Lecture: Systolic Arrays |

* Topics: sorting and matrix algorithms

Dense Computation

* Distribute memory across multiple chips; sufficient on-chip
wiring to feed computational units

* How do we design the compute units?
 GPU (too general-purpose)
« DaDianNao’s NFU (custom SIMD)
» Eyeriss’ spatial architecture (basic tile, operand network)
* ISAAC (analog)

 Systolic arrays: dense compute units; data flows through
these units with low rd/wr costs; loose connection with the
brain; effective for image processing, pattern recog, etc.

Sorting on a Linear Array

« Each processor has bidirectional links to its neighbors

* All processors share a single clock (asynchronous designs
will require minor modifications)

* At each clock, processors receive inputs from neighbors,

perform computations, generate output for neighbors, and
update local storage

input
it —

Control at Each Processor

« Each processor stores the minimum number it has seen
* Initial value in storage and on network is “*”, which is
bigger than any input and also means “no signal”

* On receiving number Y from left neighbor, the processor
keeps the smaller of Y and current storage Z, and passes
the larger to the right neighbor

Y max(Y,Z)

N

z min(Y,Z)

Sorting Example

8,2,5,3,9 s s e s
8,2,5,3 s s o s

— =g - ote = ot - e 5-.

8,2,5 s st sl
) 3 gh $ *h.;k ‘h* ih.

8,2 5 s e %

8 3 9 o *

S 8 5 S ES
—‘:--2 - 3 = 9 ‘a--* llm---.

K K e 8 9 %

als

E S S S E S

¥, L) L) ¥, L)
3 % % 2 e

Result Output

* The output process begins when a processor receives
a non-*, followed by a “*”

« Each processor forwards its storage to its left neighbor
and subsequent data it receives from right neighbors

 How many steps does it take to sort N numbers?

* What is the speedup and efficiency?

Output Example

5+1 o3 .5 : # N :-is'E-.
e e 9 o

-— 2 @_5 1 [
* i * #

- R .

gy BB A,
2's ‘w - 5;;_5@
B~ 5~ 8~
e e
3358 2~ Ml~5- 5 ~—8-~—i
- B E- 5~ 8-
2;:5,3,9 2-—@-—s5-—-—N

Bit Model

* The bit model affords a more precise measure of
complexity — we will now assume that each processor
can only operate on a bit at a time

* To compare N k-bit words, you may now need an N x k
2-d array of bit processors

B--E--N N
H-—M-1 N
BB~ N
%Dh]

Pipelined Comparison

Input numbers:

3
0
1
1

OOrh
OFrL,rOoOnN

0.0
*
SWap * 4
- *
7 5 & swap L]
0 . 1 . 0
0 [0} —=[o}=[7]

&

0,0

0= 1]
1 =1 —=10]
b d

9

Comparison Strategies

« Strategy 1: Bits travel horizontally, keep/swap signals
travel vertically; if inputs arrive from the left, the array is
sorted in 2N + k steps

e Strategy 2: Use a tree to communicate information on

which number is greater — can set up a pipeline so the
sorting happens in 2N + logk steps

g’ ‘\%ﬁap swaﬁwap
swa
gEzEwapswaﬂ f}/%’swap
L D
A:0 10
B:0O 10

1
0

10

Lower Bounds

* Input/Output bandwidth: Nk bits are being input/output
with k pins — requires 2(N) time

* Diameter: the comparison at processor (1,1) influences
the value of the bit stored at processor (N,k) — for
example, N-1 numbers are 011..1 and the last number is
either 00...0 or 10...0 — it takes at least N+k-2 steps for
Information to travel across the diameter

* Bisection width: if processors in one half require the
results computed by the other half, the bisection bandwidth
Imposes a minimum completion time

11

Counter Example

* N 1-bit numbers that need to be sorted with a binary tree

* Since bisection bandwidth is 2 and each number may be
In the wrong half, will any algorithm take at least N/2 steps?

Input: 1 1
Output: 0 0 0
12

Counting Algorithm

* It takes O(logN) time for each intermediate node to add
the contents in the subtree and forward the result to the
parent, one bit at a time

* After the root has computed the number of 1’s, this
number iIs communicated to the leaves — the leaves
accordingly set their output to O or 1

« Each half only needs to know the number of 1°’s in the
other half (logN-1 bits) — therefore, the algorithm takes
Q(logN) time

 Careful when estimating lower bounds! 3

Matrix Algorithms

» Consider matrix-vector multiplication:

Yi= 2 aX

* The sequential algorithm takes 2N2 — N operations

« With an N-cell linear array, can we implement
matrix-vector multiplication in O(N) time?

14

Matrix Vector Multiplication

Uy U3 Uy Uy
— - — - — - — -
R
aqq o2 % %
A, Ay * *
*+

% Qzq Qg3

% % % a,,

Number of steps = 2N -1

15

Matrix-Matrix Multiplication

bél'l b31 bZl b'll
b42 b32 b22 b'lZ
b43 b33 b23 b13
b44 b3=1 b24 b14

Number of time steps = 3N - 2

Ay
A3q Ay3
@24 33 Ay
A1y Ay3 A3, Ay
a3 Ay, Az,
ai; Ajq
aiq

16

Complexity

* The algorithm implementations on the linear arrays have
speedups that are linear in the number of processors — an
efficiency of O(1)

* It Is possible to improve these algorithms by a constant
factor, for example, by inputting values directly to each
processor in the first step and providing wraparound edges

(N time steps) (\ m m m

JUUU

a, a, .
Q%*b%ﬁ T\b1 b
RYAVEY 17

Dataflow for Convolution

For a 3x3 kernel with strides of 1, every input pixel is involved in 9 ops

p.xe.sminn-ni\

P|er3852' - - - - - - -

Pixels963ﬂ1-------!/

2 2
3 3
4

3
4 4 This will produce partial results
5 5 that have to be consumed later.

6
18

Comparison with Eyeriss Convolution

Filter
row 1 >

PE; , |-)

PE,, |-)

PE,;

Filter
row 2 >

PE,; 1

PE,, [P

PE,3

Filter
row 3 >

PE;, 1

PE., [

PE;;

ifmap
row 1

ifmap
row 2

ifmap
row 3

psum
row 1

psum
row 2

4

PE,1

PE.;

PE; 4 PE;, PE;;
PE; 1 PE;, PE,;
PE; 1 PEs, PE;s;
ifmap ifmap
row 4 row 5

PE;

PE;>

PEs 4

PEs,

19

psum
row 3

4

PE;

PE;3

PEs3

References

 “Introduction to Parallel Algorithms and Architectures,” Leighton
« Figure credits: Mitsu Ogihara

20

Title

* Bullet

21

