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Abstract 

 
In this paper we compare the performance of area 

equivalent small, medium, and large-scale 
multithreaded chip multiprocessors (CMTs) using 
throughput-oriented applications.  We use area models 
based on SPARC processors incorporating these 
architectural features.  We examine CMTs with in-
order scalar processor cores, 2-way or 4-way in-order 
superscalar cores, private primary instruction and data 
caches, and a shared secondary cache.  We explore a 
large design space, ranging from processor-intensive to 
cache-intensive CMTs.  We use SPEC JBB2000, TPC-
C, TPC-W, and XML Test to demonstrate that the 
scalar simple-core CMTs do a better job of addressing 
the problems of low instruction-level parallelism and 
high cache miss rates that dominate web-service 
middleware and online transaction processing 
applications.  For the best overall CMT performance, 
smaller cores with lower performance, so called 
“mediocre” cores, maximize the total number of CMT 
cores and outperform CMTs built from larger, higher 
performance cores.  
 
1. Introduction 

 
The research community has been predicting the 

genesis of chip multiprocessors (CMPs) for some time 
[21].  Starting around the 130 nm silicon process 
generation, it was possible to put multiple superscalar 
processor cores on a single chip [10][11].  These 
complex CMPs are becoming the ubiquitous 
architecture for commercial servers targeting 
throughput-oriented applications.  However, using 
wide-issue superscalar processor cores in CMTs has its 
drawbacks.  These complex cores are focused on 
instruction level parallelism (ILP) extraction and high 
clock frequency, yielding devices able to execute many 
billions of instructions per second under ideal 
conditions.  Unfortunately, this massive instruction 
processing capability is throttled by the large latency 
gap between the memory subsystem and the processor, 
and for many larger commercial applications, only a 

tiny fraction of the peak performance can be achieved 
[4].  Now that there is enough die real estate to produce 
large-scale CMTs, we believe it is necessary to re-
evaluate the underlying microarchitecture to determine 
the optimal processor building block for targeting 
commercial workloads. 

Most important commercial server applications, such 
as e-commerce, online transaction processing (OLTP), 
decision support systems (DSS), and enterprise resource 
planning (ERP) are heavily threaded, and even for non-
threaded applications, there is a trend towards 
aggregating those applications to run on a common 
server pool, as exemplified by grid computing or 
“computation on demand.”  For these workloads, the 
individual thread latency is less important than the 
aggregate thread throughput.  We increase aggregate 
thread throughput by using multithreaded processor to 
hide events that normally stall the processor, such as 
cache misses, thereby increasing their utilization. By 
using multithreading architectures that employ no-
overhead thread switching [16][29], processors can 
come close to their peak computation rate even in the 
presence of low ILP and high cache miss rates, at a 
relatively modest hardware cost [28][29].  Within the 
multithreaded architecture space, the main processor 
trade-off involves thread latency versus thread count.  
The CMT can either employ a smaller number of more-
powerful processors emphasizing individual thread 
latency, but sacrificing aggregate thread throughput, or 
employ a larger number of less-powerful processors 
emphasizing aggregate thread throughput, but 
degrading individual thread latency.  The POWER 5TM 
[6] and Niagara [13] processors best illustrate this 
thread performance spectrum, respectively.  The less-
powerful processor approach has an intuitive appeal, as 
a simple, scalar processor requires much less area than a 
superscalar processor while still providing similar 
sustainable performance achievable on an n-wide 
superscalar processor running commercial benchmarks.  
In addition, using simple, scalar processor cores reduces 
the design complexity and bug rates.  

To investigate the CMT design space, we use Sun 
Microsystems’ processor databases to generate and 
correlate the area models for both scalar and in-order 



superscalar processors employing fine-grain 
multithreading.  We use a variety of industry guidelines 
to reduce the number of simulations in the design space.  
Even with these guidelines, approximately 13,000 
configurations exist for in-order scalar CMTs for each 
benchmark and process technology.  Results from a 
perfect L2 cache simulator configuration enabled 
further pruning of the scalar CMT design space.  
Superscalar processor configurations were explored to 
enable comparisons to previous studies that investigate 
CMPs [5][9].  Unlike these previous studies, our 
superscalar processors include multithreading, which 
we show is crucial to achieve high throughput. 

