Lecture 17: Transactional Memories |

Papers:
e A Scalable Non-Blocking Approach to Transactional
Memory, HPCA’07, Stanford
« The Common Case Transactional Behavior of
Multi-threaded Programs, HPCA’06, Stanford
e Characterization of TCC on Chip Multiprocessors,
PACT’05, Stanford

TM Overview

» Recall the basic TM implementation:

= Every transaction maintains read-set and write-set

= Writes are not propagated until commit time

= At commit, acquire permission to commit from a
central arbiter (no parallel commit for now)

= Send write-set to other nodes — If the write-set
Intersects with the node’s read-set, the node’s
transaction is aborted and re-started

Implementation Issues

* Design detalls:
= On attempting a write (the Tx Is not yet ready to
commit), must obtain the most recently committed
version of the block in read-only state (the block is
not yet part of the read-set, though)
= At the time of commit, either write-thru to memory
(there is no M state in the coherence protocol), or
move from S to M state (write-back policy) (a dirty line
can’t handle speculative writes, though)
 For parallel commits:
= |s an ordering implied between these transactions?
= |s a write-set/read-set conflict allowed?
" |s a read-set/write-set conflict allowed?
" |Ss a write-set/write-set conflict allowed? 3

Parallel Commits |

» Ordering is implied: a programmer believes that a transaction
executes “in isolation”

» Write-set/Read-set conflict should cause an abort: hence, the
second transaction must:
= confirm there is no conflict before propagating writes
= Or propagate writes in a manner that does not affect
correctness (can’t employ write-thru or write-update, can’t respond
to others’ read requests / or must keep track of dependences)

» Read-set/Write-set conflict need not cause an abort: the ordering
should indicate that the first transaction need not abort

» Write-set/Write-set conflict need not cause an abort: a mechanism is
required to ensure that everyone sees writes in the same correct order

* Reading your own write is truly not a problem, but since info is 4
maintained at block granularity, the block is included in the read-set

Parallel Commits I

 Conflicting writes must be merged correctly (note that the
writes may be to different words in the same line)

e If we’re not checking early for Write-set/Read-set conflicts,
the first transaction must inform the next transaction after
it is done (received all acks)

» Consistency model: two parallel transactions are sending
their write-sets to other nodes over unordered networks:
= Just as we saw for SC, a reader must not proceed
unless everyone has seen the write (the entire
transaction need not have committed)
= \Writes to a location must be serialized

The Stanford Approach

* Transactions are ordered (by contacting a central agent)

* A transaction first engages in validation and proceeds
with commit only if it is guaranteed to not have any conflicts

= \Write-set/Read-set conflicts are not allowed
(T; checks its read-set directories and proceeds only
after those directories have seen previous writes)

* Read-set/Write-set conflicts are allowed
(T1 will ignore write notices from transactions >i)

= Write-set/Write-set conflicts are allowed
To maintain write serialization, T, confirms that a
directory is done with all transactions <i

Algorithm

* Probe your write-set to see Iif it IS your turn to write
(helps serialize writes)

* Let others know that you don’t plan to write (thereby
allowing parallel commits to unrelated directories)

* Mark your write-set (helps hide latency)

* Probe your read-set to see if previous writes have
completed

 Validation is now complete — send the actual commit
message to the write set

Example

Rd X
Wr X

TID
Vendor

NS: 1
D: XZ

NS: 1
D: Y

RdY
Wr Z

Example

TID TID=2
Vendor '\
o

‘ TID=1

NS: 1 NS: 1
D: XZ D: Y

RdY
Wr Z

Rd X
Wr X

o

Example

TID
Vendor

RdY
Wr Z

Rd X
Wr X

Probe to write-set t

see if it can procee I'm done with you-

NS: 1 NS: 3
D: XZ D: Y

P2 sends the same set of probes/notifications

10

Example

TID
Vendor

TID=1

Mark X

NS: 1
D: XZ

Mark messages are hiding the latency for the subsequent commit

TID=2

NS: 3
D: Y

11

Example

TID
Vendor

Rd X
Wr X

Probe read set and
make sure they’re done

NS: 1
D: XZ

NS: 3
D: Y

12

Example

Rd X
Wr X

Commit

TID=1

NS: 2
D: XZ

TID
Vendor

nvalidate sharers;
May cause aborts

NS: 3
D: Y

13

Example

Rd X
Wr X

NS: 2
D: XZ

TID
Vendor

TID=2
RdY
Wr Z

NS: 3
D: Y

P2: Probe finally successful.
Can mark Z.
Will then check read-set.
Then proceed with commit

14

Algorithm

* Probe your write-set to see Iif it IS your turn to write
(helps serialize writes)

* Let others know that you don’t plan to write (thereby
allowing parallel commits to unrelated directories)

* Mark your write-set (helps hide latency)

* Probe your read-set to see if previous writes have
completed

 Validation is now complete — send the actual commit

message to the write set .

