
The Potential for Using Thread-Level Data Speculation
to Facilitate Automatic Parallelization

J. Gregory Steffan and Todd C. Mowry
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213�

steffan,tcm � @cs.cmu.edu

Abstract

As we look to the future, and the prospect of a bil-
lion transistors on a chip, it seems inevitable that micro-
processors will exploit having multiple parallel threads.
To achieve the full potential of these “single-chip multi-
processors,” however, we must find a way to parallelize
non-numeric applications. Unfortunately, compilers have
had little success in parallelizing non-numeric codes due
to their complex access patterns. This paper explores the
potential for using thread-level data speculation (TLDS)
to overcome this limitation by allowing the compiler to
view parallelization solely as a cost/benefit tradeoff, rather
than something which is likely to violate program correct-
ness. Our experimental results demonstrate that with real-
istic compiler support, TLDS can offer significant program
speedups. We also demonstrate that through modest hard-
ware extensions, a generic single-chip multiprocessor could
support TLDS by augmenting its cache coherence scheme to
detect dependence violations, and by using the primary data
caches to buffer speculative state.

1. Introduction

As advances in integrated circuit technology continue
to provide more and more transistors on a chip, processor
architects are faced with the pleasant challenge of finding
the best way to translate these additional resources into im-
proved performance. A number of options have been pro-
posed, including integrating main memory onto the proces-
sor chip [17], supporting wider instruction issue, and ex-
ecuting multiple threads of control in parallel [2, 14, 24].
While these options may be mutually exclusive in the short
term due to transistor constraints, in the long term we will
eventually have enough resources to potentially combine
several of these options.

�
To appear in HPCA-4, February 1-4, 1998.

Due to the diminishing returns of wider instruction issue
and more memory on the chip, we believe that it is simply a
matter of time until processors also exploit the performance
benefits of having multiple parallel threads. The coarser-
grained thread-level parallelism exploited by these “single-
chip multiprocessors” is largely orthogonal to the more fine-
grained instruction-level parallelism which wide-issue ma-
chines attempt to exploit within a single thread. Hence, with
enough transistors, it may be possible to aggressively ex-
ploit both forms of parallelism in a complementary fashion.

What are the performance benefits of single-chip multi-
processing? For a multiprogrammed workload, computa-
tional throughput will clearly improve as the independent
tasks execute in parallel on multiple processors rather than
time-sharing a single processor. However, to reduce the ex-
ecution time of a single application, that application must
contain parallel threads. Unfortunately, despite the fact
that conventional multiprocessors have been commercially
available for quite some time, only a small fraction of the
world’s software has been written to exploit parallelism.
Hence if single-chip multiprocessing is going to succeed
and become ubiquitous, the key question is how do we con-
vert the applications we care about into parallel programs?

Expecting programmers to only write parallel programs
from now on is unrealistic. Instead, the preferred solution
would be for the compiler to parallelize programs automat-
ically. Unfortunately, compilers have only been successful
so far at parallelizing the numeric applications commonly
run on supercomputers [1, 7, 16]. For single-chip multipro-
cessing to have an impact on most users, we must also find a
way to automatically parallelize non-numeric applications.

One of the primary challenges in automatic paralleliza-
tion is determining whether data dependences exist between
two potential threads that would prevent them from running
safely in parallel. To address this problem in numeric codes,
a considerable amount of research has focused on analyzing
array accesses within DO loops [7]. Although progress has
been made in this area, the problem is considerably more

1

a = f()
STORE *p = a

LOAD b = *q

g(b)

a = f()
STORE *p = a

g(b)

LOAD b = *q

b = a

(p == q) (p != q)

g(b)

a = f()
STORE *p = a

LOAD b = *q

(p == q)

g(b)

LOAD b = *q

Processor1 Processor2

(p != q)

(a) Original Execution (b) Instruction-Level Data Speculation (c) Thread-Level Data Speculation

Figure 1. Examples of data speculation.

difficult for non-numeric codes due to their complex access
patterns, including pointers to heap-allocated objects and
complex control flow. Given the size and complexity of real
non-numeric programs, automatic parallelization appears to
be an unrealistic goal if the compiler must statically prove
that threads are independent. Instead, we would prefer to
relax the constraints on the compiler such that if it simply
believes that two threads are likely to be independent, it can
optimistically parallelize them without worrying about vi-
olating program correctness. With such a model, the com-
piler can view parallelization solely as a cost/benefit trade-
off, rather than something which may break the program.
In this paper, we consider a technique which provides this
flexibility: thread-level data speculation.

1.1. Thread-Level Data Speculation
To maximize parallelism, we want to perform loads as

early as possible so that operations which depend on them
can be executed concurrently. Hence it is often desirable
to move a load ahead of an earlier store, which is safe pro-
vided that they access different memory locations. Since
analyzing memory addresses in non-numeric applications
is difficult, a potentially attractive option is for the com-
piler to speculatively move a load ahead of a store, and re-
solve whether this was safe at run-time. If the speculative
load turns out to have been unsafe, then a recovery action is
taken to restore the correct program state. This technique is
known as data speculation, and it works well when the un-
safe cases are sufficiently rare that the overhead of recovery
is small relative to the benefit of increased parallelism.

Figure 1(a) shows an example code fragment, and Fig-
ure 1(b) illustrates how it might be optimized to exploit
instruction-level data speculation. In this example, the com-
piler is uncertain whether the pointers p and q point to the
same address, but nevertheless it has speculatively moved
the load ahead of the store. At run-time, we can verify the
safety of this speculation through either a simple software
check or with special hardware support [5].

Thread-Level Data Speculation (TLDS) is analogous to
instruction-level data speculation, except that the load and
store are executed by separate threads of control which run

in parallel, as illustrated in Figure 1(c). A given specula-
tive load is safe provided that its memory location is not
subsequently modified by another thread such that the store
should have preceded the load in the original sequential pro-
gram. When such dependence violations are detected, a
recovery action is taken such as partially re-executing the
thread which performed the failed speculative load.

While instruction-level data speculation has received
much attention [5, 9, 20], the only relevant work on thread-
level data speculation for non-numeric codes when we per-
formed our study was the Wisconsin Multiscalar architec-
ture [3, 4, 21]. This tightly-coupled ring architecture as-
signs threads around the ring in program order, provides
a hardware mechanism for forwarding register values be-
tween processors, and uses a centralized structure called the
“address resolution buffer” (ARB) [4, 21] to detect data de-
pendences through memory. When an unsafe speculation
is detected, a purely hardware-based mechanism squashes
computation in reverse order around the ring until it can be
safely restarted. While the Multiscalar architecture supports
a form of thread-level data speculation with relatively little
software support, we believe that this hardware-centric ap-
proach has some important disadvantages. First, the ARB
is a relatively large, centralized structure which must be
checked on all loads and stores. A centralized approach
has the danger of increasing load latency due to long wire
delays—instead, we would prefer a more distributed ap-
proach where loads and stores can be satisfied directly from
their own primary caches. Second, the ring architecture lim-
its our ability to optimize data cache locality and to per-
form efficient multiprogramming. Instead, we would prefer
a more flexible topology where computation can be placed
wherever we wish. (Concurrent with our work, researchers
in the Stanford Hydra and Wisconsin Multiscalar projects
have also explored distributed approaches to TLDS [8, 15].)

