)     |
|        |       |       |       |       |       |       | [26], largest NN to date |
|        |       |       |       |       |       |       | (Google)                 |
| CONV3  | 32    | 32    | 4     | 4     | 108   | 200   | Traffic sign             |
| POOL3  | 32    | 32    | 4     | 4     | 100   | -     | identification for car   |
| CLASS3 | -     | -     | -     | -     | 200   | 100   | navigation (CNN) [36]    |
| CONV4  | 32    | 32    | 7     | 7     | 16    | 512   | Google Street View       |
|        |       |       |       |       |       |       | house numbers (CNN)      |
|        |       |       |       |       |       |       | [35]                     |
| CONV5* | 256   | 256   | 11    | 11    | 256   | 384   | Multi-Object             |
| POOL5  | 256   | 256   | 2     | 2     | 256   | -     | recognition in natural   |
|        |       |       |       |       |       |       | images (DNN) [16],       |
|        |       |       |       |       |       |       | winner 2012 ImageNet     |
|        |       |       |       |       |       |       | competition              |

**Table5.** Benchmarklayers(CONV=convolutional,POOL=pooling,CLASS=classifier;CONVx\*indicatesprivatekernels).

- Tiling to reduce memory traffic
- Efficient NFU and buffers to reduce energy/op and prefetch
- Even with these innovations, memory is the bottleneck, especially in a small accelerator with few pins
- For example, each classifier layer step needs 256 new synaptic weights (512 bytes), while 4 memory channels can only bring in 64 bytes per cycle
- Energy consumed by the DianNao pipeline per cycle = 500pJ
- Energy per cycle for fetching 64 bytes from memory = 35nJ (70 pJ/b for DDR3 at 100% utilization, Malladi et al., ISCA'12)

It's all about the memory bandwidth/energy !!!

- Modest (but adequate) memory capacities (a few giga-bytes)
- High memory bandwidth, e.g., 208 GB/s (NVIDIA K20M)
- But, high compute-to-cache ratio on the chip
- Therefore, average GPU power of ~75 W, plus expensive memory accesses → GPU card TDP of ~225W
- A GPU out-performs DianNao by ~2X



• "DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine Learning", T. Chen et al., Proceedings of ASPLOS, 2014