The design trade-offs and complexity for CMTs 
composed of a large number of simple processors are 
very different from that of a CMP consisting of a small 
number of superscalar processor cores.  In this paper, 
we use SPEC JBB [30], TPC-C, TPC-W [31] and XML 
Test [32], a Java middleware, OLTP, transactional web, 
and XML parsing web benchmarks, respectively.  For 
these applications, total throughput, rather than single-
thread performance, is the main metric of interest.  We 
measure total throughput using aggregate instructions 
per cycle (AIPC), which we find to be directly related 
to transactions per second for our highly tuned versions 
of the benchmarks.  For all benchmarks, AIPC is 
maximized for a range of scalar CMT configurations 
employing small primary caches with roughly 25-40% 
of the CMT area devoted to shared secondary cache 
area.  We observed consistent trends across 
technologies that enable us to extrapolate our results 
from small-scale and medium-scale CMTs to large-
scale CMTs. 

We discuss the CMT design space and describe our 
area model based on various processor core components 
and cache designs used to determine the allowable 
CMT configurations in Section 2.  Section 3 elaborates 
on our high performance multi-configuration simulation 
environment.  Section 4 presents the detailed results of 
our simulations.  Section 5 discusses related work and 
we conclude in Section 6. 
 
2. The CMT design space 

 
We evaluated CMTs built from processor cores 

implementing the SPARC ISA.  By exploring several of 
Sun Microsystem’s UltraSPARC chip design databases, 
we determined the area impact of the architectural 
components that are modified to enable fine-grain 
multithreading.  From this, we derived a thread-scalable 
fine-grained multithreaded processor core area model, 
which correlates well with actual and projected 
UltraSPARC processor areas from 130 nm to 45 nm 
silicon process generations.  We present simulated 

results for small-scale, medium-scale, and (limited) 
large-scale CMTs, where small, medium, large classify 
CMT configurations that correspond to reticle-limited 
dies (400 mm2) for 130 nm, 90 nm, and 65 nm silicon 
process technologies, respectively   

 

 
Figure 1: A high-level functional diagram of the 
CMT design space.  The gray components are 
varied and described in Table 1. 

 
Table 1: CMT design space parameters. 
Feature Description
CPU In-order scalar or superscalar
Issue Width scalar, 2-way and 4-way superscalar
Pipeline Depth 8 stages
Integer Datapath Pipelines  1-4  IDPs or Integer ALUs
L1 D & I Cache 8KB-128KB, 16 (D) & 32 (I) Byte lines
L1 D & I Cache Set Assoc. Direct-mapped, 2-, 4-, or 8-way
L1 D & I Cache Policies write through, LRU-based replacement 
Clock Frequency 1/3 -1/2 Maximum ITRS clock frequency [23]
Multithreading 1-32 threads/core
L2 Cache 1MB - 8MB, 128 Byte lines, banked (8 or 16), 

coherent, inclusive, shared, unified, critical 
word first, 25 cycle hit time (unloaded)

Main Memory Fully Buffered DIMMs with 4/8/16 dual 
channels, 135 cycle latency (unloaded)  

 
Figure 1 illustrates and Table 1 describes the variety 

of high-level CMT configurations; all the gray 
components are varied in this study.  The processor 
cores can utilize either in-order scalar or superscalar 
integer datapaths (IDPs).  We vary the number of IDPs 
within each core and the number of threads per IDP.  In 
our scalar processor design, threads are statically 
assigned to an IDP, as this avoids the superlinear area 
impact of being able to issue instructions from any of 
the threads on a core to any of the IDPs.  All cache 
sizes and set associativities (SA) can vary.  Instruction 



caches and data caches are always identical in size or 
differ by a factor of 2X, but no more.  The primary 
caches range from 8 KB to 128 KB with SA ranging 
from direct mapped to 8-way.  Small instruction buffers 
for each thread decouple the front-end of each IDP 
from the shared primary instruction cache.  The 
memory and cache subsystems are fully modeled with 
queuing delaying and occupancy.  The actual RAS/CAS 
cycles for the DRAM accesses are modeled along with 
all the various buffers and queues.  The number of 
processor cores and sizes of the caches are determined 
by the area model for a given silicon process 
technology, keeping die size constant across all possible 
configurations.   
 
