
1

Lecture 10: Consistency Models

• Topics: sequential consistency, requirements to implement
sequential consistency



2

Sequential Consistency

• A multiprocessor system is sequentially consistent if
the result of any execution is the same as if the operations
of all processors were executed in some sequential order,
and the operations of each individual processor appear in
this sequence in the order specified by its program

• Atomicity: each processor sees operations complete
instantaneously in the same order

• Program order is preserved within each processor



3

Example Programs

Initially, Flag1 = Flag2 = 0

P1                                 P2
Flag1 = 1                   Flag2 = 1
if (Flag2 == 0)            if (Flag1 == 0)

critical section            critical section

Initially, A = B = 0

P1                 P2                         P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A



4

Write Buffers with Bypassing

• Assume an architecture without caches

• Writes by a processor are inserted in the write buffer and
the processor proceeds without waiting for the write to
complete – subsequent reads have priority for mem-access

• This can result in both processors entering the critical
section in example-1

• Illustrates the importance of program order
(wr � rd dependence)



5

Write Buffer

Shared Bus

P1

Wr Flag1   t3Rd Flag2
t1

P2

Wr Flag2   t4Rd Flag1
t2

Memory

Flag1: 0
Flag2: 0



6

Overlapping Writes

• Architecture without caches, multiple memory modules,
general interconnect (non-bus), writes are issued and the
processor continues without waiting for them to finish

• Again, sequential consistency is violated in next example

• Illustrates the importance of program order 
(wr � wr dependence)

• To enforce ordering, processors must wait for write
acknowledgments before proceeding



7

Overlapped Writes

Write Head                       Write Data
t1                                   t4

P1

P1                 P2
Data = 2000        while (Head == 0) { }
Head = 1             … = Data

P2

Memory

Head: 0

Memory

Data: 0

General Interconnect
Read Data   t3
Read Head  t2



8

Non-Blocking Reads

• Assume writes complete atomically and in program order

• If reads issue (or complete) out of order, sequential
consistency is violated

• Illustrates the importance of  rd�rd program order



9

Non-Blocking Reads

Read Head                       Read Data
t4                                   t1

P1

P1                 P2
Data = 2000        while (Head == 0) { }
Head = 1             … = Data

P2

Memory

Head: 0

Memory

Data: 0

General Interconnect
Write Head   t3
Write Data    t2



10

Architectures with Caches

• The earlier examples only violated program order – writes
were still atomic and seen by all processors in the same
order

• The latter condition can be easily violated if each processor
has a cache (in spite of cache coherence)

• Recall that cache coherence simply guarantees write
propagation and write serialization to the same memory
location – it does not guarantee that writes to different
locations are seen in the same order



11

Maintaining Atomicity

• To preserve program order, we will not allow a processor
to proceed unless it receives the write acknowledgment
(all other processors have seen invalidates or updates)

• Two conditions can ensure the appearance of write
atomicity:
� write serialization to each location
� stalling reads until all processors have seen the

last update to that location



12

Write Serialization Example

P1              P2              P3                              P4

A = 1          A = 2         while (B != 1) { }        while (B != 1) { }
B = 1          C = 1         while (C != 1) { }        while (C != 1) { }

register1 = A              register2 = A

• register1 and register2 having different values is a
violation of sequential consistency – possible if updates
to A appear in different orders 

• Cache coherence guarantees write serialization to a
single memory location



13

Non-Atomic Write Updates

• Assume each processor executes operations in program
order (waiting for acks) and we have write serialization to
the same memory location

Initially, A = B = 0                                     

P1                 P2                         P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A

• P2 reads new A before
update reaches P3

• Update of B reaches P3
before update of A

• P3 reads B and then A
before update of A arrives



14

Implementing Atomic Updates

• The above problem can be eliminated by not allowing a
read to proceed unless all processors have seen the last
update to that location

• Easy in an invalidate-based system: memory will not service
the request unless it has received acks from all processors

• In an update-based system: a second set of messages is
sent to all processors informing them that all acks have been
received; reads cannot be serviced until the processor gets
the second message



15

Summary

• To preserve sequential consistency:
� hardware must preserve program order for all

memory operations (including waiting for acks)
� writes to a location be serialized
� the value of a write cannot be read unless all have

seen the write (it is ok if writes to different locations
are not seen in the same order as long as conflicting
reads do not happen)



16

Performance Optimizations

• Program order is a major constraint – the following try to
get around this constraint without violating seq. consistency
� if a write has been stalled, prefetch the block in

exclusive state to reduce traffic when the write happens
� allow out-of-order reads with the facility to rollback

if the ROB detects a violation

• Get rid of sequential consistency in the common case and
employ relaxed consistency models – if one really needs
sequential consistency in key areas, insert fence 
instructions between memory operations

• Next class: consistency models by relaxing constraints



17

Title

• Bullet


