Lecture 11: Relaxed Consistency Models

» Topics: sequential consistency recap, relaxing various
SC constraints, performance comparison

Relaxed Memory Models

* Recall that sequential consistency has two requirements:
program order and write atomicity

« Different consistency models can be defined by relaxing
some of the above constraints - this can improve
performance, but the programmer must have a good
understanding of the program and the hardware

Potential Relaxations

* Program Order: (all refer to different memory locations)
» Write to Read program order
» Write to Write program order
» Read to Read and Read to Write program orders

» Write Atomicity: (refers to same memory location)
» Read others’ write early

» Write Atomicity and Program Order:
» Read own write early

Write - Read Program Order

» Consider three example implementations that relax the
write to read program order:

» IBM 370: a read can complete before an earlier
write to a different address, but a read cannot return
the value of a write unless all processors have seen
the write

» SPARC V8 Total Store Ordering (TSO): a read can
complete before an earlier write to a different address,
but a read cannot return the value of a write by another
processor unless all processors have seen the write
(it returns the value of own write before others see it)

» Processor Consistency (PC): a read can complete
before an earlier write (by any processor to any
memory location) has been made visible to all 4

Relaxations

Relaxation W->R |W->W |[R->RW | Rdothers’ Wr | Rd own Wr
Order Order Order early early
IBM 370 X
TSO X X
PC X X X

> IBM 370: a read can complete before an earlier write to a different address, but a
read cannot return the value of a write unless all processors have seen the write

» SPARC V8 Total Store Ordering (TSO): a read can complete before an earlier
write to a different address, but a read cannot return the value of a write by another
processor unless all processors have seen the write (it returns the value of own

write before others see it)

» Processor Consistency (PC): a read can complete before an earlier write (by any
processor to any memory location) has been made visible to all

5

Examples

Initially, A=Flag1=Flag2=0 Initially, A=B=0

P1 P2 P1 P2 P3

Flagl=1 Flag2=1 A=1

A=1 A=2 if (A==1)

registerl=A register3=A B=1

register2=Flag2 registerd=Flagl if (B==1)
registerl=A

Result: regl=1;reg3=2;reg2=reg4=0 Result: B=1,reg1=0

> IBM 370: a read can complete before an earlier write to a different address, but a
read cannot return the value of a write unless all processors have seen the write

» SPARC V8 Total Store Ordering (TSO): a read can complete before an earlier
write to a different address, but a read cannot return the value of a write by another
processor unless all processors have seen the write (it returns the value of own
write before others see it)

» Processor Consistency (PC): a read can complete before an earlier write (by any
processor to any memory location) has been made visible to all 6

Safety Nets

» To explicitly enforce sequential consistency, safety nets
or fence instructions can be used

* Note that read-modify-write operations can double up as
fence instructions — replacing the read or write with a
r-m-w effectively achieves sequential consistency — the
read and write of the r-m-w can have no intervening
operations and successive reads or successive writes
must be ordered in some of the memory models

Optimizations Enabled

W > R : takes writes off the critical path
W 2> W: memory parallelism (bandwidth utilization)

R 2> WR: non-blocking caches, overlaps other useful
work with a read miss

Weak Ordering

* An example of a model that relaxes all of the above
constraints (except reading others’ write early)

» Operations are classified as data and synchronization

* A counter tracks the number of outstanding data
operations and does not issue a synchronization until
the counter is zero; data ops cannot begin unless the
previous synchronization op has completed

Release Consistency

* RCsc relaxes constraints similar to WO, while RCpc also
allows reading others’ writes early

* More distinctions among memory operations
» RCsc maintains SC between special, while RCpc
maintains PC between special ops
» RCsc maintains orders: acquire - all, all 2> release,
special - special
» RCpc maintains orders: acquire - all, all > release,
special = special, except for sp.wr followed by sp.rd

shared
N
special ordinary
sync/ \nsync
/\ 10

acquire release

Programmer Viewpoint

» Weak ordering will yield high performance, but the
programmer has to identify data and synch operations

* An operation is defined as a synch operation if it forms a
race with another operation in any seq. consistent execution

« Given a sed. consistent execution, an operation forms a
race with another operation if the two operations access
the same location, at least one of them is a write, and
there are no other intervening operations between them

P1 P2
Data = 2000 while (Head == 0) { }

Head =1 ... = Data
11

Performance Comparison

e Taken from Gharachorloo, Gupta, Hennessy, ASPLOS'91

 Studies three benchmark programs and three different
architectures:

* MP3D: 3-D particle simulator
* LU: LU-decomposition for dense matrices
* PTHOR: logic simulator

» LFC: aggressive; lockup-free caches, write buffer with
bypassing
» RDBYP: only write buffer with bypassing

» BASIC: no write buffer, no lockup-free caches .

Performance Comparison

Performance Gain over BASE

&—a LFC
a—a RDBYP
E—m BASIC

Performance Gain over BASIC BASE

| | | | |
BASE sC PC WC

RC z
Consistency Mo BASE sC PC WC ~RC
Consistency Model

Figure 3: Relative performance of models on LFC . s T . ;
: [Figure 7: Performance of MP3D under LFC, RDBYP, and BA-
SIC implementations.

13

Summary

« Sequential Consistency restricts performance (even more
when memory and network latencies increase relative to
processor speeds)

* Relaxed memory models relax different combinations of
the five constraints for SC

* Most commercial systems are not sequentially consistent

and rely on the programmer to insert appropriate fence
Instructions to provide the illusion of SC

14

Title

e Bullet

15

