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» Conflict between clock speed and parallelism
» Goals of the paper:

» Characterize complexity as a function of issue
width, window size, and feature size

» Propose clustered microarchitecture that
allows fast clocks with high parallelism



* More functional units, large in-flight windows

e Impact on cycle-time critical structures
Register renaming

nstruction wake-up

nstruction selection

Result bypass

Register files

» Caches
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* Logic delays scale linearly with feature size

* Wire delay ~RC =R, x C, x L?

* R, = p/ (width x thickness)

* C, = 2 X g X g X (thickness/width + width/thickness)
R, ~S;C,~S ; L~1/S (gate size scaled by 1/S)

* Hence, delay across 50K gates is constant in ps
and is linear with S in terms of FO4



* “The Future of Wires”, Ho, Mal, Horowitz, 2001
» C., actually decreases with reduced feature widths

* Hence, wire delay across 50K gates (in FO4)
Increases only slightly and is not quite linear
with S — uses repeaters

* Wire delays are still a problem (though, not as bad
as Palacharla et al. claim) — also note, FO4s/clock
IS shrinking



Update on Wire Delays
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Fig.17. Wire delays (1n FO4s) for scaled-length wires spanning 30
K gates.

From “Future of Wires”, Ho, Mai, Horowitz



Register Rename Logic
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Map Table — RAM

7-bits 7-bits 7-bits 7-bits 7-bits

Num entries =
Num logical regs

Shadow copies (shift register)



Map Table — CAM

5-bits 1-bit 1-bit

Num entries =
Num phys regs

Shadow copies



Delay Model

Wire length = C + 3 x IW -

Delay = RC
=Cyt+ Cy X IW + C, X IW?

Rename delay ~ IW

The wire delay component increases as we shrink to 0.18u

Problems:

* They assume that wire delay/A (in ns) remains constant.
* No window size?



Wakeup Logic
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« CAM array wire length ~ issue width x winsize

« Capacitive load ~ winsize

e Matchline length ~ issue width

* Issue width has a greater impact on delay as it
Influences tagdrive and tagmatch (the quadratic

components are not very dominant)

* For smaller features, the wire delays dominate



Selection Logic
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« Multiple FUs are handled by having more stages
In series — further increases selection logic delay

* Delay ~ log(WINSIZE)

* Wire lengths ~ WINSIZE, but are ignored — hence,
delay scales very well with feature size



* The number of bypass paths equals 2xIW?xS
(S Is the number of pipeline stages)

« Wire length ~ IW, hence, delay ~ IW?

* The layout and pipeline depth (capacitive load)
also matter



Issue Window Rename | Wakeup + | Bypass
Width Size Delay (ps) | Select (ps) | Delay (ps)
0.8um technology
4 32 1577.9 2903.7 184.9
8 64 1710.5 3369.4 1056.4
0.35um technology
4 32 627.2 1248.4 184.9
8 64 726.6 1484.8 1056.4
0.18um technology
4 32 351.0 578.0 184.9
8 64 427.9 724.0 1056.4




* Wakeup+Select and Bypass have the longest
delays and represent atomic operations

 Pipelining will prevent back-to-back operations
* Increased issue width / window size / wire delays

exacerbate the problem (also for the register file
and cache)



Dependence-Based Microarchitecture
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Dependence-Based Microarchitecture
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Dependence-Based Microarchitecture
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« Wakeup and select over a subset of issue queue
entries (only FIFO heads)

« Under-utilization as FIFOs do not get filled (causes
about 5% IPC loss) — but it is not hard to increase
their sizes

* You still need an operand-rdy table
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Figure 14: Clustering the dependence-based microarchitecture: 8-

way machine organized as two 4-way clusters (2 X 4-way)



« Simplifies wakeup+select and bypassing

* Dependence-based, hence most communication
Is locall

* Low porting requirements on register file, issue
gueue

 |PC loss of 6.3%, but a clock speed improvement



 As Issue width and window size increase, the
delays of most structures go up dramatically

 Dominant wire delays exacerbate the problem

* Hence, to support large widths, build smaller
cores that communicate with each other

« With dependence information, it is possible to
minimize communication costs



* “Clock Rate vs. IPC: The End of the Road for
Conventional Microarchitectures”, ISCA'00

* Do not get bogged down in details & methodology
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