2.1. The CMT area model 

 
Historically, server microprocessors have pushed the 

manufacturing envelope close to the reticle limit, 
around 400 mm2.  Hence, we fixed the die size to be 
400 mm2 across the technology generations and allocate 
75% of the total die area to the CMT area, processor 
cores and secondary cache, with the remaining 25% 
devoted to the other system-on-a-chip (SOC) 
components: memory controllers, I/O, clocking, etc.  
We devote 15% of the CMT area to the processor core 
interconnect and related components and the remaining 
85% of the CMT area (60% of the total area) is devoted 
to the processor cores and secondary cache.  The 
number of processor cores and the size of the secondary 
cache are determined by allocating between 25% to 
75% to one and the remainder of the area to the other to 
cover a broad range of CMT configurations, from 
processor intensive to on-chip memory intensive 
designs.  We also account for spacing and routing 
between the (sub)components; an additional 10-20%, 
depending on the component, of die area is allocated for 
this purpose at various levels of the area model.  Thus, 
our area model produces realistic CMT configurations 
that have been validated against Sun Microsystem’s 
processor designs. 

 
2.2. Processor core & cache area 
 
From our estimates, fine-grain multithreading 

directly impacts the area of processor core components 
in a linear manner for a small number of threads, but the 
degree to which these components are affected varies 
greatly.  We estimate a 5-6% area increase when 
integrating two active threads into a simple, in-order 
scalar or superscalar processor.  This area increase is 
similar to the area increase due to simultaneous 
multithreading reported by Intel and IBM [19][6].  
Figure 2 illustrates the linear increase in processor core 

area predicted by our model, for a maximum of 16 
hardware threads per processor core.  The number of 
threads per core is shown on the x-axis and the y-axis 
quantifies the relative area increase of the core 
configuration when adding multithreading and 
additional IDPs.  The increased complexity and 
resulting non-linear area increase for large number of 
threads per IDP is not modeled. This non-linearity is 
realized much sooner with superscalar cores, preventing 
our area model from accurately predicting superscalar 
cores with more than 8 threads.   
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Figure 2: Core area model relative to a scalar 
single-thread single IDP core for scalar (X IDP) 
and superscalar (Y SS), where X is the number 
of IDP sharing private primary caches and Y is 
the instruction issue width. 

 
We initially used CACTI 3.2 [25] to estimate cache 

area and power, but found some inaccuracies and 
limitations for the sub-micron silicon process 
generations that we were interested in modeling [33].  
We use conservative area estimates based on Sun 
Microsystem’s designs for cache memory cells with an 
area efficiency of 50% for all processor configurations.  
Based on access time limitations, we constrained the 
primary cache size with respect to the other processor 
components to be no more than 50% of the total 
processor core area.  This constraint favors larger cores, 
as our simulations do not assume multiple-cycle access 
for the larger primary caches, and so are optimistic in 
their performance benefits.  While this might seem to 
give an advantage to large thread or large IDP 
configurations, we show in Section 4.3, all but two of 
the best performing configurations use small primary 
caches that were available to all possible thread/IDP 
combinations, with the two outliers using caches 
available to all combinations except the lower-thread 
count, single IDP configurations.   

 
3. Simulation environment 

 
While our simulation study encounters the standard 

problems of simulating nonexistent systems and of 
simulating realistically configured large-scale 



commercial applications, we also have the additional 
problem of simulating an enormous CMT design space.  
Thus, we were confronted by the canonical simulation 
trade-off between absolute accuracy and simulation 
time.  While we could have simulated scaled-down 
versions of the commercial applications running for 
short periods of time on a detailed, execution-driven 
simulator, the variability in IPC of such an approach 
would have been too high [2].  Instead, we employ the 
RASE (Rapid, Accurate Simulation Environment) 
approach, a collection of Sun Microsytems’ interal 
tools, that uses a highly detailed and cycle-accurate 
execution-driven and trace-driven simulation to 
characterize the CMT designs by generating multi-
configuration instruction trace files.  RASE uses 
SimCMT, a configurable CMT timing simulator built 
on top of Simics by VirtuTech [18] for execution-
driven simulation similar to the methodology used in 
Simflex and GEMS [8][20].  SimCMT can also be used 
as a fast stand-alone trace-driven simulator. 

