
Maximizing CMP Throughput with Mediocre Cores

John D. Davis, James Laudon†, Kunle Olukotun

Stanford University
{johnd, kunle}@stanford.edu

†Sun Microsystems, Inc.
James.Laudon@Sun.COM

Abstract

In this paper we compare the performance of area

equivalent small, medium, and large-scale
multithreaded chip multiprocessors (CMTs) using
throughput-oriented applications. We use area models
based on SPARC processors incorporating these
architectural features. We examine CMTs with in-
order scalar processor cores, 2-way or 4-way in-order
superscalar cores, private primary instruction and data
caches, and a shared secondary cache. We explore a
large design space, ranging from processor-intensive to
cache-intensive CMTs. We use SPEC JBB2000, TPC-
C, TPC-W, and XML Test to demonstrate that the
scalar simple-core CMTs do a better job of addressing
the problems of low instruction-level parallelism and
high cache miss rates that dominate web-service
middleware and online transaction processing
applications. For the best overall CMT performance,
smaller cores with lower performance, so called
“mediocre” cores, maximize the total number of CMT
cores and outperform CMTs built from larger, higher
performance cores.

1. Introduction

The research community has been predicting the

genesis of chip multiprocessors (CMPs) for some time
[21]. Starting around the 130 nm silicon process
generation, it was possible to put multiple superscalar
processor cores on a single chip [10][11]. These
complex CMPs are becoming the ubiquitous
architecture for commercial servers targeting
throughput-oriented applications. However, using
wide-issue superscalar processor cores in CMTs has its
drawbacks. These complex cores are focused on
instruction level parallelism (ILP) extraction and high
clock frequency, yielding devices able to execute many
billions of instructions per second under ideal
conditions. Unfortunately, this massive instruction
processing capability is throttled by the large latency
gap between the memory subsystem and the processor,
and for many larger commercial applications, only a

tiny fraction of the peak performance can be achieved
[4]. Now that there is enough die real estate to produce
large-scale CMTs, we believe it is necessary to re-
evaluate the underlying microarchitecture to determine
the optimal processor building block for targeting
commercial workloads.

Most important commercial server applications, such
as e-commerce, online transaction processing (OLTP),
decision support systems (DSS), and enterprise resource
planning (ERP) are heavily threaded, and even for non-
threaded applications, there is a trend towards
aggregating those applications to run on a common
server pool, as exemplified by grid computing or
“computation on demand.” For these workloads, the
individual thread latency is less important than the
aggregate thread throughput. We increase aggregate
thread throughput by using multithreaded processor to
hide events that normally stall the processor, such as
cache misses, thereby increasing their utilization. By
using multithreading architectures that employ no-
overhead thread switching [16][29], processors can
come close to their peak computation rate even in the
presence of low ILP and high cache miss rates, at a
relatively modest hardware cost [28][29]. Within the
multithreaded architecture space, the main processor
trade-off involves thread latency versus thread count.
The CMT can either employ a smaller number of more-
powerful processors emphasizing individual thread
latency, but sacrificing aggregate thread throughput, or
employ a larger number of less-powerful processors
emphasizing aggregate thread throughput, but
degrading individual thread latency. The POWER 5TM
[6] and Niagara [13] processors best illustrate this
thread performance spectrum, respectively. The less-
powerful processor approach has an intuitive appeal, as
a simple, scalar processor requires much less area than a
superscalar processor while still providing similar
sustainable performance achievable on an n-wide
superscalar processor running commercial benchmarks.
In addition, using simple, scalar processor cores reduces
the design complexity and bug rates.

To investigate the CMT design space, we use Sun
Microsystems’ processor databases to generate and
correlate the area models for both scalar and in-order

superscalar processors employing fine-grain
multithreading. We use a variety of industry guidelines
to reduce the number of simulations in the design space.
Even with these guidelines, approximately 13,000
configurations exist for in-order scalar CMTs for each
benchmark and process technology. Results from a
perfect L2 cache simulator configuration enabled
further pruning of the scalar CMT design space.
Superscalar processor configurations were explored to
enable comparisons to previous studies that investigate
CMPs [5][9]. Unlike these previous studies, our
superscalar processors include multithreading, which
we show is crucial to achieve high throughput.

The design trade-offs and complexity for CMTs
composed of a large number of simple processors are
very different from that of a CMP consisting of a small
number of superscalar processor cores. In this paper,
we use SPEC JBB [30], TPC-C, TPC-W [31] and XML
Test [32], a Java middleware, OLTP, transactional web,
and XML parsing web benchmarks, respectively. For
these applications, total throughput, rather than single-
thread performance, is the main metric of interest. We
measure total throughput using aggregate instructions
per cycle (AIPC), which we find to be directly related
to transactions per second for our highly tuned versions
of the benchmarks. For all benchmarks, AIPC is
maximized for a range of scalar CMT configurations
employing small primary caches with roughly 25-40%
of the CMT area devoted to shared secondary cache
area. We observed consistent trends across
technologies that enable us to extrapolate our results
from small-scale and medium-scale CMTs to large-
scale CMTs.

We discuss the CMT design space and describe our
area model based on various processor core components
and cache designs used to determine the allowable
CMT configurations in Section 2. Section 3 elaborates
on our high performance multi-configuration simulation
environment. Section 4 presents the detailed results of
our simulations. Section 5 discusses related work and
we conclude in Section 6.

2. The CMT design space

We evaluated CMTs built from processor cores

implementing the SPARC ISA. By exploring several of
Sun Microsystem’s UltraSPARC chip design databases,
we determined the area impact of the architectural
components that are modified to enable fine-grain
multithreading. From this, we derived a thread-scalable
fine-grained multithreaded processor core area model,
which correlates well with actual and projected
UltraSPARC processor areas from 130 nm to 45 nm
silicon process generations. We present simulated

results for small-scale, medium-scale, and (limited)
large-scale CMTs, where small, medium, large classify
CMT configurations that correspond to reticle-limited
dies (400 mm2) for 130 nm, 90 nm, and 65 nm silicon
process technologies, respectively

Figure 1: A high-level functional diagram of the
CMT design space. The gray components are
varied and described in Table 1.