1.2. Objectives and Overview
Our goals in this paper are threefold: to quantify the po-

tential performance advantages of TLDS, to propose cost-
effective hardware support for TLDS, and to gain insight
into the compiler support necessary to effectively exploit

2

TLDS. The remainder of the paper is organized as fol-
lows. Section 2 illustrates how TLDS works, and Section 3
presents our experimental results. Sections 4 and 5 discuss
architectural and compiler support for TLDS, respectively.
Finally, we conclude in Section 6.

2. An Example: Compress
Before we illustrate how TLDS applies to a real appli-

cation, we briefly introduce some terminology. We say that
TLDS parallelism is extracted from a speculative region,
which consists of a collection of dynamic instruction se-
quences called epochs. For example, with loop-level paral-
lelism, we would say that the loop is a speculative region,
and the individual loop iterations would be epochs. Since
TLDS parallelism also applies to structures other than loops
(e.g., recursion), we have adopted this more general termi-
nology. For TLDS to be effective, each epoch must contain
enough work to amortize the costs of thread management
and data communication, and the speculative regions must
constitute a significant fraction of overall execution time.

The compress application in the SPEC92 and SPEC95
benchmark suites is a good candidate for exploiting TLDS.
Over 99% of execution time is spent in a singlewhile loop
which reads each input character and performs the compres-
sion. The control flow within the loop body is quite com-
plicated, and on average takes roughly 90 dynamic instruc-
tions. While this loop may appear to be an abundant source
of data parallelism, a compiler cannot statically prove that
loop iterations are independent because they are not. The
input characters are used to index a hash table which is
modified; hence when two character sequences hash to the
same entry, there is a true read-after-write (RAW) data de-
pendence. Figure 2(a) shows a pseudo-code representation
of this code. Fortunately, due to the nature of a hash ta-
ble, consecutive characters rarely access the same hash ta-
ble entry—therefore there is an opportunity to extract par-
allelism during the iterations between actual dependences.
Since a single-chip multiprocessor has a relatively small
number of processors, we do not need a large gap between
data-dependent iterations to keep the machine busy.

Figure 2(b) illustrates how compress can be paral-
lelized using TLDS, where each epoch (i.e. loop iteration)
is executed as a separate thread. Since the threads are spec-
ulative, any stores which they perform must be buffered un-
til it is certain that their results can be safely committed to
memory. In this example, the first three epochs successfully
complete without any problems. The fourth epoch, how-
ever, reads the value hash[10] before it is modified by
epoch 1—since this violates the original program seman-
tics, we must recover by re-executing epoch 4. As we can
see in Figure 2(b), the number of epochs between RAW
data dependences dictates the amount of parallel speedup
that can be achieved—we will quantify this number for

(a) Pseudo-code representation of compress
while ((c = getchar()) != EOF) �

/* perform data compression */
in count++;
...
... = hash[hash function(c)];
...
hash[hash function(...)] = ...;
...
if (...) � out count++; putchar(); ... �
if (free entries < ...) � free entries = ... �
...

�

(b) TLDS execution of compress

Epoch 1 Epoch 2
Epoch 3

Epoch 4

hash[10] = hash[21] = hash[30] =
hash[25] =

= hash[3] = hash[19]
= hash[33]

= hash[10]

attempt_commit()attempt_commit()
attempt_commit()

attempt_commit()

Violation!

Redo

Processor1 Processor2 Processor3 Processor4

Epoch 4

hash[25] =

= hash[10]

attempt_commit()

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
Epoch 5

= hash[30]

...

...
Epoch 6

= hash[9]

...

... Epoch 7

= hash[27]

...

T
im

e

Figure 2. Example of TLDS execution.

compress and other applications later in Section 3.

In addition to the hash table accesses, compress con-
tains several other sources of RAW data dependences, but
fortunately we can either eliminate or at least mitigate their
impact with the proper compiler support. For example,
the in count variable is incremented on each iteration
to count total input characters—the compiler can recognize
this as an induction variable, and eliminate it since it is
implicit in the epoch number. The out count variable
is conditionally incremented inside the loop to count total
output characters; since it is not used otherwise within the
loop, the compiler could recognize this as a reduction oper-
ation and optimize it accordingly (i.e. each processor’s par-
tial sum is added together at the end of the loop). Loop-
carried dependences also exist inside getchar() and
putchar()—these could also be eliminated through par-
allel implementations of the I/O routines. Finally, the scalar
variable free entries is always read and sometimes
modified. Although this dependence cannot be eliminated,
the compiler could explicitly forward this value directly to
consuming threads whenever it is modified, thereby allow-
ing us to at least partially overlap execution of the epochs.
Thus we see that a range of different compiler optimiza-
tions can potentially enhance TLDS, and we will quantify
their benefit in the next section.

3

Table 1. Benchmarks

Average % of
Input Dynamic Total

Data Set Instrs Dynamic
Suite Name (size:name) Region per Epoch Instrs

SPEC92 compress ref:in r1 89 99.9
gcc ref:stmt.i r1 1092 8.1

r2 1593 4.0
espresso ref:bca.in r1 32 19.4
li ref:li-input.lisp r1 19 21.9

r2 286 51.2
sc ref:loada1 r1 36 69.3

SPEC95 m88ksim test:ctl.raw r1 1232 99.3
ijpeg train:vigo.ppm r1 9406 15.3
perl test:primes.pl r1 67 35.8
go train:2stone9.in r1 80 6.8

NAS buk N = 65536 r1 26 16.5
Parallel r2 18 11.4

3. Performance Impact of TLDS

This section presents our experimental results which
quantify the potential performance gain offered by TLDS.
There are two separate effects which limit performance:
(i) data dependences through memory caused by ambigu-
ous load and store addresses, and (ii) synchronization and
communication latency when we explicitly forward scalar
values between epochs to partially overlap execution. We
start by considering each of these effects in isolation in Sec-
tions 3.2 and 3.3, and then later combine both effects to pro-
duce overall speedup numbers in Section 3.4.

3.1. Finding and Simulating Speculative Regions

Table 1 summarizes the ten non-numeric applications we
study, which are taken from the SPEC92, SPEC95, and
NAS Parallel benchmark suites. We compiled these applica-
tions with -O2 optimization using the standard MIPS com-
pilers under IRIX 5.3, and did not modify the source code or
object files in any way throughout this study. Our simulator
reads traces generated by the MIPS pixie utility [19], and
models a perfectly-pipelined single-issue processor where
each instruction completes in a single cycle.

To locate speculative regions—i.e. sections of code that
we wish to parallelize using TLDS—we first used the IRIX
prof utility to identify regions that account for a large por-
tion of total execution time. We then inspected these regions
by hand to determine whether they were good candidates
for exploiting TLDS. If so, we explicitly identified these
regions to our simulator through their instruction addresses.
The simulator then measures the exact data dependences be-
tween epochs in each speculative region. (For further details
on our experimental methodology, see [23].) Since identi-
fying speculative regions by hand was a time-consuming
process, we were not able to explore all possible regions,
particularly in large programs such as gcc. We believe that
an automated tool would have located a larger set of specu-

lative regions, and therefore our results may underestimate
the potential program speedups.

