Lecture: Systolic Arrays |

* Topics: sorting and matrix algorithms



Dense Computation

* Distribute memory across multiple chips; sufficient on-chip
wiring to feed computational units

* How do we design the compute units?
 GPU (too general-purpose)
« DaDianNao’s NFU (custom SIMD)
» Eyeriss’ spatial architecture (basic tile, operand network)
* ISAAC (analog)

 Systolic arrays: dense compute units; data flows through
these units with low rd/wr costs; loose connection with the
brain; effective for image processing, pattern recog, etc.



Sorting on a Linear Array

« Each processor has bidirectional links to its neighbors

* All processors share a single clock (asynchronous designs
will require minor modifications)

* At each clock, processors receive inputs from neighbors,

perform computations, generate output for neighbors, and
update local storage
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Control at Each Processor

« Each processor stores the minimum number it has seen
* Initial value in storage and on network is “*”, which is
bigger than any input and also means “no signal”

* On receiving number Y from left neighbor, the processor
keeps the smaller of Y and current storage Z, and passes
the larger to the right neighbor

Y max(Y,Z)

N

z min(Y,Z)



Sorting Example
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Result Output

* The output process begins when a processor receives
a non-*, followed by a “*”

« Each processor forwards its storage to its left neighbor
and subsequent data it receives from right neighbors

 How many steps does it take to sort N numbers?

* What is the speedup and efficiency?



Output Example
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Bit Model

* The bit model affords a more precise measure of
complexity — we will now assume that each processor
can only operate on a bit at a time

* To compare N k-bit words, you may now need an N x k
2-d array of bit processors
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Pipelined Comparison

Input numbers:
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Comparison Strategies

« Strategy 1: Bits travel horizontally, keep/swap signals
travel vertically; if inputs arrive from the left, the array is
sorted in 2N + k steps

e Strategy 2: Use a tree to communicate information on

which number is greater — can set up a pipeline so the
sorting happens in 2N + logk steps
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Lower Bounds

* Input/Output bandwidth: Nk bits are being input/output
with k pins — requires 2(N) time

* Diameter: the comparison at processor (1,1) influences
the value of the bit stored at processor (N,k) — for
example, N-1 numbers are 011..1 and the last number is
either 00...0 or 10...0 — it takes at least N+k-2 steps for
Information to travel across the diameter

* Bisection width: if processors in one half require the
results computed by the other half, the bisection bandwidth
Imposes a minimum completion time
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Counter Example

* N 1-bit numbers that need to be sorted with a binary tree

* Since bisection bandwidth is 2 and each number may be
In the wrong half, will any algorithm take at least N/2 steps?

Input: 1 1
Output: 0 0 0
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Counting Algorithm

* It takes O(logN) time for each intermediate node to add
the contents in the subtree and forward the result to the
parent, one bit at a time

* After the root has computed the number of 1’s, this
number iIs communicated to the leaves — the leaves
accordingly set their output to O or 1

« Each half only needs to know the number of 1°’s in the
other half (logN-1 bits) — therefore, the algorithm takes
Q(logN) time

 Careful when estimating lower bounds! 3



Matrix Algorithms

» Consider matrix-vector multiplication:

Yi= 2 aX

* The sequential algorithm takes 2N2 — N operations

« With an N-cell linear array, can we implement
matrix-vector multiplication in O(N) time?
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Matrix Vector Multiplication
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Matrix-Matrix Multiplication
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Complexity

* The algorithm implementations on the linear arrays have
speedups that are linear in the number of processors — an
efficiency of O(1)

* It Is possible to improve these algorithms by a constant
factor, for example, by inputting values directly to each
processor in the first step and providing wraparound edges
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Dataflow for Convolution

For a 3x3 kernel with strides of 1, every input pixel is involved in 9 ops
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Comparison with Eyeriss Convolution
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