Table 1: CMT design space parameters.
Feature Description
CPU In-order scalar or superscalar
Issue Width scalar, 2-way and 4-way superscalar
Pipeline Depth 8 stages
Integer Datapath Pipelines 1-4 IDPs or Integer ALUs
L1 D & I Cache 8KB-128KB, 16 (D) & 32 (I) Byte lines
L1 D & I Cache Set Assoc. Direct-mapped, 2-, 4-, or 8-way
L1 D & I Cache Policies write through, LRU-based replacement
Clock Frequency 1/3 -1/2 Maximum ITRS clock frequency [23]
Multithreading 1-32 threads/core
L2 Cache 1MB - 8MB, 128 Byte lines, banked (8 or 16),

coherent, inclusive, shared, unified, critical
word first, 25 cycle hit time (unloaded)

Main Memory Fully Buffered DIMMs with 4/8/16 dual
channels, 135 cycle latency (unloaded)

Figure 1 illustrates and Table 1 describes the variety

of high-level CMT configurations; all the gray
components are varied in this study. The processor
cores can utilize either in-order scalar or superscalar
integer datapaths (IDPs). We vary the number of IDPs
within each core and the number of threads per IDP. In
our scalar processor design, threads are statically
assigned to an IDP, as this avoids the superlinear area
impact of being able to issue instructions from any of
the threads on a core to any of the IDPs. All cache
sizes and set associativities (SA) can vary. Instruction

caches and data caches are always identical in size or
differ by a factor of 2X, but no more. The primary
caches range from 8 KB to 128 KB with SA ranging
from direct mapped to 8-way. Small instruction buffers
for each thread decouple the front-end of each IDP
from the shared primary instruction cache. The
memory and cache subsystems are fully modeled with
queuing delaying and occupancy. The actual RAS/CAS
cycles for the DRAM accesses are modeled along with
all the various buffers and queues. The number of
processor cores and sizes of the caches are determined
by the area model for a given silicon process
technology, keeping die size constant across all possible
configurations.

2.1. The CMT area model

Historically, server microprocessors have pushed the

manufacturing envelope close to the reticle limit,
around 400 mm2. Hence, we fixed the die size to be
400 mm2 across the technology generations and allocate
75% of the total die area to the CMT area, processor
cores and secondary cache, with the remaining 25%
devoted to the other system-on-a-chip (SOC)
components: memory controllers, I/O, clocking, etc.
We devote 15% of the CMT area to the processor core
interconnect and related components and the remaining
85% of the CMT area (60% of the total area) is devoted
to the processor cores and secondary cache. The
number of processor cores and the size of the secondary
cache are determined by allocating between 25% to
75% to one and the remainder of the area to the other to
cover a broad range of CMT configurations, from
processor intensive to on-chip memory intensive
designs. We also account for spacing and routing
between the (sub)components; an additional 10-20%,
depending on the component, of die area is allocated for
this purpose at various levels of the area model. Thus,
our area model produces realistic CMT configurations
that have been validated against Sun Microsystem’s
processor designs.

2.2. Processor core & cache area

From our estimates, fine-grain multithreading

directly impacts the area of processor core components
in a linear manner for a small number of threads, but the
degree to which these components are affected varies
greatly. We estimate a 5-6% area increase when
integrating two active threads into a simple, in-order
scalar or superscalar processor. This area increase is
similar to the area increase due to simultaneous
multithreading reported by Intel and IBM [19][6].
Figure 2 illustrates the linear increase in processor core

area predicted by our model, for a maximum of 16
hardware threads per processor core. The number of
threads per core is shown on the x-axis and the y-axis
quantifies the relative area increase of the core
configuration when adding multithreading and
additional IDPs. The increased complexity and
resulting non-linear area increase for large number of
threads per IDP is not modeled. This non-linearity is
realized much sooner with superscalar cores, preventing
our area model from accurately predicting superscalar
cores with more than 8 threads.

1.0

2.0

3.0

4.0

5.0

1 3 5 7 9 11 13 15 17
Threads per Core

Re
lat

ive
 C

or
e A

re
a 1 IDP

2 IDP
3 IDP
4 IDP
2-SS
4-SS

Figure 2: Core area model relative to a scalar
single-thread single IDP core for scalar (X IDP)
and superscalar (Y SS), where X is the number
of IDP sharing private primary caches and Y is
the instruction issue width.

We initially used CACTI 3.2 [25] to estimate cache

area and power, but found some inaccuracies and
limitations for the sub-micron silicon process
generations that we were interested in modeling [33].
We use conservative area estimates based on Sun
Microsystem’s designs for cache memory cells with an
area efficiency of 50% for all processor configurations.
Based on access time limitations, we constrained the
primary cache size with respect to the other processor
components to be no more than 50% of the total
processor core area. This constraint favors larger cores,
as our simulations do not assume multiple-cycle access
for the larger primary caches, and so are optimistic in
their performance benefits. While this might seem to
give an advantage to large thread or large IDP
configurations, we show in Section 4.3, all but two of
the best performing configurations use small primary
caches that were available to all possible thread/IDP
combinations, with the two outliers using caches
available to all combinations except the lower-thread
count, single IDP configurations.

3. Simulation environment

While our simulation study encounters the standard

problems of simulating nonexistent systems and of
simulating realistically configured large-scale

commercial applications, we also have the additional
problem of simulating an enormous CMT design space.
Thus, we were confronted by the canonical simulation
trade-off between absolute accuracy and simulation
time. While we could have simulated scaled-down
versions of the commercial applications running for
short periods of time on a detailed, execution-driven
simulator, the variability in IPC of such an approach
would have been too high [2]. Instead, we employ the
RASE (Rapid, Accurate Simulation Environment)
approach, a collection of Sun Microsytems’ interal
tools, that uses a highly detailed and cycle-accurate
execution-driven and trace-driven simulation to
characterize the CMT designs by generating multi-
configuration instruction trace files. RASE uses
SimCMT, a configurable CMT timing simulator built
on top of Simics by VirtuTech [18] for execution-
driven simulation similar to the methodology used in
Simflex and GEMS [8][20]. SimCMT can also be used
as a fast stand-alone trace-driven simulator.

3.1. Simulation methodology

RASE does not scale down the application, but
instead runs large applications in steady state on both
real system hardware and on SimCMT. We have
correlated and validated the execution-driven model
against real hardware, both SMPs and CMTs. During
this correlation, system hardware counters are
compared to simulated counters for primary and
secondary cache, and TLB latencies and miss rates. In
addition, comparisons of instruction mixes, context
switch frequencies, intervals between contexts, and so
on, are correlated to ensure accurate reproduction at the
workload level.

We generate multi-configuration instruction traces
using execution-driven simulation that can be pre-
processed and then used in a fast, accurate trace-based
simulation mode of SimCMT. While there is
substantial cost and effort up-front in the RASE
methodology, once that cost has been paid, RASE has
several advantages over execution-driven simulation of
scaled commercial applications. The trace-driven
simulation enables faster simulation of various
configurations compared to an execution-driven model
and the lack of variability in the test sequence isolates
the effects of architectural changes. In addition, using
large instruction trace files in trace-driven simulation
for long time periods addresses the issue of
nonrepeatability in commercial applications across
multiple short runs [1][2], at the cost of simulating
instruction sequences that might not be possible in an
actual multithreaded execution. We have observed
approximately 1% difference in IPC when comparing

execution-driven and trace-driven full system
simulations for the same CMT model for TPC-C and
SPEC JBB. As expected, miss rates for the two
methodologies differ more, but we have not observed a
relative difference greater than 5%. The downside to
the RASE methodology is that for the initial correlation,
one must have access to a full-size commercial
machine, which can cost millions of dollars.