3.2. Relaxing Memory Data Dependences

Data dependences between epochs can occur either
through registers or through memory. Register dependences
are generally easier for the compiler to analyze since the
storage locations are not ambiguous (in contrast with mem-
ory references). Therefore we begin in this section by focus-
ing only on the more difficult case of memory dependences.

As illustrated earlier in Figure 2, TLDS can exploit paral-
lelism whenever gaps exist between data-dependent epochs.
We quantify this potential by computing the run lengths,
which are the number of consecutive epochs within a spec-
ulative region delimited by performance-limiting read-after-
write (RAW) data dependences. (Note that although write-
after-read (WAR) and write-after-write (WAW) data depen-
dences might also exist between epochs, our proposed hard-
ware eliminates them through a form of renaming, and
hence they do not limit performance.)

While RAW dependences can potentially disrupt paral-
lelism (forcing a processor to re-execute an epoch), this is
not always the case. Given that a single-chip multiproces-
sor will only support � outstanding speculative threads, we
know that when epoch ��� is executing, any epoch ��� where���
	���
 ��� must have committed its state already. Hence
a RAW dependence of distance � , where ����� , will not
limit our ability to exploit parallelism. For example, as-
suming that ����� in Figure 3(a), the RAW data depen-
dence shown between epoch ��� and epoch ��� will not limit
performance. Therefore there are only two performance-
limiting data dependences within these nine epochs, thus
resulting in run lengths of two, three, and four. The av-
erage run length size of three corresponds roughly to the
maximum speedup we might expect on four processors, as
illustrated in Figure 3(b).

Figure 3(c) shows the average run lengths for each region
given a threshold (�) of ten outstanding epochs. � Starting
with the base case (B)—i.e. the original code—we see that
seven of the thirteen regions have natural run lengths of two
or more under TLDS. To further exploit TLDS, we can ap-
ply compiler optimizations to eliminate RAW data depen-
dences whenever possible. Case “O” in Figure 3(c) shows
how much the run lengths increase if the compiler elimi-
nates dependences due to induction variables and reduction
operations, and uses parallel library routines (as described
earlier in Section 2). These optimizations yield significant
improvements in the compress and buk regions. Finally,
case “F” in Figure 3(c) shows that the scalar dependences
�
Note that the run length can exceed the threshold. Hence run length

does not translate directly into speedup, which is something we take
into account later in Section 3.4 when we compute region and program
speedups.

4

(a) Measurement of Run Lengths

RAW d = 2

2 3 4

Threshold T = 4
Average Run Length = 3

Epochs:

Run-Lengths:

RAW d = 5, d >= T

RAW d = 1

E2 E4 E6E1 E5 E8 E9E3 E7

(b) Execution on Four Processors

RAW Violation

RAW Violation

REDO

REDO

E2 E4

E6

E1

E8 E9

E3

E7

E4 E6E5E3

T
im

e

(c) Average Run Lengths

||0

|2

|4

|6

|8

|10

 S
p

ee
d

u
p

 L
im

it

B

1.
0

compress.r1
O

4.
2

F

8.
6

B

5.
5

gcc.r1

O

5.
5

F

>
10

B

1.
2

gcc.r2
O

1.
2

F

1.
2

B

8.
9

espresso.r1

O

8.
9

F

8.
9

B

1.
2

li.r1
O

1.
2

F

>
10

B

>
10

li.r2

O

>
10

F

>
10

B

>
10

sc.r1
O

>
10

F

>
10

B

1.
0

m88ksim.r1

O

1.
0

F

>
10

B

2.
0

ijpeg.r1
O

2.
0

F

2.
0

B

2.
6

perl.r1

O

2.
6

F

>
10

B

2.
7

go.r1
O

2.
7

F

2.
7

B

1.
0

buk.r1

O

>
10

F

>
10

B

1.
0

buk.r2
O

>
10

F

>
10

Figure 3. Impact of TLDS on run lengths caused by mem-
ory data dependences (B = base case, O = compiler op-
timizations applied to eliminate dependences, and F =
dependences due to forwardable scalars also removed).

between epochs represent the final barrier to achieving av-
erage run lengths of eight or more in compress, gcc.r1,
li.r1, m88ksim, and perl. Although these scalar de-
pendences cannot be fully eliminated (unlike the B and O
cases), we can potentially accelerate these cases by explic-
itly forwarding the values between epochs, as we discuss in
the next section.

3.3. Forwarding Data Between Epochs
In cases where RAW dependences frequently occur be-

tween consecutive epochs and these dependences cannot
be eliminated, we can still potentially accelerate perfor-
mance by explicitly forwarding data and therefore partially
overlapping the epochs. In addition to forwarding scalar
memory dependences, we must also forward any register
dependences. In contrast with the Multiscalar architec-
ture [3, 4, 21], we do not assume any register forward-
ing hardware—instead, we forward register values explic-
itly through memory. Although the run lengths in Fig-

(a) Coarse-Grain Synchronization (b) Fine-Grain Synchronization

Ei

LOAD A

STORE A

LOAD B

STORE B

WAIT

SIGNAL

E1

E2

E3

E4

Ei

LOAD A

STORE A

LOAD B
STORE B

SIGNAL A

WAIT B

WAIT A

SIGNAL B

E1

E2

E3

E4

T
im

e

Critical Path

Computation overlap

Forwarded Value

(c) Speedup Limits

||0

|2

|4

|6

|8
|10

 S
p

ee
d

u
p

 L
im

it

c

1.
4

compress.r1

f

3.
2

s

>
10

c

1.
0

gcc.r1

f

1.
0

s

>
10

c

1.
1

gcc.r2

f

1.
1

s

>
10

c

1.
0

espresso.r1

f

>
10

s

>
10

c

1.
2

li.r1

f

>
10

s

>
10

c

1.
1

li.r2

f

>
10

s

>
10

c

1.
5

sc.r1

f

2.
4

s

>
10

c

1.
0

m88ksim.r1

f

1.
0

s

>
10

c

>
10

ijpeg.r1

f

>
10

s

>
10

c

1.
0

perl.r1

f

3.
4

s

>
10

c

1.
4

go.r1

f

6.
0

s

>
10

c

>
10

buk.r1

f

>
10

s

>
10

c

>
10

buk.r2

f

>
10

s

>
10

Figure 4. Forwarding scalar values between epochs. (c
= coarse-grain synchronization, f = fine-grain synchro-
nization, s = fine-grain synchronization with aggressive
instruction scheduling.)

ure 3(c) ignored register dependences between epochs, we
take them into account throughout the remainder of this
study as follows. We eliminate two classes of RAW reg-
ister dependences which the compiler can easily optimize
away: those due to induction variables (e.g., updating a
loop index), and those which can be trivially eliminated
by rescheduling the loop test condition. Otherwise, all
remaining cross-epoch register dependences are explicitly
forwarded through memory.

In addition to a data transfer mechanism, forwarding data
also requires a form of producer-consumer synchronization
(e.g., wait/signal or full/empty bits [2, 18]) so that the
receiving processor knows when the value is ready. If mul-
tiple values are to be forwarded, the synchronization can oc-
cur at either a coarse granularity (once per epoch) or a fine
granularity (once per value), as illustrated in Figures 4(a)
and 4(b).