 
3.1. Simulation methodology 
 

RASE does not scale down the application, but 
instead runs large applications in steady state on both 
real system hardware and on SimCMT.  We have 
correlated and validated the execution-driven model 
against real hardware, both SMPs and CMTs.  During 
this correlation, system hardware counters are 
compared to simulated counters for primary and 
secondary cache, and TLB latencies and miss rates.  In 
addition, comparisons of instruction mixes, context 
switch frequencies, intervals between contexts, and so 
on, are correlated to ensure accurate reproduction at the 
workload level.   

We generate multi-configuration instruction traces 
using execution-driven simulation that can be pre-
processed and then used in a fast, accurate trace-based 
simulation mode of SimCMT.  While there is 
substantial cost and effort up-front in the RASE 
methodology, once that cost has been paid, RASE has 
several advantages over execution-driven simulation of 
scaled commercial applications.  The trace-driven 
simulation enables faster simulation of various 
configurations compared to an execution-driven model 
and the lack of variability in the test sequence isolates 
the effects of architectural changes.  In addition, using 
large instruction trace files in trace-driven simulation 
for long time periods addresses the issue of 
nonrepeatability in commercial applications across 
multiple short runs [1][2], at the cost of simulating 
instruction sequences that might not be possible in an 
actual multithreaded execution.  We have observed 
approximately 1% difference in IPC when comparing 

execution-driven and trace-driven full system 
simulations for the same CMT model for TPC-C and 
SPEC JBB.  As expected, miss rates for the two 
methodologies differ more, but we have not observed a 
relative difference greater than 5%.  The downside to 
the RASE methodology is that for the initial correlation, 
one must have access to a full-size commercial 
machine, which can cost millions of dollars. 

 
3.2. Benchmark details 

 
We selected SPEC JBB, TPC-C, TPC-W, and XML 

Test server benchmarks to assess the CMT’s 
performance.  SPEC JBB emulates a 3-tier system 
emphasizing the Java server-side performance of 
middleware business logic [30].  TPC-C is an online 
transaction processing benchmark based on an order-
entry system [31].  We concentrate on the server 
component of TPC-C for this study.  This complicated 
benchmark has extreme hard disk, memory, and 
network resource requirements [14][4][1][27].  TPC-W 
is a transactional web benchmark that simulates the 
activities of a business oriented transactional web server 
[31].  XML Test is a multithreaded XML processing 
test developed at Sun Microsystems [32]. XML Test 
performs both streaming and tree-building parsing, 
which replicate application servers that provide web 
services and simultaneously process XML documents.  
Unlike SPEC JBB, XML Test is a single tier system 
benchmark; the test driver is integrated into worker 
thread. 

These benchmarks do not exhibit multiphase 
execution, so recording contiguous streams of 
instruction on a per thread basis can capture the 
complete system performance, the overall benchmark 
characteristics, and the instruction mix.  In contrast, 
benchmarks like SPEC CPU2000 require sampling 
techniques to capture the various phases of execution 
[24].  SPEC JBB uses the J2SE 1.4 JVM with a 2 GB 
heap running on Solaris 9 with 16 warehouses to collect 
a 16-processor instruction trace file.  XML Test uses 
the J2SE 1.5 JVM, but with a 2.5 GB heap for a 16-
processor trace file.  For TPC-C, we use 3,000 
warehouses with a 28 GB SGA and 176 9 GB disks 
coupled with commercial database management and 
volume manager software running on Solaris 9.  For 
both TPC-C and TPC-W, the clients and servers are 
simulated, but only the server instruction traces are used 
in this study.  TPC-W can support up to 10,000 users.  
The database is built on 28 9 GB disks coupled with 
commercial database management and volume manager 
software running on Solaris 9.  The application server 
uses JDK 1.4.x, while JDK 1.3.x is used for the image 
server, payment gateway emulator, and the SSL 



Table 2: CMT design space parameters segmented (alternating gray areas) to indicate major core 
configuration groups. All 4 L2 cache configurations are used with all core configurations per class. 