Issues

* The protocol requires many messages: enables latency
hiding for the commit process, though

e There may be high directory locality for a NUMA machine,
but possibly not for a single large-scale CMP
with a directory-based cache coherence protocol

e To support a write-back cache policy, a new

non-speculative cache is introduced (so that a transaction
does not speculatively over-write a dirty line)

16

Evaluation

Input Trans. Trans. Trans. Ops. per | Directories | Working Directory

Application Size | Wr. Set | Rd. Sgt _Word per | set (Dir.) | Occupancy
) 90th % | 90th % | 90th % Written commit 90th % 90th %
(Inst) (KB) (KB) 90th % 90th % | (Entries) (Cycles)

barnes [39] 16,384 mol. 7.462 0.66 1.69 11.04 1 384 813
Cluster GA [3] ref 238 0.01 0.14 7.25 I 266 354
equake [34] ref 866 0.35 1.73 11.00 3 8926 485
radix [39] IM keys 32,681 7.41 8.16 17.20 32 13725 643
SPECjbb2000 [35] 1,472 trans. 5.556 0.12 0.16 180.60 2 14422 229
SVM Classity [5] ref 13,054 0.62 9.72 84.27 2 61 248
swim [34] ref 45.876 18.00 52.00 9.60 I 941 765
tomcatv [34] ref 21.060 10.50 15.90 7.83 2 1572 426
volrend [34] ref 1,098 0.31 0.39 2.09 I 977 560
water-nsquared [39] 512 mol. 948 0.45 0.45 8.12 1 139 323
water-spatial [39] 512 mol. 7.466 .26 1.27 23.14 2 752 312

Table 3. Applications and their scalable TM characteristic for performance. The 90th percentile transaction size in in-
structions, transaction write- and read-set sizes in KBytes, and operations per word written. We also show the number of
directories touched per commit and the 90th percentile of both the working set cached at the directory in number of entries
and the directory’s occupancy in cycles per commit

17

Results

- = = -
N A O
1 |

Normalized Execution Time (%)
=)

»

[\%)

- = - -
3

Applications with small transactions——

(=

Normalized Execution Time (%)

co

suffer more from commit latency 8-
6_
4-
24
0 Useful @ Cache Miss [ldle M Commit M Violations 0-
8 16 32 64 8 16 32 64
Irend water
volren nsquared
8 .
6 .
4
2 .
D]
8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 18

barnes radix SVM Classify equake

H Violations

OlIdle M Commit

W Cache Miss

@ Useful

5

28

14

water-spatial

28

14
Cycles-per-hop
radix

28

14
swim

| B 8BS

S T 82
NN vl
] i

BRI

Cache Miss

Violations
~
C

Commit

. Useful
. Idle
&5

DD W I

RN

Results

0.09

w M~ [1+) 5] = [~} [a]) —
< < = < < < S =
= = = =] = = = =

alll| UORNJIEXT PAZIEWION

19

Transaction Characteristics

* An evaluation of
35 multi-threaded

IC it
programs | Javaaverage | 5049
Pthreads average -

Transaction length—

1000 1000 -
8 ——ANL X Java Pthreads 8 FANL < Java Pthreads « »
3 100 H Z 100
. X ¥
Sizes of read —»f = £ 40
. N 10 N
and write sets = 2 4 —
2} 1 P & PV
s PEVESUSEES S 2 041 =
e 3
0.1 TTT T T T T T T T I T T T T T T T T T T I T T T IT T IT T ITT T T T T T T T T T T T T T 0-01 TTTTTTITTTTTTTTIT T T I T T T T T T T T T T TT T T IT T TT T T TTI T TTTIT
50th 80th 50th 80th
Percentile of Transactions Percentile of Transactions

m 98% of transactions: <16KB read-set, <6KB write set

Transaction Characteristics

m Nesting occurs only in java VM code

m 2.2 average depth
=> Limited support for nesting is sufficient for now

m |/O within transactions is rare
m 27 applications have less than 0.1% of transactions with 1/O
m 8 applications have up to 1% of transactions with I/O

= No transactions include both input and output

21

Title

* Bullet

22

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