The performance of a speculative region that requires
forwarding is limited by the critical path length, which
is the sum of the non-overlapped portions of each epoch
plus the latency of forwarding these values between epochs.
With coarse-grain synchronization, the critical path length
is straightforward to compute, as illustrated in Figure 4(a).
With fine-grain synchronization, there can be multiple for-

5

warding paths through the epochs, as shown in Figure 4(b).
In this latter case, the overall critical path is simply the
longest of these forwarding paths (e.g., the forwarding path
for A in Figure 4(b)). Roughly speaking, the maximum po-
tential speedup for a speculative region in the presence of
forwarding can be computed by dividing the total sequen-
tial execution time of all epochs by the critical path length.

The performance with forwarding depends on how ag-
gressively we attempt to minimize the non-overlapped por-
tions of each epoch. In addition to using fine-grain rather
than coarse-grain synchronization, we can potentially im-
prove performance further by rescheduling the code to
move as many instructions out of the non-overlapped por-
tion of an epoch as possible. To evaluate the poten-
tial benefit of improved instruction scheduling, we simu-
lated aggressive instruction scheduling by tracking the dy-
namic dependence chain depth between instruction pairs
that consume and produce forwarded data values. In other
words, we measured the minimum possible sizes of the non-
overlapped portions within epochs. We do not claim that the
compiler will be able to schedule the code this aggressively,
but we want to show that proper scheduling can reduce the
length of the critical path.

Figure 4(c) shows the speedup limits due to forwarding.
In these initial experiments, we assume that forwarded data
can be consumed immediately (e.g., through a shared reg-
ister file); later, in Section 3.4, we consider a more realistic
forwarding latency. Three regions (ijpeg.r1, buk.r1,
and buk.r2) do not require any forwarding, and hence are
not limited by it. Focusing on the other ten regions, we
see that coarse-grain synchronization (c)—i.e. forwarding
data once per epoch—yields speedups above 35% in only
three cases (compress.r1, sc.r1, and go.r1), and
no speedups above 50%. By using fine-grain synchroniza-
tion to forward values as soon as they are produced (f), the
speedup limit increases to over twofold for seven of the ten
regions that require forwarding—in several of these cases,
the improvement is dramatic. Finally, by combining fine-
grain synchronization with aggressive instruction schedul-
ing (s) to minimize non-overlapped sections within epochs,
we can potentially achieve large speedups in all regions.
The benefits of rescheduling are particularly pronounced in
gcc.r1 and m88ksim.r1, where speedups in the origi-
nal code are limited to under 3%, but by rescheduling these
relatively large epochs (over 1000 instructions each), we
can potentially achieve speedups of tenfold or more.

3.4. Potential Speedups

Having gained insight into how TLDS can relax memory
and register data dependences and exploit forwarding, we
now translate the run length and critical path metrics into an
estimate of actual speedups on a single-chip multiprocessor
with four processors. To estimate speedups, we combine

(a) Region Speedups

||0

|1

|2

|3

|4

 R
eg

io
n

 S
p

ee
d

u
p

F

2.
26

compress.r1
S

3.
41

F

1.
00

gcc.r1

S

3.
44

F

1.
10

gcc.r2
S

1.
98

F

2.
64

espresso.r1

S

3.
22

F

1.
78

li.r1
S

1.
78

F

3.
88

li.r2

S

3.
88

F

1.
45

sc.r1
S

3.
63

F

1.
02

m88ksim.r1

S

3.
95

F

2.
01

ijpeg.r1
S

2.
01

F

1.
01

perl.r1

S

4.
00

F

1.
59

go.r1
S

1.
59

F

3.
97

buk.r1

S

3.
97

F

3.
97

buk.r2
S

3.
97

(b) Program Speedups

||0

|1

|2

|3

|4

 P
ro

g
ra

m
 S

p
ee

d
u

p

F

2.
26

compress

(99.9%)

S

3.
40

F

1.
00

gcc

(12.1%)

S

1.
08

F

1.
14

espresso

(19.4%)

S

1.
15

F

1.
91

li

(73.1%)

S

1.
91

F

1.
28

sc

(69.3%)

S

2.
01

F

1.
02

m88ksim

(99.3%)

S

3.
87

F

1.
05

ijpeg

(15.3%)

S

1.
05

F

1.
00

perl

(35.8%)

S

1.
37

F

1.
03

go

(6.8%)

S

1.
03

F

1.
26

buk

(27.9%)

S

1.
26

Figure 5. Potential region and program speedupson four
processors assuming a 10-cycle forwarding latency, 32B
cache lines, and accounting for recovery time (F = for-
warding with fine-grain synchronization, S = forwarding
with fine-grain synchronization and aggressive instruc-
tion scheduling). The coverage is shown below each
benchmark.

the limitations imposed both by memory data dependences
and by forwarding data—both of these effects were shown
in isolation in Figures 3 and 4.

For these results, we take several new factors into con-
sideration. First, in contrast with Sections 3.3 and 3.2 where
we assumed an ideal communication latency of a single cy-
cle, we now assume a ten cycle communication latency be-
tween processors, which corresponds roughly to commu-
nicating through a shared L2 cache. Second, rather than
tracking data dependences at a word granularity (as in Sec-
tions 3.3 and 3.2), we now track dependences at a cache
line granularity of 32 bytes. We find that the effects of false
dependences due to this increased granularity are not detri-
mental to the performance of TLDS [23]. Third, we account
for the time required to recover from unsuccessful specula-
tion. In contrast with the Multiscalar architecture [21], our
model of TLDS involves software in the recovery process;
hence we include an estimate of the time required to restore
the initial state of the epoch and restart parallel execution,
assuming that a violating epoch will wait to become the old-
est epoch before attempting to restart. Finally, we ensure
that the parallelism does not exceed the number of physical
processors (four, in this case) during execution.

Figure 5 shows the potential region and program
speedups for the following two cases. Case “F” includes
the compiler optimizations mentioned in Section 2 to elimi-

6

nate data dependences, and also performs fine-grained syn-
chronization to forward scalar values. Case “S” includes
these same optimizations, but also reschedules instructions
to maximize parallel overlap. As we see in Figure 5(a),
eight of the thirteen regions enjoy significant speedups
(50% or more) using TLDS when memory dependences
are eliminated and scalars are forwarded under case “F”.
By rescheduling the code, all but one region potentially
achieves an overall speedup of roughly twofold or more on
four processors, indicating that code scheduling will result
in large performance gains for TLDS.

Given the fraction of total execution time spent in each
region (shown in Table 1), we can estimate the poten-
tial overall speedup for each application, as shown in Fig-
ure 5(b). To a large extent, the overall speedup depends
directly on our ability to find regions that constitute a large
fraction of overall program execution time. The coverage is
shown in parentheses below each benchmark. In four appli-
cations (compress, li, sc, and m88ksim), we found re-
gions covering roughly 70% or more of execution time, and
all of these cases can potentially enjoy speedups of nearly
twofold or more on four processors. Three other applica-
tions (espresso, perl, and buk) achieve more modest
speedups of 15-37%, and the remaining three applications
improve by less than 10%.