Core 
Config

Number of 
IDPs

Number of 
Threads

Max L1 
Size (KB)

L2 Cache 
(MB, SA)

Number of 
Processors

Aggregate 
Threads

L2 Cache 
(MB,SA)

Number of 
Processors

Aggregate 
Threads

L2 Cache 
(MB,SA)

Number of 
Processors

Aggregate 
Threads

1p2t 1 2 32 4-11 8-22 5-20 10-40 10-34 20-68
1p4t 1 4 32 3-10 12-40 5-17 20-68 8-30 32-120
1p8t 1 8 64 2-8 16-64 3-14 24-112 7-25 56-200
2p2t 2 2 32/64 3-9 6-18 4-16 8-32 8-28 16-56
2p4t 2 4 64 2-8 8-32 3-14 12-112 7-25 28-100
2p8t 2 8 64/128 1, 16 2-6 16-48 1.5, 12 3-12 24-96 3,24 5-21 40-168
2p16t 2 16 128 1-5 16-80 2-9 32-144 4-15 64-240
3p3t 3 3 64 2-7 6-42 3-13 9-39 6-22 18-66
3p6t 3 6 64/128 1.5, 12 1-6 6-36 2.5, 10 3-11 18-66 4.5,18 5-20 30-120
3p12t 3 12 128 1-5 12-60 2-9 24-108 4-15 48-180
3p24t 3 24 128 1-3 24-72 1-6 24-144 3-10 72-240
4p8t 4 8 64/128 2, 16 1-5 8-40 3.5, 14 2-9 16-72 6,24 4-15 32-120
4p16t 4 16 128 1-3 16-48 2-7 32-112 3-10 48-160
2s1t 2 1 64 2-6 2-6 4-11 4-11 7-18 7-18
2s2t 2 2 64 2.5, 10 2-5 4-10 4.5,18 4-10 8-20 8,32 6-17 12-24
2s4t 2 4 64 2-5 8-20 3-9 12-36 6-15 24-60
2s8t 2 8 64 1-4 8-32 2-7 16-56 5-12 40-96
4s1t 4 1 64 1-4 1-4 2-7 2-7 4-11 4-11
4s2t 4 2 64 1-3 2-6 2-6 4-12 4-10 8-20
4s4t 4 4 64 1-3 4-12 2-5 8-20 3-9 12-108
4s8t 4 8 64 1-3 8-24 1-4 8-32 3-7 24-56

CMT Scale Small Medium Large

 
 
components.  Fixed processor sets are used to isolate 
the application servers from the rest of the simulation, 
allowing us to harvest the instruction streams only from 
the application server processor set.  

Each trace contains several billion instructions per 
process thread in steady state.  All traces are collected 
during the valid measurement time after the benchmarks 
have ramped up and completed the benchmark specified 
warm-up cycle, as on real hardware.  We have observed 
significant variation in benchmark performance during 
the ramp-up period, but little variation once in steady 
state, as observed in [2].  All benchmarks are highly 
tuned, with less than 1% system idle time, and show 
negligible performance variability during the 
measurement period.   

 
3.3. CMT architecture design space 

 
Table 2 summarizes the parameter ranges that we 

investigated, subject to the constraints on the processor 
cores and processor/secondary cache die division from 
Section 2.  The maximum primary cache capacities are 
shown as a single value or as X/Y if the maximum is 
asymmetric, where one L1 cache is larger than the 
other.  For this latter case, the set associativity of the 
larger cache in the asymmetric pair remained low to 
further constrain the area.  Finally, for each CMT class 
(small, medium, or large), there are four secondary 
cache sizes for each of the 21 core configurations, 
corresponding to approximately 25%, 40%, 60%, and 
75% of the CMT area.  To prevent the DRAM 

bandwidth from becoming a bottleneck, we chose an 
aggressive but achievable number of DRAM 
controllers/channels for our design. We use 4 dual Fully 
Buffered (FB)-DIMM DRAM channels shared by the 8 
banks of the shared secondary cache, 8 dual FB-DIMM 
DRAM channels shared by 8 cache banks, and 16 dual 
FB-DIMM DRAM channels shared by 16 banks for 
small, medium, and large scale CMTs, respectively. 