3.2. Benchmark details

We selected SPEC JBB, TPC-C, TPC-W, and XML

Test server benchmarks to assess the CMT’s
performance. SPEC JBB emulates a 3-tier system
emphasizing the Java server-side performance of
middleware business logic [30]. TPC-C is an online
transaction processing benchmark based on an order-
entry system [31]. We concentrate on the server
component of TPC-C for this study. This complicated
benchmark has extreme hard disk, memory, and
network resource requirements [14][4][1][27]. TPC-W
is a transactional web benchmark that simulates the
activities of a business oriented transactional web server
[31]. XML Test is a multithreaded XML processing
test developed at Sun Microsystems [32]. XML Test
performs both streaming and tree-building parsing,
which replicate application servers that provide web
services and simultaneously process XML documents.
Unlike SPEC JBB, XML Test is a single tier system
benchmark; the test driver is integrated into worker
thread.

These benchmarks do not exhibit multiphase
execution, so recording contiguous streams of
instruction on a per thread basis can capture the
complete system performance, the overall benchmark
characteristics, and the instruction mix. In contrast,
benchmarks like SPEC CPU2000 require sampling
techniques to capture the various phases of execution
[24]. SPEC JBB uses the J2SE 1.4 JVM with a 2 GB
heap running on Solaris 9 with 16 warehouses to collect
a 16-processor instruction trace file. XML Test uses
the J2SE 1.5 JVM, but with a 2.5 GB heap for a 16-
processor trace file. For TPC-C, we use 3,000
warehouses with a 28 GB SGA and 176 9 GB disks
coupled with commercial database management and
volume manager software running on Solaris 9. For
both TPC-C and TPC-W, the clients and servers are
simulated, but only the server instruction traces are used
in this study. TPC-W can support up to 10,000 users.
The database is built on 28 9 GB disks coupled with
commercial database management and volume manager
software running on Solaris 9. The application server
uses JDK 1.4.x, while JDK 1.3.x is used for the image
server, payment gateway emulator, and the SSL

Table 2: CMT design space parameters segmented (alternating gray areas) to indicate major core
configuration groups. All 4 L2 cache configurations are used with all core configurations per class.

Core
Config

Number of
IDPs

Number of
Threads

Max L1
Size (KB)

L2 Cache
(MB, SA)

Number of
Processors

Aggregate
Threads

L2 Cache
(MB,SA)

Number of
Processors

Aggregate
Threads

L2 Cache
(MB,SA)

Number of
Processors

Aggregate
Threads

1p2t 1 2 32 4-11 8-22 5-20 10-40 10-34 20-68
1p4t 1 4 32 3-10 12-40 5-17 20-68 8-30 32-120
1p8t 1 8 64 2-8 16-64 3-14 24-112 7-25 56-200
2p2t 2 2 32/64 3-9 6-18 4-16 8-32 8-28 16-56
2p4t 2 4 64 2-8 8-32 3-14 12-112 7-25 28-100
2p8t 2 8 64/128 1, 16 2-6 16-48 1.5, 12 3-12 24-96 3,24 5-21 40-168
2p16t 2 16 128 1-5 16-80 2-9 32-144 4-15 64-240
3p3t 3 3 64 2-7 6-42 3-13 9-39 6-22 18-66
3p6t 3 6 64/128 1.5, 12 1-6 6-36 2.5, 10 3-11 18-66 4.5,18 5-20 30-120
3p12t 3 12 128 1-5 12-60 2-9 24-108 4-15 48-180
3p24t 3 24 128 1-3 24-72 1-6 24-144 3-10 72-240
4p8t 4 8 64/128 2, 16 1-5 8-40 3.5, 14 2-9 16-72 6,24 4-15 32-120
4p16t 4 16 128 1-3 16-48 2-7 32-112 3-10 48-160
2s1t 2 1 64 2-6 2-6 4-11 4-11 7-18 7-18
2s2t 2 2 64 2.5, 10 2-5 4-10 4.5,18 4-10 8-20 8,32 6-17 12-24
2s4t 2 4 64 2-5 8-20 3-9 12-36 6-15 24-60
2s8t 2 8 64 1-4 8-32 2-7 16-56 5-12 40-96
4s1t 4 1 64 1-4 1-4 2-7 2-7 4-11 4-11
4s2t 4 2 64 1-3 2-6 2-6 4-12 4-10 8-20
4s4t 4 4 64 1-3 4-12 2-5 8-20 3-9 12-108
4s8t 4 8 64 1-3 8-24 1-4 8-32 3-7 24-56

CMT Scale Small Medium Large

components. Fixed processor sets are used to isolate
the application servers from the rest of the simulation,
allowing us to harvest the instruction streams only from
the application server processor set.

Each trace contains several billion instructions per
process thread in steady state. All traces are collected
during the valid measurement time after the benchmarks
have ramped up and completed the benchmark specified
warm-up cycle, as on real hardware. We have observed
significant variation in benchmark performance during
the ramp-up period, but little variation once in steady
state, as observed in [2]. All benchmarks are highly
tuned, with less than 1% system idle time, and show
negligible performance variability during the
measurement period.

3.3. CMT architecture design space

Table 2 summarizes the parameter ranges that we

investigated, subject to the constraints on the processor
cores and processor/secondary cache die division from
Section 2. The maximum primary cache capacities are
shown as a single value or as X/Y if the maximum is
asymmetric, where one L1 cache is larger than the
other. For this latter case, the set associativity of the
larger cache in the asymmetric pair remained low to
further constrain the area. Finally, for each CMT class
(small, medium, or large), there are four secondary
cache sizes for each of the 21 core configurations,
corresponding to approximately 25%, 40%, 60%, and
75% of the CMT area. To prevent the DRAM

bandwidth from becoming a bottleneck, we chose an
aggressive but achievable number of DRAM
controllers/channels for our design. We use 4 dual Fully
Buffered (FB)-DIMM DRAM channels shared by the 8
banks of the shared secondary cache, 8 dual FB-DIMM
DRAM channels shared by 8 cache banks, and 16 dual
FB-DIMM DRAM channels shared by 16 banks for
small, medium, and large scale CMTs, respectively.