Overall, we find the speedups to be quite good, consid-
ering the difficulty of improving the performance of these
benchmarks. As we mentioned earlier, we believe that our
region coverages (and hence program speedups) are pes-
simistic in many cases since finding regions by hand was
a very time-consuming process, and we could not do justice
to large applications such as gcc. With an automated tool,
we may see even better results.

4. Architectural Support for TLDS
Having demonstrated the potential performance bene-

fits of TLDS, we now discuss how TLDS might be imple-
mented. Our goals are twofold. First, we would like to
support an aggressive form of TLDS while requiring only
minimal hardware modifications to a generic single-chip
multiprocessor. Second, we do not want to sacrifice perfor-
mance in single-threaded applications or applications that
do not exploit TLDS—hence we will avoid complex, cen-
tralized structures which can increase primary data cache
access latencies. Therefore the starting point for our design
is a single-chip multiprocessor where the L2 cache is phys-
ically shared and the individual L1 caches are kept coherent
to provide a shared memory abstraction. The motivation for
having separate L1 caches is that they provide high band-
width and low latency relative to a single shared L1 cache.
The motivation for keeping the L1 caches coherent is that
without a shared-memory abstraction, the job of the com-
piler becomes too difficult—i.e. just as ambiguous mem-

||0

|1

|2

|3

|4

 R
eg

io
n

 S
p

ee
d

u
p

10

2.
26

F
2

2.
83

compress.r1

10

3.
41

S
2

3.
41

10

1.
00

F
2

1.
00

gcc.r1

10

3.
44

S
2

3.
44

10

1.
10

F
2

1.
11

gcc.r2

10

1.
98

S
2

1.
98

10

2.
64

F
2

3.
97

espresso.r1

10

3.
22

S
2

3.
97

10

1.
78

F
2

1.
91

li.r1

10

1.
78

S
2

1.
91

10

3.
88

F
2

3.
88

li.r2

10

3.
88

S
2

3.
88

10

1.
45

F
2

2.
14

sc.r1

10

3.
63

S
2

4.
00

10

1.
02

F
2

1.
02

m88ksim.r1

10

3.
95

S
2

3.
95

10

2.
01

F
2

2.
01

ijpeg.r1

10

2.
01

S
2

2.
01

10

1.
01

F
2

1.
04

perl.r1

10

4.
00

S
2

4.
00

10

1.
59

F
2

1.
59

go.r1

10

1.
59

S
2

1.
59

10

3.
97

F
2

3.
97

buk.r1

10

3.
97

S
2

3.
97

10

3.
97

F
2

3.
97

buk.r2

10

3.
97

S
2

3.
97

Figure 6. Impact of communication latency (F = forward-
ing with fine-grain synchronization, S = forwarding with
fine-grain synchronization and aggressive instruction
scheduling, “10” = 10 cycles, “2” = 2 cycles).

ory addresses prevent the compiler from statically proving
the independence of threads, they also prevent the compiler
from successfully decomposing the data into separate ad-
dress spaces.

We begin by investigating the importance of communi-
cation latency between processors for forwarding values be-
tween epochs. We then discuss the issues involved in man-
aging threads, including software’s interface to the TLDS
hardware support. Next, we illustrate how cache coherence
protocols can be extended to detect data dependence vio-
lations. Finally, we demonstrate that the cache itself can
be used to buffer speculative side effects until they can be
safely committed to memory.

4.1. The Importance of Communication Latency

One implication of having separate L1 caches and a
shared L2 cache is that by default, the fastest path for com-
municating between processors is through the shared L2
cache, and this will not occur instantaneously. Hence an
important question is whether communicating through a
shared L2 cache is fast enough, or whether faster communi-
cation mechanisms (e.g., direct register-to-register forward-
ing [21]) are strictly necessary.

To address this question, we measured the impact of
communication latency on our region speedups. Figure 6
includes the same cases shown earlier in Figure 5(a), where
the communication latency was assumed to be ten cycles
(corresponding roughly to communicating through a shared
L2 cache). In addition, Figure 6 also shows the impact
of a faster two cycle communication latency. As we see
in Figure 6, the vast majority of the regions show little
or no improvement from the faster communication latency.
In the three cases where there is a noticeable difference
(compress.r1, espresso.r1, and sc.r1), we ob-
serve that aggressive instruction rescheduling (i.e. case “F”)
often reduces this sensitivity by making the epochs more
latency-tolerant. In summary, although fast communication
is helpful in some cases, communicating through the shared
L2 cache is a viable approach.

7

4.2. Thread Management

A number of mechanisms are required by TLDS to man-
age and coordinate the parallel threads. In many cases, there
is considerable flexibility in how these mechanisms might
be implemented. Due to space constraints, our goal here is
simply to raise the important issues rather than presenting
a complete design (additional detail can be found in earlier
publications [22, 23]). First, we need a way to create paral-
lel threads and schedule the epochs onto them. One option
is to dynamically create a new thread per epoch (perhaps
using a lightweight fork instruction [13]), and another is
to statically create one thread per processor and have them
execute multiple epochs.

Second, since dependence violations are detected by
comparing epoch numbers, a mechanism is needed such
that each thread’s epoch number will be visible to the hard-
ware. One way to accomplish this is for software to explic-
itly pass epoch numbers to the hardware through a new in-
struction. However, there are three important things to note.
First, hardware’s representation of epoch numbers does not
necessarily need to coincide with epoch numbers in soft-
ware. Second, epoch numbers represent a partial ordering
rather than a total ordering, since epochs across unrelated
threads (e.g., separate applications) are unordered; hence
a portion of an epoch number might be a thread ID, which
must match exactly for two epochs to be considered ordered
with respect to each ther. Finally, in some cases the hard-
ware may be able to implicitly maintain epoch numbers, and
hence software would not need to be aware of them.

Third, we need to distinguish speculative versus non-
speculative memory accesses, since only speculative oper-
ations must be buffered or checked for dependence viola-
tions. Rather than creating new flavors of all memory refer-
ences in the instruction set, we can instead use explicit in-
structions to dynamically indicate whether a thread is spec-
ulative or not—when a thread is speculative, all of its mem-
ory references will be interpreted as being speculative. A
thread should become speculative prior to its first specu-
lative load, and can become non-speculative again once it
confirms that its speculation was safe. (Note that the hard-
ware distinguishes the “oldest” thread, and always inter-
prets it as being non-speculative.)

Finally, we need a mechanism for recovering from failed
speculation. In contrast with the Multiscalar approach of
performing rollback entirely in hardware [21], we propose
that software performs the bulk of the recovery process, and
that hardware simply provides two key pieces of function-
ality: (i) detecting data dependence violations and notify-
ing software when they occur, and (ii) buffering speculative
stores so that software does not have to explicitly roll back
their side effects on memory. We discuss these hardware
mechanisms in greater detail in the next two subsections.

T T

Epoch # = 5

Violation? = False

3

Processor 1 Processor 2

L1 Cache

...

...

...
STORE *q = 2;
...
...

2

1

1
become_speculative()
LOAD a = *p;
...
...
...
attempt_commit()

L1 Cache

X = 1 2

Read
Request2

Invalidation
(Epoch #5)

X = 1

(p = q = &X)

Epoch 5 Epoch 6

FAILS!

Epoch # = 6

Violation? = TRUE

SL SM

T F
SL SM

2

Speculatively
Loaded?