The in-order scalar and superscalar cores utilize fully 
pipelined integer and floating-point datapaths, with 
each datapath capable of executing one instruction per 
cycle.  Each processor core consists of one to four 
integer datapath pipelines (IDPs or integer ALUs).  Up 
to 8 hardware threads are supported per IDP within the 
processor core, while up to 8 hardware threads are 
supported per superscalar processor core.  The 
nomenclature we use to label the scalar cores is NpMt, 
where N is the number of IDPs in the core, and M is the 
total number of hardware threads supported by the core.  
We differentiate the scalar cores from the superscalar 
cores by labeling them NsMt, where N denotes the issue 
width of the superscalar processor.  Each scalar integer 
pipeline can only execute instructions from a statically 
assigned pool of M/N threads, whereas the superscalar 
pipelines can issue instructions from any of M threads.  
Each core contains a single-ported primary data and 
instruction cache shared between the IDPs, sized from 8 
KB up to the values shown in Table 2.   

Fine-grain multithreading [16][29] is used in our 
cores to address the low ILP and high cache miss rates 
of commercial workloads.  Simultaneous multithreading 



(SMT) is the fine-grain multithreading technique of 
choice being used in modern superscalar processors 
such as the hyperthreaded Intel processors [19] or the 
Power5TM [10], and has been shown to give good 
performance benefits for commercial workloads [17]. 
SMT interleaves execution from multiple hardware 
threads across both vertical (processor cycle) and 
horizontal (issue width) dimensions [29].  For scalar 
processors, only the vertical thread interleaving is 
applicable, and thus multithreading a scalar processor 
by switching threads every cycle has been labeled as 
vertical or interleaved multithreading [16].  Our 
superscalar processor instruction scheduling policy is 
based on selecting as many instructions as possible 
from the threads in LRU order.  The multithreading 
employed by our scalar processors is very similar to 
that described in [16], where instructions that have 
long-latency but determinant execution times (e.g. 
floating-point operations) are detected early in the 
pipeline (at decode) and prevent a thread from issuing 
further instructions until the long-latency operation 
result is available, while instructions that have an 
indeterminate execution time (e.g. loads) do not prevent 
issuing of further instructions to the pipeline.  Instead, 
these indeterminate-latency instructions cause a 
selective pipeline flush of all instructions from the 
thread when it is discovered that they are indeed a long-
latency operation. 

The processor core clock frequency, as shown in 
Table 1, is chosen to be sufficient to allow an individual 
thread to comfortably meet the latency requirements of 
our commercial applications, while at the same time 
producing a CMT with just half of the power 
dissipation of a standard high-frequency monolithic 
server processor, making it much more suitable for use 
in a dense server environment. 
 
4. Results 
 

The CMT design space is too large to be fully 
characterized by simulation.  Industry experience, 
intuition, and literature surveys [15] provided initial 
guidance for creating a tractable CMT design space.  
We then performed a two-phase simulation study.  The 
first phase, for which we do not present data, used a 
perfect secondary cache model; all primary cache 
misses were secondary cache hits.  These simulations 
provided a theoretical upper bound for the processor 
core IPC.  It also provided insight into L1 cache 
performance based on size and set associativity.  The 
second phase used a detailed secondary cache and Fully 
Buffered DIMM (FB-DIMM) memory subsystem 
model. 

The commercial server applications exhibited a 
range of low to moderate ILP and high cache miss rates 
similar to the observations in [14].  Using a single 
thread per pipeline provides no hardware mechanism 
for latency tolerance and results in low processor 
utilization, or “underthreading.”  On the other hand, too 
many active threads can lead to an “overthreaded” core 
with a fully utilized integer datapath pipeline (IDP) and 
performance that is insensitive to primary cache 
capacity or set associativity.  Our goal was to find a 
good balance that optimized aggregate IPC and 
remained general purpose.  Thus, we removed single-
thread cores from future study (except for 2p2t and 
3p3t, which we included in our study as underthreaded 
examples), as they could not conceal the long latencies 
common in these applications.  We also removed all 
cores with more than 8 threads per IDP because 8 or 
more threads saturated the integer pipeline.  We also 
pruned the 4p32t, 4 pipelines with 32 threads per core, 
and all superscalar core configurations with more than 8 
threads due to area and complexity constraints. 

