
1

Lecture: Systolic Arrays I

• Topics: sorting and matrix algorithms

2

Dense Computation

• Distribute memory across multiple chips; sufficient on-chip

wiring to feed computational units

• How do we design the compute units?

• GPU (too general-purpose)

• DaDianNao’s NFU (custom SIMD)

• Eyeriss’ spatial architecture (basic tile, operand network)

• ISAAC (analog)

• Systolic arrays: dense compute units; data flows through

these units with low rd/wr costs; loose connection with the

brain; effective for image processing, pattern recog, etc.

3

Sorting on a Linear Array

• Each processor has bidirectional links to its neighbors

• All processors share a single clock (asynchronous designs

will require minor modifications)

• At each clock, processors receive inputs from neighbors,

perform computations, generate output for neighbors, and

update local storage

input

output

4

Control at Each Processor

• Each processor stores the minimum number it has seen

• Initial value in storage and on network is “*”, which is

bigger than any input and also means “no signal”

• On receiving number Y from left neighbor, the processor

keeps the smaller of Y and current storage Z, and passes

the larger to the right neighbor

5

Sorting Example

6

Result Output

• The output process begins when a processor receives

a non-*, followed by a “*”

• Each processor forwards its storage to its left neighbor

and subsequent data it receives from right neighbors

• How many steps does it take to sort N numbers?

• What is the speedup and efficiency?

7

Output Example

8

Bit Model

• The bit model affords a more precise measure of

complexity – we will now assume that each processor

can only operate on a bit at a time

• To compare N k-bit words, you may now need an N x k

2-d array of bit processors

9

Pipelined Comparison

Input numbers: 3 4 2

0 1 0

1 0 1

1 0 0

10

Comparison Strategies

• Strategy 1: Bits travel horizontally, keep/swap signals

travel vertically; if inputs arrive from the left, the array is

sorted in 2N + k steps

• Strategy 2: Use a tree to communicate information on

which number is greater – can set up a pipeline so the

sorting happens in 2N + logk steps

11

Lower Bounds

• Input/Output bandwidth: Nk bits are being input/output

with k pins – requires W(N) time

• Diameter: the comparison at processor (1,1) influences

the value of the bit stored at processor (N,k) – for

example, N-1 numbers are 011..1 and the last number is

either 00…0 or 10…0 – it takes at least N+k-2 steps for

information to travel across the diameter

• Bisection width: if processors in one half require the

results computed by the other half, the bisection bandwidth

imposes a minimum completion time

12

Counter Example

• N 1-bit numbers that need to be sorted with a binary tree

• Since bisection bandwidth is 2 and each number may be

in the wrong half, will any algorithm take at least N/2 steps?

13

Counting Algorithm

• It takes O(logN) time for each intermediate node to add

the contents in the subtree and forward the result to the

parent, one bit at a time

• After the root has computed the number of 1’s, this

number is communicated to the leaves – the leaves

accordingly set their output to 0 or 1

• Each half only needs to know the number of 1’s in the

other half (logN-1 bits) – therefore, the algorithm takes

W(logN) time

• Careful when estimating lower bounds!

14

Matrix Algorithms

• Consider matrix-vector multiplication:

yi = Sj aijxj

• The sequential algorithm takes 2N2 – N operations

• With an N-cell linear array, can we implement

matrix-vector multiplication in O(N) time?

15

Matrix Vector Multiplication

Number of steps = 2N – 1

16

Matrix-Matrix Multiplication

Number of time steps = 3N – 2

17

Complexity

• The algorithm implementations on the linear arrays have

speedups that are linear in the number of processors – an

efficiency of O(1)

• It is possible to improve these algorithms by a constant

factor, for example, by inputting values directly to each

processor in the first step and providing wraparound edges

(N time steps)

18

Dataflow for Convolution

For a 3x3 kernel with strides of 1, every input pixel is involved in 9 ops

1

2

3
2

3

4

3

4

5

4

5

6

Pixels 7 4 1

Pixels 8 5 2

Pixels 9 6 3

This will produce partial results

that have to be consumed later.

19

Comparison with Eyeriss Convolution

20

References

• “Introduction to Parallel Algorithms and Architectures,” Leighton

• Figure credits: Mitsu Ogihara

21

Title

• Bullet

