CS 7810 Lecture 2

Complexity-Effective Superscalar Processors

S. Palacharla, N.P. Jouppi, J.E. Smith
U. Wisconsin, WRL
ISCA 97

» Conflict between clock speed and parallelism
» Goals of the paper:

» Characterize complexity as a function of issue
width, window size, and feature size

» Propose clustered microarchitecture that
allows fast clocks with high parallelism

* More functional units, large in-flight windows

e Impact on cycle-time critical structures
Register renaming

nstruction wake-up

nstruction selection

Result bypass

Register files

» Caches

VYVVVY

* Logic delays scale linearly with feature size

* Wire delay ~RC =R, x C, x L?

* R, = p/ (width x thickness)

* C, = 2 X g X g X (thickness/width + width/thickness)
R, ~S;C,~S ; L~1/S (gate size scaled by 1/S)

* Hence, delay across 50K gates is constant in ps
and is linear with S in terms of FO4

* “The Future of Wires”, Ho, Mal, Horowitz, 2001
» C., actually decreases with reduced feature widths

* Hence, wire delay across 50K gates (in FO4)
Increases only slightly and is not quite linear
with S — uses repeaters

* Wire delays are still a problem (though, not as bad
as Palacharla et al. claim) — also note, FO4s/clock
IS shrinking

Update on Wire Delays

=

I I
Semi-global, conservative —+——
Semi-global, aggrassive ==-2e--
Gilobal, conservative -« -# -~
Global, aggressive -

el T

10

Wire delay divided by FO4 delay

018 013 .10 0.07 0.05 0.035
Technology Lo (Hm)

Fig.17. Wire delays (1n FO4s) for scaled-length wires spanning 30
K gates.

From “Future of Wires”, Ho, Mai, Horowitz

Register Rename Logic

_ Physical Physical
Logical Source Dest
Source Regs / Regs

Regs >
Logical
Dest
Regs
Logical

Source Reg

Map Table — RAM

7-bits 7-bits 7-bits 7-bits 7-bits

Num entries =
Num logical regs

Shadow copies (shift register)

Map Table — CAM

5-bits 1-bit 1-bit

Num entries =
Num phys regs

Shadow copies

Delay Model

Wire length = C + 3 x IW -

Delay = RC
=Cyt+ Cy X IW + C, X IW?

Rename delay ~ IW

The wire delay component increases as we shrink to 0.18u

Problems:

* They assume that wire delay/A (in ns) remains constant.
* No window size?

Wakeup Logic

tagl taglW

« CAM array wire length ~ issue width x winsize

« Capacitive load ~ winsize

e Matchline length ~ issue width

* Issue width has a greater impact on delay as it
Influences tagdrive and tagmatch (the quadratic

components are not very dominant)

* For smaller features, the wire delays dominate

Selection Logic

grant

enable

anyreq

Arbiter cell

enable

« Multiple FUs are handled by having more stages
In series — further increases selection logic delay

* Delay ~ log(WINSIZE)

* Wire lengths ~ WINSIZE, but are ignored — hence,
delay scales very well with feature size

* The number of bypass paths equals 2xIW?xS
(S Is the number of pipeline stages)

« Wire length ~ IW, hence, delay ~ IW?

* The layout and pipeline depth (capacitive load)
also matter

Issue Window Rename | Wakeup + | Bypass
Width Size Delay (ps) | Select (ps) | Delay (ps)
0.8um technology
4 32 1577.9 2903.7 184.9
8 64 1710.5 3369.4 1056.4
0.35um technology
4 32 627.2 1248.4 184.9
8 64 726.6 1484.8 1056.4
0.18um technology
4 32 351.0 578.0 184.9
8 64 427.9 724.0 1056.4

* Wakeup+Select and Bypass have the longest
delays and represent atomic operations

 Pipelining will prevent back-to-back operations
* Increased issue width / window size / wire delays

exacerbate the problem (also for the register file
and cache)

Dependence-Based Microarchitecture

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7 < r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

Dependence-Based Microarchitecture

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7 < r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

Dependence-Based Microarchitecture

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7 < r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

Dependence-Based Microarchitecture

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7 < r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

Dependence-Based Microarchitecture

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7 < r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

Dependence-Based Microarchitecture

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7 < r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

Dependence-Based Microarchitecture

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7 < r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

Dependence-Based Microarchitecture

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7<r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

Dependence-Based Microarchitecture

rl1 -
r2 =

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7<r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

Dependence-Based Microarchitecture

r3 -
9 -

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7 < r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

Dependence-Based Microarchitecture

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7 < r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

r4 -

Rdy

Oierands

Dependence-Based Microarchitecture

5 -
e -

r3&rl+r2
r4 & r3+1r2
5 &< r4+r2
6 < r4+r2
r7 < r6+r2
r8 &< r5+r2
9 &<rl+r2

FIFOs

Rdy

Oierands

« Wakeup and select over a subset of issue queue
entries (only FIFO heads)

« Under-utilization as FIFOs do not get filled (causes
about 5% IPC loss) — but it is not hard to increase
their sizes

* You still need an operand-rdy table

LOCAL BYFASSES

FIFC:

FUO |

Fu2

REG FILEO

“1

FU3

e

CLUSTER O

FIFC:

INTER-CLUSTER BYFASSES

FEMAMED INSTRUCTIONS

FU4

FU3

FU&

i

REG FILE |
]

ETe

FU7

CLUSTER 1 LOCAL BYPASSES

Figure 14: Clustering the dependence-based microarchitecture: 8-

way machine organized as two 4-way clusters (2 X 4-way)

« Simplifies wakeup+select and bypassing

* Dependence-based, hence most communication
Is locall

* Low porting requirements on register file, issue
gueue

 |PC loss of 6.3%, but a clock speed improvement

 As Issue width and window size increase, the
delays of most structures go up dramatically

 Dominant wire delays exacerbate the problem

* Hence, to support large widths, build smaller
cores that communicate with each other

« With dependence information, it is possible to
minimize communication costs

* “Clock Rate vs. IPC: The End of the Road for
Conventional Microarchitectures”, ISCA'00

* Do not get bogged down in details & methodology

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