Speculatively
Modified?

Time

Figure 7. Illustration of an augmented cache coherence
scheme which supports TLDS.

4.3. Extending Cache Coherence to Detect Data De-
pendence Violations

At the heart of TLDS is a mechanism for detecting RAW
data dependence violations and recovering the correct pro-
gram state whenever they occur. Given the potentially large
number of addresses that must be compared against each
other to determine safety, and given the fact that the exact
interleaving of accesses between threads is unknown a pri-
ori since they run asynchronously, a purely software-based
approach of explicitly comparing memory addresses [12]
would appear to be impractical. Instead, we propose ex-
tending a basic invalidation-based writeback cache coher-
ence protocol to allow hardware to detect potential depen-
dence violations with little overhead.

The basic intuition behind our scheme is as follows.
Consider two epochs, � � and � ��� � , where � � precedes
� ��� � in the original sequential program. Assume that these
epochs execute in parallel, and imagine that � ��� � violates a
RAW data dependence by speculatively loading a location
�

before it is modified by � � . Under normal cache coher-
ence, � � must first invalidate

�
from � ��� � ’s cache to obtain

an exclusive copy before its store to
�

can proceed. If we
extend this protocol by piggybacking � � ’s epoch number
along with the invalidation request, we can compare epoch
numbers to determine that the speculative load of

�
by � ��� �

was in fact a RAW dependence violation. At this point,
we can either set a flag in hardware which � ��� � will sub-
sequently check, or else interrupt � ��� � to notify it that its
speculation has failed.

Figure 7 illustrates how the coherence scheme will de-
tect a data dependence violation. Note that each cache line
is augmented with two bits indicating whether the line has
been speculatively loaded or modified, and each processor
maintains an epoch number and a flag indicating if specu-

8

(a) Original Code (b) Steps Involved in TLDS

// Execute epoch i.
epoch body(i); ���

set epoch number(i);
become speculative();

epoch body(i);

// Now attempt to commit the results.
wait until oldest epoch();
become nonspeculative();
if (speculation succeeded) �

make speculative stores visible();
� else � // speculation failed

squash any child threads();
// Recover by re-executing the epoch
epoch body(i);

�
commit speculatively forwarded values();
make child oldest epoch();

Figure 8. Further details on TLDS execution.

lation has failed. Assume that epoch 5 is the oldest epoch
and therefore is not speculative. First, PROCESSOR 2 loads
the value from p, causing the speculatively loaded bit for
that cache line to be set. PROCESSOR 1 then stores to q,
which points to the same location as p, causing an invali-
dation to be sent out along with the epoch number. When
PROCESSOR 2’s L1 cache receives the invalidation, it sets
the violation flag because it notices that the following three
conditions are true: the given cache line is present in the
cache, the line has been speculatively loaded, and the in-
validation came from a sequentially earlier epoch. When
PROCESSOR 2 eventually attempts to commit its specula-
tive work, it will notice that the violation flag has been set,
and will therefore initiate the recovery process.

Figure 8 provides further detail on the steps involved in
TLDS execution. Although the amount of pseudo-code in
Figure 8(b) may appear to be substantial, these steps would
in fact be implemented with just a small number of new
machine instructions. Also note that Figure 8(b) is overly
conservative in several ways, and is intended simply for the
purpose of illustration.

Before executing the epoch body, the thread first sets its
epoch number and indicates that it is speculative. (In real-
ity, the thread can postpone becoming speculative until just
before its first speculative memory access.) After complet-
ing the epoch body, the thread must wait until all previous
epochs which this epoch might depend upon have success-
fully committed their results to memory before it can be
certain that its speculation was successful. We refer to this
state as being the “oldest” epoch.

�
By testing the violation

flag at this point, the thread can determine whether its spec-
ulation was successful.

To prevent speculative threads from corrupting memory,
and to eliminate write-after-write (WAW) � and write-after-
�

Note that the term “oldest” epoch is overly simplistic in this context—
e.g., we can have multiple “oldest” epochs at the same time.�

For WAW dependences, a bit must be kept per word in the cache line

read (WAR) dependences, we postpone making speculative
stores globally visible until we are certain that speculation
succeeds. After an epoch has confirmed successful specula-
tion, it must obtain exclusive access to each line it has spec-
ulatively modified, at which point the lines may be allowed
to safely leave the L1 cache and propagate throughout the
rest of the memory hierarchy. (In reality, this process can
be optimized to avoid sending out a burst of invalidation
requests—e.g., if the speculatively modified line is already
in an exclusive state, there is no need to send out any further
requests.) All speculative stores must be globally performed
before the given epoch can signal the next epoch that it has
become the “oldest”. Since the synchronization indicating
the “oldest” epoch is serialized, the memory consistency of
the original sequential program will be preserved. Also,
since the acts of waiting upon and signaling the “oldest”
state are acquire and release operations, respectively, we
can exploit relaxed memory consistency models [6, 11].

Figure 8(b) shows that in response to failed speculation,
the thread immediately squashes any subsequent epochs
and then recovers by re-executing the epoch body non-
speculatively. This process could be optimized in several
ways. First, an epoch could be interrupted and begin the
recovery process immediately upon a data dependence vio-
lation. Second, it is not necessary to squash all subsequent
epochs—instead, one might selectively squash only those
which are affected by the dependence violation. Finally,
one could re-execute only the portion of the epoch body
which is dependent upon speculative loads.

Note that in order for a speculative thread to forward data
to another processor (as discussed in Section 3.3), it must
explicitly perform a non-speculative store. To prevent this
store from corrupting program state, the compiler will ex-
plicitly create shadow copies in memory of all forwarded
values—once speculation succeeds, a thread will explicitly
copy its shadow state to the real location. Since we only
forward scalars, the memory overhead of creating shadow
copies should be relatively small.

If a speculatively-loaded line is replaced from the cache
while a thread is still speculative, the violation flag is set
immediately since we can no longer track dependence vi-
olations. In general, whenever the hardware panics, it can
always conservatively set the violation flag, since this only
impacts performance and not correctness.

A potential drawback of tracking data dependences at a
cache line rather than a word granularity is performance
loss due to “false” dependence violations—i.e. when sep-
arate parts of a line are read and written, thereby triggering
the recovery mechanism unnecessarily. To quantify the im-
pact of false dependences, we measured how the run lengths

which indicates whether the word has been speculatively modified. This
will allow two speculatively modified versions of a cache line to be com-
bined properly, given the epoch number ordering between them.

