
1

Lecture 3: Coherence Protocols

• Topics: consistency models, coherence protocol examples



2

Sequential Consistency

• A multiprocessor is sequentially consistent if the result
of the execution is achievable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

• For example, the code below should ensure mutual
exclusion on a sequentially consistent machine

Initially A = B = 0
P1                        P2

A 

�

1 B 

�

1
…                        …

if (B == 0)           if (A == 0)
Crit.Section         Crit.Section



3

Relaxing Memory Ordering

• Executing memory accesses in order is extremely slow;
we attempt optimizations � seq consistency is lost

• For example, each processor can be out-of-order; within
P1, the write to A and the read of B are independent
since they refer to different memory locations

• Ooo execution will allow each process to enter CS

Initially A = B = 0
P1                        P2

A 

�

1 B 

�

1
…                        …

if (B == 0)           if (A == 0)
Crit.Section         Crit.Section



4

Relaxed Consistency Models

• In order to write correct programs, the programmer must
understand that memory accesses do not always happen
in order

• The consistency model specifies how memory ordering
differs from that of sequential consistency

• If the programmer demands sequential consistency in
places, he/she can impose it with special fence
instructions – a fence ensures that we make progress
only after completing earlier memory accesses

• Fences are slow – a better understanding of the program
and the consistency model can eliminate some fences



5

Cache Coherence

A multiprocessor system is cache coherent if

• a value written by a processor is eventually visible to
reads by other processors – write propagation

• two writes to the same location by two processors are
seen in the same order by all processors – write 
serialization



6

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

� Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

� Write-update: when a processor writes, it updates other
shared copies of that block



7

Protocol-I   MSI

• 3-state write-back invalidation bus-based snooping protocol

• Each block can be in one of three states – invalid, shared,
modified (exclusive)

• A processor must acquire the block in exclusive state in
order to write to it – this is done by placing an exclusive
read request on the bus – every other cached copy is
invalidated

• When some other processor tries to read an exclusive
block, the block is demoted to shared



8

Design Issues, Optimizations

• When does memory get updated?
� demotion from modified to shared?
� move from modified in one cache to modified in another?

• Who responds with data?  – memory or a cache that has
the block in exclusive state – does it help if sharers respond?

• We can assume that bus, memory, and cache state
transactions are atomic – if not, we will need more states

• A transition from shared to modified only requires an upgrade
request and no transfer of data

• Is the protocol simpler for a write-through cache?



9

4-State Protocol

• Multiprocessors execute many single-threaded programs

• A read followed by a write will generate bus transactions
to acquire the block in exclusive state even though there
are no sharers

• Note that we can optimize protocols by adding more
states – increases design/verification complexity



10

MESI Protocol

• The new state is exclusive-clean – the cache can service
read requests and no other cache has the same block

• When the processor attempts a write, the block is
upgraded to exclusive-modified without generating a bus
transaction

• When a processor makes a read request, it must detect
if it has the only cached copy – the interconnect must
include an additional signal that is asserted by each
cache if it has a valid copy of the block



11

Design Issues

• When caches evict blocks, they do not inform other
caches – it is possible to have a block in shared state
even though it is an exclusive-clean copy

• Cache-to-cache sharing: SRAM vs. DRAM latencies,
contention in remote caches, protocol complexities
(memory has to wait, which cache responds), can be
especially useful in distributed memory systems

• The protocol can be improved by adding a fifth
state (owner – MOESI) – the owner services reads
(instead of memory)



12

Update Protocol (Dragon)

• 4-state write-back update protocol, first used in the
Dragon multiprocessor (1984)

• Write-back update is not the same as write-through –
on a write, only caches are updated, not memory

• Goal: writes may usually not be on the critical path, but
subsequent reads may be



13

4 States

• No invalid state

• Modified and Exclusive-clean as before: used when there
is a sole cached copy

• Shared-clean: potentially multiple caches have this block
and main memory may or may not be up-to-date

• Shared-modified: potentially multiple caches have this
block, main memory is not up-to-date, and this cache
must update memory – only one block can be in Sm state

• In reality, one state would have sufficed – more states
to reduce traffic



14

Design Issues

• If the update is also sent to main memory, the Sm
state can be eliminated

• If all caches are informed when a block is evicted, the
block can be moved from shared to M or E – this can
help save future bus transactions

• Having an extra wire to determine exclusivity seems
like a worthy trade-off in update systems



15

Examples

P1 P2
MSI MESI Dragon MSI     MESI     Dragon

• P1: Rd  X
• P1: Wr  X
• P2: Rd  X
• P1: Wr  X
• P1: Wr  X
• P2: Rd  X
• P2: Wr  X

Total transfers:



16

Title

• Bullet