The in-order scalar and superscalar cores utilize fully
pipelined integer and floating-point datapaths, with
each datapath capable of executing one instruction per
cycle. Each processor core consists of one to four
integer datapath pipelines (IDPs or integer ALUs). Up
to 8 hardware threads are supported per IDP within the
processor core, while up to 8 hardware threads are
supported per superscalar processor core. The
nomenclature we use to label the scalar cores is NpMt,
where N is the number of IDPs in the core, and M is the
total number of hardware threads supported by the core.
We differentiate the scalar cores from the superscalar
cores by labeling them NsMt, where N denotes the issue
width of the superscalar processor. Each scalar integer
pipeline can only execute instructions from a statically
assigned pool of M/N threads, whereas the superscalar
pipelines can issue instructions from any of M threads.
Each core contains a single-ported primary data and
instruction cache shared between the IDPs, sized from 8
KB up to the values shown in Table 2.

Fine-grain multithreading [16][29] is used in our
cores to address the low ILP and high cache miss rates
of commercial workloads. Simultaneous multithreading

(SMT) is the fine-grain multithreading technique of
choice being used in modern superscalar processors
such as the hyperthreaded Intel processors [19] or the
Power5TM [10], and has been shown to give good
performance benefits for commercial workloads [17].
SMT interleaves execution from multiple hardware
threads across both vertical (processor cycle) and
horizontal (issue width) dimensions [29]. For scalar
processors, only the vertical thread interleaving is
applicable, and thus multithreading a scalar processor
by switching threads every cycle has been labeled as
vertical or interleaved multithreading [16]. Our
superscalar processor instruction scheduling policy is
based on selecting as many instructions as possible
from the threads in LRU order. The multithreading
employed by our scalar processors is very similar to
that described in [16], where instructions that have
long-latency but determinant execution times (e.g.
floating-point operations) are detected early in the
pipeline (at decode) and prevent a thread from issuing
further instructions until the long-latency operation
result is available, while instructions that have an
indeterminate execution time (e.g. loads) do not prevent
issuing of further instructions to the pipeline. Instead,
these indeterminate-latency instructions cause a
selective pipeline flush of all instructions from the
thread when it is discovered that they are indeed a long-
latency operation.

The processor core clock frequency, as shown in
Table 1, is chosen to be sufficient to allow an individual
thread to comfortably meet the latency requirements of
our commercial applications, while at the same time
producing a CMT with just half of the power
dissipation of a standard high-frequency monolithic
server processor, making it much more suitable for use
in a dense server environment.

4. Results

The CMT design space is too large to be fully
characterized by simulation. Industry experience,
intuition, and literature surveys [15] provided initial
guidance for creating a tractable CMT design space.
We then performed a two-phase simulation study. The
first phase, for which we do not present data, used a
perfect secondary cache model; all primary cache
misses were secondary cache hits. These simulations
provided a theoretical upper bound for the processor
core IPC. It also provided insight into L1 cache
performance based on size and set associativity. The
second phase used a detailed secondary cache and Fully
Buffered DIMM (FB-DIMM) memory subsystem
model.

The commercial server applications exhibited a
range of low to moderate ILP and high cache miss rates
similar to the observations in [14]. Using a single
thread per pipeline provides no hardware mechanism
for latency tolerance and results in low processor
utilization, or “underthreading.” On the other hand, too
many active threads can lead to an “overthreaded” core
with a fully utilized integer datapath pipeline (IDP) and
performance that is insensitive to primary cache
capacity or set associativity. Our goal was to find a
good balance that optimized aggregate IPC and
remained general purpose. Thus, we removed single-
thread cores from future study (except for 2p2t and
3p3t, which we included in our study as underthreaded
examples), as they could not conceal the long latencies
common in these applications. We also removed all
cores with more than 8 threads per IDP because 8 or
more threads saturated the integer pipeline. We also
pruned the 4p32t, 4 pipelines with 32 threads per core,
and all superscalar core configurations with more than 8
threads due to area and complexity constraints.

4.1. Processor core performance

All cores within the CMT are simulated and the

average IPC across all the cores is shown in Figure 4
for medium-scale CMTs executing SPEC JBB. Figure
3 illustrates how to interpret the data in Figure 4. Each
vertical column of the graph represents one of the four
secondary cache configurations, increasing in size from
left to right, for a given processor core configuration
(NpMt or NsMt) labeled below that segment along the
x-axis. Each black bar defines the IPC range, min
(bottom) and max (top), for all primary cache size pairs
and set associativities for that particular secondary
cache size and processor core configuration. In Figure
3, the secondary cache capacities are labeled above
each bar for small to large-scale CMTs. Figure 4
shows the range (maximum to minimum) of the average
processor core IPC (y-axis) derived from the full CMT
results for a particular configuration.

These simulations correlated with our intuitive
performance trends based on primary cache size and
issue width of the processor. The superscalar CMT
cores outperform their scalar counterparts, i.e., 2p4t vs.
2s4t, but as we will see in Section 4.2, the increased
core area prevents the superscalar CMTs from
outperforming their scalar counterparts at a full-chip
system level. With regard to primary cache size, more is
better, not surprising given that we assume no cycle
time penalty from larger primary and secondary caches.
For example, the maximum core IPC for the medium-
scale 1p4t SPEC JBB is a configuration with the largest
possible primary data and instruction cache and

secondary cache defined in Table 2. This same core
configuration coupled with the smallest secondary
cache results in 15% performance degradation in core
IPC. Note that the 1p8t configurations with the larger
secondary cache configurations in Figure 4 are
examples of “overthreading with a pipeline utilization
over 94% and a very small average core IPC range.
This configuration exhibits similar performance
behavior for all the benchmarks; it is insensitive to
primary cache size and set associativity as a result of
“overthreading”.

1.5 2.0
2.5 3.51.5

1.0
4.5
2.5

4.53.0 6.0 8.0Large
Medium
Small

CMT Scale L2 Sizes (MB)

Max
Min

Core IPC

NpMt
Figure 3: Average core IPC range for the NpMt
configuration for 4 different L2 cache sizes.
Each black bar shows the IPC range when L1
cache sizes are varied for each L2 cache size.

This pipeline saturation or “overthreading” can
easily be observed in the 1p8t, 2p16t, and 2s8t core
configurations, where the maximum IPC is very close
to the absolute peak. Figure 4 also illustrates the
performance degradation as a result of insufficient
secondary cache capacity. This is most noticeable in
the large IPC degradation or step down for the 2p16t,
3p12t, 3p24t, or 4p16t configuration when moving right
to left from a 2.5 MB L2 to a 1.5MB L2, where the
small primary cache configurations magnify the effects
of insufficient secondary cache capacity. This problem
is exacerbated in the medium-scale CMTs due to the

increased number of aggregate threads for core-
intensive designs, but is also present in the small-scale
CMT configurations with large numbers of IDPs and
threads. Given the memory subsystem scaling, we have
observed that the (limited) large-scale CMT results
exhibit performance characteristics similar to the small-
scale and medium-scale CMT results. In addition to
insufficient secondary cache capacity, SPEC JBB can
suffer from insufficient secondary cache associativity as
well. In Figure 4, insufficient secondary cache
associativity degrades the performance of both large
and small cores for the core-intensive configurations
with 8 or more threads per core. In these cases, conflict
misses in the secondary cache cause serial thread
execution by forcing threads to wait on main memory
accesses. This can be further aggravated if the same
secondary cache bank and/or DRAM bank become
memory hot spots [26].