9

(a) Average storage required for buffering
speculative accesses (both loads and stores)

Unique Total
32B Lines Storage

Application Region Accessed (kB)

compress r1 10.6 0.33
gcc r1 43.7 1.37

r2 34.2 1.07
espresso r1 4.1 0.13
li r1 1.6 0.05

r2 7.1 0.22
sc r1 4.4 0.14
m88ksim r1 46.9 1.47
ijpeg r1 139.6 4.36
perl r1 11.0 0.34
go r1 8.6 0.27
buk r1 4.0 0.13

r2 4.0 0.13

(b) Degree of associativity needed to avoid cache replacements

||0

|1

|2

|3

|4

|5

 M
ax

 S
et

 P
o

p
u

la
ti

o
n

99th Percentile

11

2

compress.r1
22

2

44

3

11

3

gcc.r1

22

3

44

4

11

3

gcc.r2
22

3

44

4

11

2

espresso.r1

22

2

44

2

11

1

li.r1
22

1

44

1

11

2

li.r2

22

2

44

2

11

2

sc.r1
22

2

44

2

11

2

m88ksim.r1

22

3

44

3

11

3

ijpeg.r1
22

4

44

5

11

2

perl.r1

22

2

44

2

11

2

go.r1
22

2

44

3

11

2

buk.r1

22

2

44

3

11

2

buk.r2
22

2

44

2

Average

(c) Number of victim cache entries needed to avoid failed speculation

||0

|2

|4

|6

|8

|10

|12

|14

|16

 V
ic

ti
m

 E
n

tr
ie

s

99th Percentile

11

2

compress.r1
22
0

44
0

11

8

gcc.r1

22

1

44
0

11

14

gcc.r2
22

3

44
0

11

1

espresso.r1

22
0

44
0

11
0

li.r1
22
0

44
0

11

2

li.r2

22
0

44
0

11

2

sc.r1
22
0

44
0

11

2

m88ksim.r1

22

1

44
0

11

(32)

ijpeg.r1
22

11

44

3

11

1

perl.r1

22
0

44
0

11

2

go.r1
22
0

44
0

11

1

buk.r1

22
0

44
0

11
0

buk.r2
22
0

44
0

Average

Figure 9. Statistics on whether the primary data cache is sufficient to buffer speculative state. A 16KB cache with 32B
lines is used in all cases. The numbers below the bars indicate the associativity.

shown in Figure 3(c) degraded with 128 byte granularities
rather than 32 byte granularities. While some decrease was
observed for the very long run lengths, they remained suf-
ficiently large that we would expect no performance loss
on up to eight processors. Hence our approach is a viable
technique for detecting unsafe data speculation.

4.4. Using the Cache to Buffer Speculative State

To simplify software’s job of recovering from unsafe
speculation, we rely on hardware to buffer speculative store
results until they can be safely committed to memory.
Rather than building a separate buffer devoted entirely to
data speculation, it would be attractive to use the cache it-
self as the speculative buffer. The basic idea is that any
speculatively modified lines in the primary data cache will
be specially marked (e.g., using the “speculatively modified
bits shown in Figure 7) such that their side effects will be
prevented from propagating to the rest of the memory sys-
tem until speculation succeeds. In effect, the coherence pro-
tocol treats speculatively modified lines as though they are
not “dirty”, and therefore they will not be written back; this
can be implemented in a number of different ways. (Note
that if we attempt to speculatively modify a line which is
in fact dirty, we must write it back to memory before the
speculative store can proceed.)

Since data speculation fails (and thus invokes recovery)
if any lines which have been speculatively loaded or mod-
ified are forced out of the cache, a key question is whether
the primary data cache has sufficient capacity to hold all
of the lines accessed by a typical epoch. (Note that such
evictions will not result in deadlock since the memory oper-

ations of the oldest epoch are always treated as being non-
speculative, and hence it always makes forward progress.)
As we see in Figure 9(a), all of our regions require less than
5KB of buffering on average. While this is encouraging,
the real question is what degree of associativity is required
in a realistic cache to avoid mapping conflicts. Figure 9(b)
shows the maximum number of lines accessed which map
to a given set of a 16KB primary data cache with 32B lines
and various associativities, both for the average epoch and
the 99th percentile case. If this maximum exceeds the asso-
ciativity, then at least one line is forced out and speculation
fails. As we see in Figure 9(b), a direct-mapped cache does
not appear to be sufficient, but a two-way set-associative
cache is far more successful at capturing the data: the av-
erage epoch almost always fits within the two-way sets,
and even the 99th percentile case fits in nine of thirteen re-
gions. Finally, rather than giving up when a speculatively
accessed line is displaced, we could instead capture these
lines within a small fully-associative victim cache [10]. Fig-
ure 9(c) shows that by adding a relatively small victim cache
(e.g., with four entries) to a 16KB two-way set-associative
cache, we can retain nearly all speculatively accessed lines,
thus avoiding unnecessary recovery.

In summary, we have seen that instruction scheduling
may eliminate the need for fast communication, and that
TLDS can be supported through modest hardware modifica-
tions by extending the cache coherence algorithm to detect
unsafe data speculation, involving software in the recovery
process, and enhancing the role of the primary data cache to
buffer speculative accesses. Further details on architectural
support for TLDS can be found in a technical report [22].

10

5. Compiler Support for TLDS
The compiler clearly plays a crucial role in exploiting

TLDS. In addition to selecting regions of the code to spec-
ulatively parallelize and inserting the appropriate TLDS
primitives, we have also seen that the compiler has an im-
portant role in optimizing the code by removing data depen-
dences and maximizing parallel overlap if we are to achieve
the full potential of TLDS. We briefly discuss some of these
compiler issues in this section.

5.1. Choosing Speculative Regions
The first step in compiling for TLDS is choosing the

appropriate speculative regions to parallelize. Our goals
here are twofold: (i) maximizing the fraction of total ex-
ecution which is parallelized, and (ii) achieving the best
speedups within each speculatively parallelized region. We
performed this step by hand in our experiments as follows:
we used profiling information to identify where the program
was spending most of its time, and we then attempted to
find the largest surrounding regions which did not contain
obvious data dependences that would prevent TLDS from
working. To maximize program coverage in a cost-effective
manner, the compiler could also make use of control-flow
profiling information to focus its efforts on the sections of
code which account for the largest fractions of total execu-
tion time. Achieving the best region speedups automatically
involves a number of different issues.

First, we would like to choose regions where the epochs
are large enough to amortize the costs of thread manage-
ment and communication, but not so large that the amount
of space for buffering speculative state becomes a problem.
In our experiments, we observed that epoch sizes ranging
between 20 and 10,000 dynamic instructions worked effec-
tively. The compiler has considerable flexibility in adjusting
the epoch sizes within a region. If the epochs are too large,
the compiler can statically split them up into smaller pieces
(e.g., divide a loop body in half). If the epochs are too small,
the compiler can merge consecutive epochs to form larger
epochs (e.g., unroll a loop and fuse consecutive iterations).

Second, we would like to maximize the probability of
successful speculation by avoiding regions with problem-
atic data dependences—i.e. cases where RAW dependences
occur frequently between consecutive epochs which can
neither be eliminated nor explicitly forwarded to yield sig-
nificant parallel overlap of epochs. In our experiments, we
observed that increasing the scope of a region (e.g., moving
from an inner to an outer loop nest) can either increase or
decrease the number of problematic data dependences. To
understand this behavior, the compiler should analyze data
dependences to the extent possible. Our experiments relied
only on understanding data dependences due to scalar vari-
ables, which should be feasible to analyze. Although un-
derstanding pointer addresses is not a requirement of TLDS,

having more dependence information will help the compiler
make better decisions regarding cost-benefit tradeoffs.

5.2. Optimizing Speculative Regions

After selecting candidate regions to speculatively paral-
lelize, the compiler should then optimize their performance
in the following ways. The first step is eliminating as many
dependences as possible—e.g., induction variables (which
can be expressed as a function of the epoch number), re-
duction operations (which can be replaced by local opera-
tions), and dependences inside library routines (which can
be explicitly parallelized). We saw the importance of this
step earlier with case “O” in Figure 3(c). Next, for any
repeated scalar dependences which the compiler can recog-
nize but not eliminate, it should insert code to explicitly for-
ward these values between epochs, and (most importantly)
reschedule the epochs to minimize the critical path. As we
saw earlier in Figure 5, the performance gain offered by
rescheduling can be dramatic.

Finally, the compiler must insert calls to the TLDS prim-
itives and create the recovery code, such as the example in
Figure 8 illustrates. Note that although the hardware re-
stores the memory state during recovery by discarding any
speculative stores, it is the responsibility of software to re-
store any necessary register state. The compiler can reduce
the recovery overhead by re-executing only the portion of
the epoch which depends on speculative load results, and
by initiating the recovery process early either through an
interrupt mechanism or by polling the violation flag early.

One exciting aspect of TLDS is that the compiler does
not have to live with its mistakes. Since software di-
rectly observes every dependence violation at run-time, it
is straightforward to collect statistics on the rate of unsafe
speculation and use this information to adapt the paralleliza-
tion strategy either on-the-fly or else during the next re-
compilation.

In summary, although automatically parallelizing non-
numeric codes is still a non-trivial task, it is at least feasible
with TLDS, in contrast with the hopelessly restrictive model
of statically proving that threads are independent.

6. Conclusions

To enable a potential breakthrough in the compiler’s
ability to automatically parallelize non-numeric applica-
tions, we have investigated thread-level data speculation
(TLDS)—a technique which allows the compiler to safely
parallelize code in cases where it believes that dependences
are unlikely, but cannot statically prove that they do not ex-
ist. Our experimental results demonstrate that with realistic
compiler support, TLDS can potentially offer compelling
performance improvements—i.e. overall program speedups
ranging from 15% to nearly fourfold on four processors in

11

seven of ten cases—for applications where automatic par-
allelization would otherwise appear infeasible. Since our
hand analysis was not exhaustive, we believe that even
larger speedups may be possible by applying TLDS more
extensively.

To translate the potential of TLDS into reality, we have
investigated and quantified the tradeoffs in providing hard-
ware and compiler support for TLDS. We find that only
modest hardware modifications to a standard single-chip
multiprocessor are needed: the cache coherence proto-
col can be extended to detect RAW dependence violations
and inform software when they occur to invoke recovery
actions; the cache itself can be used to buffer specula-
tive memory accesses; and although extremely fast inter-
processor communication will offer some benefit, we can
still achieve good performance by communicating through
a shared L2 cache. Due to the distributed nature of this
hardware support, we do not expect it to degrade the per-
formance of applications which do not exploit TLDS. We
have also discussed and evaluated the compiler optimiza-
tions which are necessary to effectively exploit TLDS. Our
goal now is to implement the full compiler support for
automatically parallelizing non-numeric applications using
TLDS, and to explore the architectural issues in more detail.
Based on the encouraging results in this study, we advocate
that future single-chip multiprocessors provide the modest
support necessary for TLDS.

7. Acknowledgments
This work is supported by grants from the Natural Sci-

ences and Engineering Research Council of Canada, and by
a grant from IBM Canada’s Centre for Advanced Studies.
Todd C. Mowry is partially supported by a Faculty Devel-
opment Award from IBM.

References

[1] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum,
and M. S. Lam. Compiler-Directed Page Coloring for Multi-
processors. In Proceedings of ASPLOS-VII, pages 244–255,
October 1996.

[2] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang,
Y. Gurevich, and W. S. Lee. The M-Machine Multicomputer.
In Proceedings of ISCA 28, December 1995.

[3] M. Franklin. The Multiscalar Architecture. PhD thesis, Uni-
versity of Wisconsin – Madison, 1993.

[4] M. Franklin and G. S. Sohi. ARB: A Hardware Mecha-
nism for Dynamic Reordering of Memory References. IEEE
Transactions on Computers, 45(5), May 1996.

[5] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal,
and W. W. Hwu. Dynamic Memory Disambiguation Using
the Memory Conflict Buffer. In Proceedings of ASPLOS-VI,
pages 183–195, October 1994.

[6] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event

ordering in scalable shared-memory multiprocessors. In Pro-
ceedings of ISCA 17, pages 15–26, May 1990.

[7] G. Goff, K. Kennedy, and C. W. Tseng. Practical depen-
dence testing. In Proceedings of PLDI ’91, pages 15–29,
June 1991.

[8] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi.
Speculative Versioning Cache. Technical Report 1334,
Computer Sciences Department, University of Wisconsin-
Madison, July 1997.

[9] A. S. Huang, G. Slavenburg, and J. P. Shen. Speculative Dis-
ambiguation: A Compilation Technique For Dynamic Mem-
ory Disambiguation. In Proceedings of ISCA 21, pages 200–
210, April 1994.

[10] N. P. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers. In Proceedings of ISCA 17, pages 364–
373, May 1990.

[11] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory. In
Proceedings of ISCA 19, pages 13–21, May 1992.

[12] A. Nicolau. Run-time Disambiguation: Coping with Stat-
ically Unpredictable Dependencies. IEEE Transactions on
Computers, 38:663–678, May 1989.

[13] R. S. Nikhil and Arvind. Can Dataflow Subsume Von Neu-
mann Computing. In Proceedings of ISCA 16, pages 262–
272, May 1989.

[14] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The Case for a Single-Chip Multiprocessor. In
Proceedings of ASPLOS-VII, October 1996.

[15] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam,
and K. Olukotun. Software and Hardware for Exploiting
Speculative Parallelism with a Multiprocessor. Technical Re-
port CSL-TR-97-715, Stanford University, May 1997.

[16] L. Rauchwerger and D. Padua. The LRPD Test: Specula-
tive Run-Time Parallelization of Loops With Privatization
and Reduction Parallelization. In Proceedings of PLDI ’95,
pages 218–232, June 1995.

[17] A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the Mem-
ory Wall: The Case For Processor/Memory Integration. In
Proceedings of ISCA 23, May 1996.

[18] B. J. Smith. Architecture and Applications of the HEP Mul-
tiprocessor Computer System. SPIE, 298:241–248, 1981.

[19] M. D. Smith. Tracing with pixie. Technical Report CSL-TR-
91-497, Stanford University, November 1991.

[20] M. D. Smith. Support for Speculative Execution in High-
Performance Processors. PhD thesis, Stanford University,
November 1992.

[21] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In Proceedings of ISCA 22, pages 414–425, June
1995.

[22] J. G. Steffan, C. B. Colohan, and T. C. Mowry. Architec-
tural Support for Thread-Level Data Speculation. Techni-
cal Report CMU-CS-97-188, School of Computer Science,
Carnegie Mellon University, November 1997.

[23] J. G. Steffan and T. C. Mowry. The Potential for Thread-
Level Data Speculation in Tightly-Coupled Multiproces-
sors. Technical Report CSRI-TR-356, Computer Systems
Research Institute, University of Toronto, February 1997.

[24] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In Pro-
ceedings of ISCA 22, pages 392–403, June 1995.

12