One of the benefits of multithreading is its ability to
tolerate latency, but there are conditions caused by
thread interference that saturate the memory bandwidth,
negating this ability to hide latency and causing the
performance of the processor core to drop dramatically.
This is best illustrated by the large CMT configurations
(3p13t, 2p16t, 3p24t, and 4p16t) with small L2 and
large average IPC ranges. The medium-scale CMT
results in Figure 4 are similar for small-scale and large-
scale CMTs on all the benchmarks. In general, the
reader can scale the average IPC in Figure 4 up or down
depending on the benchmark, up for XML Test and
down for TPC-W and TPC-C. The “overthreaded”
configurations saturate the pipelines for the same CMT
configurations across all the benchmarks. TPC-C’s
performance is more sensitive to secondary cache size
and results in a more pronounced performance “step”
traversing the increasing secondary cache sizes. TPC-

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

4 .0

Co
re

 IP
C

S c a la r C M T s S u p e rs c a la r C M T s

1p
2t

1p
4t

1p
8t

2p
2t

2p
4t

2p
8t

2p
16

t

3p
3t

3p
6t

3p
12

t

3p
24

t

4p
8t

4p
16

t

2s
1t

2s
2t

2s
4t

2s
8t

4s
1t

4s
2t

4s
4t

4s
8t

M a x im u m C o re
U t i l iz a t io n

Figure 4: SPEC JBB average core IPC range (maximum to minimum) for medium-scale CMTs. The
secondary cache size range is 1.5MB, 2.5MB, 3.5MB, and 4.5MB from left to right for each core.

W has slightly higher average core IPC and exhibits
similar performance to TPC-C. XML Test has the
highest average core IPC.

4.2. CMT performance

Historically, the goal of optimizing the processor

core was to squeeze out every last percent of
performance that can be achieved with reasonable
area costs. However, in the CMT design space, this is
a local optimization that does not yield high aggregate
performance. This is exemplified by the aggregate
IPC results for the 2p4t core configuration shown in
Figure 5. The top two lines are the aggregate IPC’s
(AIPCs) for a particular cache configuration and the
bottom two lines are the corresponding average core
IPC’s. C1 represents the 2p4t configuration with the
best core IPC, 64KB data and instruction cache, but
its corresponding AIPC underperforms due to the
small number of cores that can be fit on the die. On
the other hand, C2 is a “mediocre” 2p4t configuration
with only a 32 KB data and instruction cache, but it
has the best AIPC by maximizing the number of cores
for a given secondary cache size, as indicated in
Figure 5. C2 also illustrates that too many cores on
the chip can degrade overall performance. As both
the total number of cores that can be fit on the chip
and the performance of each of those cores are
strongly dependent on the amount of on-chip
secondary cache, it is important to balance processing
and cache needs. We present the best results for each
core configuration and all of the benchmarks used in
this study in Figure 6 for the medium-scale CMTs.
This figure provides the maximum AIPC (y-axis)
across all cache configurations for all pipeline/thread
configurations (x-axis). The number of cores and

cache configurations that yield the AIPC in Figure 6 is
provided in Table 3 for each pipeline/thread
configuration. The CMTs are clustered by pipeline and
pipeline architecture, scalar vs. superscalar.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

1.0MB 1.5MB 2.0MB 2.5MB

Secondary Cache Size

IP
C

C1 IPC
C1 AIPC
C2 IPC
C2 AIPC

6 5

3

8

5
3

2

4

Core IPC

AIPC

C2
C1

C2

C1

Figure 5: Small-scale CMT TPC-C core and
aggregate IPC for the 2p4t CMT configuration.
C1 has the best average core IPC. C2 has the
best aggregate IPC by using more cores on the
die. The number of cores for each CMT is
labeled next the upper pair of lines.

Table 3 shows the maximum AIPC for SPEC JBB,
TPC-C, TPC-W, and XML Test for medium-scale
CMTs. This table lists the best configuration for each
core configuration and highlights the overall best CMT
configuration in black boxes. The AIPC scales
proportionally with the number of cores. Thus, the
reader can derive the omitted (due to space constraints)
small-scale and large-scale CMT results from the
medium-scale results in Table 3.

Scalar CMTs Superscalar CMTs

0.0
2.0

4.0
6.0

8.0
10.0
12.0
14.0
16.0

18.0
20.0

1p
2t

1p
4t

1p
8t

2p
2t

2p
4t

2p
8t

2p
16

t

3p
3t

3p
6t

3p
12

t
3p

24
t

4p
8t

4p
16

t

2s
1t

2s
2t

2s
4t

2s
8t

4s
1t

4s
2t

4s
4t

4s
8t

M
ax

im
um

 A
gg

re
ga

te
 IP

C

JBB

TPCC

TPCW

XML

Figure 6: Medium-scale CMT aggregate IPC for each CMT configuration and all benchmarks.

Table 3: Maximum AIPC for medium-scale CMTs for SPEC JBB, TPC-C, TPC-W, and XML Test.
Core

Config L1 L2 Cores AIPC L1 L2 Cores AIPC L1 L2 Cores AIPC L1 L2 Cores AIPC
1p2t 16/32 1.5/12 20 9.8 16/32 2.5/10 16 5.8 16/32 1.5/12 20 8.6 16/32 1.5/12 20 11.8
1p4t 16/32 1.5/12 17 13.2 16/32 2.5/10 14 8.2 16/32 1.5/12 17 10.6 16/32 1.5/12 17 14.8
1p8t 16/32 2.5/10 12 11.7 32/32 1.5/12 14 8.9 32/32 1.5/12 14 13.0 16/32 1.5/12 14 13.8
2p2t 16/32 1.5/12 16 8.6 16/32 1.5/12 16 5.1 16/32 1.5/12 16 7.5 16/32 1.5/12 16 10.5
2p4t 32/32 1.5/12 14 12.9 32/32 2.5/10 12 7.8 32/32 1.5/12 14 10.6 16/32 1.5/12 14 15.2
2p8t 16/32 1.5/12 12 16.5 32/32 2.5/10 9 9.5 32/32 1.5/12 12 13.6 32/32 1.5/12 12 18.9

2p16t 32/64 2.5/10 7 13.3 64/64 2.5/10 7 11.8 64/64 1.5/12 9 15.2 32/64 1.5/12 9 16.9
3p3t 32/32 1.5/12 13 10.3 32/32 2.5/10 10 5.9 32/32 1.5/12 13 8.5 16/32 1.5/12 13 12.7
3p6t 32/32 1.5/12 11 14.4 32/32 2.5/10 9 8.5 32/32 1.5/12 11 11.3 32/32 1.5/12 11 16.5

3p12t 32/64 1.5/12 9 17.3 32/64 2.5/10 7 10.7 64/64 1.5/12 9 14.6 32/64 1.5/12 9 20.1
3p24t 32/64 2.5/10 5 13.6 32/64 2.5/10 5 10.9 32/64 1.5/12 6 14.0 32/64 1.5/12 6 15.5
4p8t 32/32 1.5/12 9 14.9 32/32 2.5/10 7 8.5 64/64 1.5/12 9 11.5 16/32 1.5/12 9 16.6

4p16t 32/64 1.5/12 7 16.8 32/64 2.5/10 5 9.8 64/64 1.5/12 7 14.4 32/64 1.5/12 7 18.5
2s1t 64/64 1.5/12 11 4.4 64/64 1.5/12 11 2.8 64/64 1.5/12 11 3.7 64/64 1.5/12 11 5.5
2s2t 64/64 1.5/12 10 7.0 64/64 1.5/12 10 4.3 64/64 1.5/12 10 5.8 64/64 1.5/12 10 8.6
2s4t 64/64 1.5/12 9 10.5 64/64 1.5/12 9 6.4 64/64 1.5/12 9 8.7 64/64 1.5/12 9 12.4
2s8t 64/64 1.5/12 7 12.1 64/64 1.5/12 7 8.1 64/64 1.5/12 7 10.6 64/64 1.5/12 7 12.7
4s1t 64/64 1.5/12 7 2.9 64/64 1.5/12 7 1.9 64/64 1.5/12 7 2.6 64/64 1.5/12 7 3.7
4s2t 64/64 1.5/12 6 4.5 64/64 1.5/12 6 2.9 64/64 1.5/12 6 3.9 64/64 1.5/12 6 5.8
4s4t 64/64 1.5/12 5 6.6 64/64 1.5/12 5 4.1 64/64 1.5/12 5 5.6 64/64 1.5/12 5 7.8
4s8t 64/64 1.5/12 4 8.5 64/64 1.5/12 4 5.5 64/64 1.5/12 4 7.2 64/64 1.5/12 4 9.1

SPEC JBB 2000 TPC-C TPC-W XML Test

Note: The L1 refers to the primary data/instruction cache size. The L2 cache configuration size (MB)/set associativity (SA) are provided along
with the total number of cores for that CMT configuration.

4.3. Discussion

We have shown that augmenting CMPs with fine-grain
multithreading, creating CMTs, is crucial to increasing
the performance of commercial server applications.
Furthermore, scalar CMT variants with 4 or more
threads outperformed nearly all of the superscalar CMT
configurations given the constant die size constraint.
While multiple processor cores can exploit TLP, fine-
grain multithreading is also necessary to alleviate the
otherwise poor core utilization for these applications.
However, we found that fine-grain multithreading runs
into two limits. First, the addition of too many threads
results in a saturated integer pipeline that was
insensitive to L1 cache parameters. In our studies, we
found that this saturation occurred with about 8 threads
per integer pipeline for scalar cores. Second, a CMT
built with too many total threads for the secondary
cache size can end up saturating the memory bandwidth
with secondary cache misses, as the aggregate working
set overflows the secondary cache. We encountered
memory saturation primarily for the configurations that
had the smallest secondary cache size (occupying 24-
28% of the CMT area) and 8 or more threads per core.
We found aggregate IPC to be optimized by a processor
centric design, requiring only 25-40% of the area
devoted to the shared secondary cache. When focusing

on the processor core itself, a larger primary instruction
cache than the primary data cache is always the best
policy. Surprisingly, high primary cache set
associativity was not required for these applications,
even with more threads than set associative ways.

For a given primary data and instruction cache
configuration, the performance difference based on set
associativity varied less than 3% for the best aggregate
IPC configurations, as long as the caches were at least
two-way set associative. We also found that the best
performing configurations required enough threads and
primary cache to bring the pipeline utilization up to the
60-85% range, as the area costs for adding additional
pipelines and threads per pipeline is much smaller than
adding an additional core. For small, medium, and
large-scale CMTs, the best configuration was with 3
pipelines and 12 threads per core for Spec JBB amd
XML Test, while 2 pipelines and 16 threads per core
performed best for TPC-C and TPC-W. We also found
that the best performing CMT configuration was highly
dependent on a step function of the number of cores
that can be squeezed on the die, allowing a CMT
composed of slightly lower performance cores to yield
superior aggregate performance by employing more of
those cores. As a corollary to this step function
regarding core size, processor cores with smaller
primary caches were favored, even without penalizing

the larger caches with additional latency, as the smaller-
cache cores maximized the number of on-chip cores.

Interestingly enough, for small, medium, and large-
scale CMTs, the worst performing configurations for
SPEC JBB and XML Test included both
“underthreaded” and “overthreaded” configurations,
while the worst performing configurations for TPC-C
and TPC-W were always “underthreaded”
configurations. This matches our intuition, as the low
IPC of a single TPC-C or TPC-W thread makes
underthreading more detrimental, while the more
moderate IPC of a single SPEC JBB or XML Test
thread makes it more susceptible to both underthreading
and overthreading. Finally, 2-way superscalar
configurations outperformed all 4-way superscalar
configurations with the same number of threads.

4.4. Technology trends

One of our assumptions is that a large, near reticle
limit die will be used for the CMT chip. However, even
with a mature silicon process, wafer yield for a reticle-
limited die is extremely low. Thus, we note that our
results apply to a 225-250 mm2 chip in the subsequent
process generation, which is much more
manufacturable and affordable. The results we
presented for small-scale, medium-scale, and large-
scale CMTs could then map to the 90 nm, 65 nm, 45 nm
process generations, respectively. Furthermore, adding
more SOC components or engines beyond the base
CMT would promote a similar process generation
“migration,” even with a larger die. Regardless of the
reasons for using the next silicon process generation,
the results are still valid because the clock frequencies
for both on-chip and off-chip components scale
proportionally if the clocking rules in Table 1 are used.
For the highest end servers, however, an expensive,
reticle-limited die may still be appropriate, as the cost
of these servers are often dominated by components
other than the processor (e.g. memory).

FB-DIMM memory provides sufficient bandwidth
for CMT designs in 130 nm, 90nm, and 65 nm
generations, but pin pressure for the FB-DIMM
interface reappears when we continue to double the
memory bandwidth for the 45nm process technology.
As DDR2 is the memory technology of choice for the
130nm generation, we also simulated a more bandwidth
constrained 4-channel DDR2 memory system for the
small-scale CMT designs. The DDR2 results differed
from the FB-DIMM results in that more on-chip cache
was optimal (40-60% of the area instead of 25-40%),
and the penalty for being “overthreaded” was more
pronounced. When examining the amount of secondary
cache memory per thread, we observed that for SPEC

JBB 15 KB/thread, TPC-C 25 KB/ thread, and TPC-W
and XML TEST less than 10 KB/thread was required to
prevent severe performance degradation using the FB-
DIMM memory interface. This secondary cache
memory requirement is doubled when using a DDR
memory interface. Given the likelihood of future
insufficient memory bandwidth, we believe that CMT
designs in 45 nm and beyond will be skewed towards a
more equal balance in the area between the upper level
caches and the processor cores. However, there are
techniques like cache compression described in [3] that
counteract the effects of memory bandwidth scaling and
the resulting pin pressure and thereby would shift the
optimal CMT configurations back toward core-centric
as a result of increasing on-chip cache efficiency.

5. Related work

Scaling superscalar processors leverage existing

intellectual property (IP) and reduce initial design
effort. However, replicated hardware or other
evolutionary, ILP-focused industry solutions
[19][10][11] are not necessarily ideal for commercial
server applications. Superscalar processors require
large issue widths and/or large number of threads to
achieve a small fraction of their peak performance on
commercial workloads [14][4][27]. This is likely to
lead to low aggregate performance in a CMP due to the
small number of superscalar cores that will fit on a die.
[12] also leverages existing IP and presents a
performance evaluation of a heterogeneous CMP. This
architecture study focuses on a CPU-intensive diverse
workload instead of the commercial server
homogeneous workloads that we use.

A large body of research exists that is concerned
with optimizing the commercial application space and
the microprocessors that execute these programs
[3][5][7][12][17][22][27]. SMT is one possible
solution to hiding long latency events and high cache
miss rates. Most of industry appears to be heading
down this path [6][19], but we believe that the area
overhead and low utilization of the superscalar
processor cores will ultimately result in a CMT of lower
aggregate performance than one composed of simple
cores, similar to the approach described in [13]. In
addition, both Intel [19] and IBM [10] have stated the
limits of SMT to be two threads, and it is clear from our
results that two threads are not sufficient to mask the
long latency events in all of these benchmarks.

[4] and [27] provided motivation for using simple
core CMPs for commercial server applications. The
Piranha project investigated using CMPs with simple,
single-issue in-order cores running OLTP and DSS
workloads, TPC-B and TPC-D [5], compared to

monolithic superscalar processors. The Piranha
processors outperformed the monolithic cores, but
lacked the key feature of fine-grained multithreading to
mask memory latency inside the processor core, which
this study has demonstrated to be critical to achieve
high aggregate CMT performance. Piranha was also a
research prototype targeting the 180 nm generation, and
as such selected a particular CMT design point (eight
1p1t 64 KB instruction and data caches with a 1MB
secondary cache) [5] to compare against a monolithic
superscalar processor of similar die size. Our study
greatly expands on the Piranha work by not only
exploring the addition of fine-grain multithreading to
simple cores and comparing scalar and superscalar
CMTs, but also by exploring multiple technology
generations, cache configurations, and a significant
portion of this CMT design space, all while running
large scale full system simulations of SPEC JBB, TPC-
C, TPC-W and XML Test.

[9] presents an exploration of CMPs built from
either in-order or out-of-order superscalar processors,
but differs form our work in many ways. [9] uses a
different class of benchmarks (SPEC CPU2000), uses
partial CMP simulation to extrapolate CMP
performance, does not examine either multithreaded or
scalar cores, and provides a private L2 cache per core,
which greatly increases data sharing overhead. They
also use performance-scaling techniques that overlook
the memory saturation issues that we encountered. This
is even more relevant because their area model predicts
higher core counts for CMPs in the same process
generation, which greatly increases memory bandwidth
requirements. Furthermore, there is no mention of
memory coherence, which is required for this
application domain. In contrast to [9], we use large
scale applications from the target domain, perform full
system simulations of all CMT configurations, both
scalar and superscalar, examine a CMT architecture
with a large shared secondary cache to exploit data
sharing, and maintain full memory coherence. Our
study points toward CMTs built from small scalar cores
as performing best for commercial workloads, while
their study pointed towards CMPs built from large out-
of-order superscalar cores as performing best, unless
the application was bandwidth bound.

6. Conclusions

In this paper, we explored the performance of

multithreaded scalar and superscalar core CMTs on
commercial workloads for small, medium and (to a
limited extent) large-scale systems. When comparing
area-equivalent scalar and superscalar CMT
configurations, we found that scalar CMTs with small

primary caches significantly outperform their
superscalar counterparts by 37-46%. Even though the
superscalar processors achieve a higher core IPC than
the scalar processors, the increased number of small
scalar cores that can be fit on a die more than makes up
for this difference. This ability of “mediocre” cores to
provide the best aggregate performance on commercial
workloads is a key contribution of this throughput
study. Our study showed multithreading was also
crucial to achieve good application performance;
however, too many threads led to execution pipeline
saturation or, in the extreme case, to memory bandwidth
saturation. This is counter to the multithreading
efficiency limits of 2 threads stated by [10] and [19].
However, our design is targeting a CMT with a high-
bandwidth memory subsytem, which is crucial to being
able to keep the large number of threads fed.

We also found that the best performing
configuration was highly dependent on a step function
of the number of cores that could be squeezed on the
die. As a result, processor cores with smaller primary
caches were favored, even without penalizing the larger
caches with additional latency, as the smaller-cache
cores maximized the number of on-chip cores. Table 4
shows the optimal small, medium, and large-scale CMT
configurations. While one single configuration did not
perform optimally for all of the benchmarks, our results
show a range, usually using 4-8 threads per pipeline, of
high performing CMT configurations.

Table 4: Maximum AIPC for all benchmarks.
Benchmark Core Small Scale Medium Scale Large Scale

Cores, AIPC Cores, AIPC Cores, AIPC
SPEC JBB2000 3p12t 5, 9.6 9, 17.3 15, 30.8
TPC-C 2p16t 5, 6.4 7, 11.8 12, 20.8
TPC-W 2p16t 5, 8.3 9, 15.2 15, 27.7
XML Test 3p12t 5, 11 9, 20.1 15, 35.4

Our results show that it is necessary to perform full
system simulation to achieve accurate performance
estimates. Basing performance predictions on scaled or
partial systems simulations would not have revealed the
dramatic performance drop-off for “overthreaded’
configurations, which saturate the memory subsystem.
We purposely assumed each CMT had an aggressive
memory subsystem, but this interface still became
saturated for large numbers of threads and/or cores. We
were surprised that multiple scalar pipelines sharing a
single instruction and single data cache port was not a
source of significant performance degradation, even
with instruction buffers for each thread. Likewise, both
the primary and secondary caches were relatively
insensitive to variations in set associativity, regardless
of capacity or the number of supported threads. In this
study, we have temporarily circumvented the memory
wall by reducing processor frequency for CMT

configurations and by scaling DRAM interface
frequencies over time. Eventually future physical
constraints, such as limited package pins in the 45 nm
generation, will present a challenge to future computer
architects by limiting off-chip bandwidth for
commercial server benchmarks.

Acknowledgements

We would like to thank Cong Fu, Venkatesh

Iyengar, and the entire Niagara Architecture Group for
their assistance with the performance modeling. We
would like to thank Lance Hammond, Todd Austin, and
the anonymous reviewers for their comments. This
research was supported by Sun Microsystems and
National Science Foundation grant CCR-0220138.

References

[1] A.R. Alameldeen,C. J. Mauer, et.al., “Evaluating Non-
deterministic Multi-threaded Commerical Workloads,”
Computer Architecuter Evaluation using Commerical
Workloads (CAECW), February 2002.
[2] A.R. Alameldeen and D.A. Wood, “Variability in
Architectural Simulations of Multi-threaded Workloads,” 9th
Int’l Symp. on High Performance Computer Architecture
(HPCA), February 2003.
[3] A.R. Alameldeen and D.A. Wood, “Adaptive Cache
Compression for High-Performance Processors,” Proc. of the
Annual Int’l Symp. on Computer Architecture (ISCA) 2004.
[4] L. Barroso, K. Gharachorloo, and E. Bugnion, “Memory
System Characterization of Commercial Workloads,” ISCA-
25, June 1998, pages 3-14.
[5] L. Barroso, K. Gharachorloo, R. McNamara, et al.,
“Piranha: a scalable architecture based on single-chip
multiprocessing,” ISCA-27, June 2000, pages 282 –293.
[6] J. Clabes, J. Friedrich, and M. Sweet, “Design and
Implementation of the POWER5TM Microprocessor,” ISSCC
Dig. Tech. Papers, pages 56-57, Feb. 2004.
[7] F. Eskesen, M. Hack, T. Kimbrel, et al., “Performance
Analysis of Simultaneous Multithreading in a PowerPC-based
Processor,” IBM Research Report, May 2002, RC22454.
[8] N. Hardavellas, S. Somogyi, et al., “Simflex: A fast,
accurate, flexible full-system simulation framework for
performance evaluation of server architecture.” SIGMETRICS
Performance Evaluation Review, pages 31–35, April 2004.
[9] J. Huh, S.W. Keckler and D. Burger, “Exploring the
Design Space of Future CMPs,” Int'l Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 199-
210, Sept. 2001.
[10] R. Kall, B. Sinharoy, J. Tendler, “SMT Implementation
in Power5,” 15th Hot Chips Symp., August 2003.
[11] S. Kapil, “Gemini: A Power-efficient Chip Multi-
Threaded UltraSPARC® Processor,” 15th Hot Chips Symp.,
August 2003.
[12] R. Kumar, D. Tullsen, et al., “Single-ISA Heterogeneous
Multi-Core Architectures for Multithreaded Workload
Performance,” ISCA-31, June 2004.

[13] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A
32-way Multithreaded Sparc Processor,” IEEE Micro, pages
21-29, March/April 2005.
[14] S. Kunkel, R. Eickemeyer, M. Lipasti, T. Mullins, “A
performance methodology for commercial servers,” IBM
Journal of Res. and Dev., Vol. 44, Number 6, 2000.
[15] F. Labonte and M. Horowitz, “Microprocessors Through
the Ages,” http://www-vlsi.stanford.edu/group/chips_
micropro .html
[16] J. Laudon, A. Gupta, and M. Horowitz, “Interleaving: A
Multithreading Technique Targeting Multiprocessors and
Workstations,” Proc. of the 6th Int’l Symp. on Architectural
Support for Parallel Languages and Operating Systems
(ASPLOS), October 1994, pages 308-318.
[17] J. Lo, L Barroso, S. Eggers, K. Gharachorloo, et al., “An
Analysis of Database Workload Performance on Simultaneous
Multithreaded Processors,” ISCA-25, Jun 1998, pages 39-50.
[18] P. Magnusson, M. Christensson, J. Eskilson, et al.,
“Simics: A Full System Simulation Platform,” Computer,
February 2002, pages 50-58.
[19] D. Marr, “Hyper-Threading Technology in the
Netburst® Microarchitecture,” 14th Hot Chips, August 2002.
[20] M. Martin, D. Sorin, B. Beckmann, et al., “Multifacet's
General Execution-driven Multiprocessor Simulator (GEMS)
Toolset,” Computer Architecture News (CAN), 2005.
[21] K. Olukotun, B. Nayfeh , L. Hammond, K. Wilson, and
K. Chang, “The Case for a Single-Chip Multiprocessor,”
ASPLOS-7, October 1996.
[22] P. Ranganathan, K. Gharachorloo, S. Adve, and L.
Barroso, “Performance of Database Workloads on Shared-
Memory Systems with Out-of-Order Processors,” ASPLOS-8,
Oct.1998, pages 307-318.
[23] Semiconductor Industry Association (SIA), International
Technology Roadmap for Semiconductors (ITRS), 2001
edition with 2002 update.
[24] T. Sherwood, S. Sair, and B. Calder, “Phase Tracking
and Prediction,” ISCA-30, June 2003.
[25] P. Shivakumar, N. Jouppi, “CACTI 3.0: An Integrated
Cache Timing, Power, and Area Model”, COMPAQ Western
Research Lab, 2001.
[26] L. Spracklen and S. Abraham, “Chip Multithreading:
Opportunities and Challenges,” HPCA-11, Feb. 2005.
[27] R. Stets, L.A. Barroso, et al., “A Detailed Comparison of
TPC-C versus TPC-B,” CAECW-3, January 2000.
[28] S. Storino, A. Aipperspach, J. Borkenhagen, et al., “A
commercial multithreaded RISC processor,” ISSCC Dig.
Tech. Papers, pages 234 –235, Feb. 1998.
[29] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,” ISCA-22,
June 1995, pages 392-403.
[30] Standard Performance Evaluation Corporation, SPEC*,
http://www.spec.org, Warrenton, VA
[31] Transaction Processing Performance Council, TPC-*,
http://www.tpc.org, San Francisco, CA
[32] “XML Processing Performance in Java and .Net,”
http://java.sun.com/performance/reference/whitepapers/XML
_Test-1_0.pdf
[33] Personal communication with Dr. Norm Jouppi

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