 
4.1. Processor core performance 

 
All cores within the CMT are simulated and the 

average IPC across all the cores is shown in Figure 4 
for medium-scale CMTs executing SPEC JBB.  Figure 
3 illustrates how to interpret the data in Figure 4.  Each 
vertical column of the graph represents one of the four 
secondary cache configurations, increasing in size from 
left to right, for a given processor core configuration 
(NpMt or NsMt) labeled below that segment along the 
x-axis.  Each black bar defines the IPC range, min 
(bottom) and max (top), for all primary cache size pairs 
and set associativities for that particular secondary 
cache size and processor core configuration.  In Figure 
3, the secondary cache capacities are labeled above 
each bar for small to large-scale CMTs.   Figure 4 
shows the range (maximum to minimum) of the average 
processor core IPC (y-axis) derived from the full CMT 
results for a particular configuration.   

These simulations correlated with our intuitive 
performance trends based on primary cache size and 
issue width of the processor.  The superscalar CMT 
cores outperform their scalar counterparts, i.e., 2p4t vs. 
2s4t, but as we will see in Section 4.2, the increased 
core area prevents the superscalar CMTs from 
outperforming their scalar counterparts at a full-chip 
system level. With regard to primary cache size, more is 
better, not surprising given that we assume no cycle 
time penalty from larger primary and secondary caches.  
For example, the maximum core IPC for the medium-
scale 1p4t SPEC JBB is a configuration with the largest 
possible primary data and instruction cache and 



secondary cache defined in Table 2.  This same core 
configuration coupled with the smallest secondary 
cache results in 15% performance degradation in core 
IPC.  Note that the 1p8t configurations with the larger 
secondary cache configurations in Figure 4 are 
examples of “overthreading with a pipeline utilization 
over 94% and a very small average core IPC range.  
This configuration exhibits similar performance 
behavior for all the benchmarks; it is insensitive to 
primary cache size and set associativity as a result of 
“overthreading”.  

1.5 2.0
2.5 3.51.5

1.0
4.5
2.5

4.53.0 6.0 8.0Large
Medium
Small

CMT Scale L2 Sizes (MB)

Max
Min

Core IPC

NpMt  
Figure 3: Average core IPC range for the NpMt 
configuration for 4 different L2 cache sizes.  
Each black bar shows the IPC range when L1 
cache sizes are varied for each L2 cache size. 
 

This pipeline saturation or “overthreading” can 
easily be observed in the 1p8t, 2p16t, and 2s8t core 
configurations, where the maximum IPC is very close 
to the absolute peak.  Figure 4 also illustrates the 
performance degradation as a result of insufficient 
secondary cache capacity.  This is most noticeable in 
the large IPC degradation or step down for the 2p16t, 
3p12t, 3p24t, or 4p16t configuration when moving right 
to left from a 2.5 MB L2 to a 1.5MB L2, where the 
small primary cache configurations magnify the effects 
of insufficient secondary cache capacity.  This problem 
is exacerbated in the medium-scale CMTs due to the 

increased number of aggregate threads for core-
intensive designs, but is also present in the small-scale 
CMT configurations with large numbers of IDPs and 
threads.  Given the memory subsystem scaling, we have 
observed that the (limited) large-scale CMT results 
exhibit performance characteristics similar to the small-
scale and medium-scale CMT results.  In addition to 
insufficient secondary cache capacity, SPEC JBB can 
suffer from insufficient secondary cache associativity as 
well.  In Figure 4, insufficient secondary cache 
associativity degrades the performance of both large 
and small cores for the core-intensive configurations 
with 8 or more threads per core. In these cases, conflict 
misses in the secondary cache cause serial thread 
execution by forcing threads to wait on main memory 
accesses. This can be further aggravated if the same 
secondary cache bank and/or DRAM bank become 
memory hot spots [26]. 

One of the benefits of multithreading is its ability to 
tolerate latency, but there are conditions caused by 
thread interference that saturate the memory bandwidth, 
negating this ability to hide latency and causing the 
performance of the processor core to drop dramatically.  
This is best illustrated by the large CMT configurations 
(3p13t, 2p16t, 3p24t, and 4p16t) with small L2 and 
large average IPC ranges.  The medium-scale CMT 
results in Figure 4 are similar for small-scale and large-
scale CMTs on all the benchmarks.  In general, the 
reader can scale the average IPC in Figure 4 up or down 
depending on the benchmark, up for XML Test and 
down for TPC-W and TPC-C.  The “overthreaded” 
configurations saturate the pipelines for the same CMT 
configurations across all the benchmarks.  TPC-C’s 
performance is more sensitive to secondary cache size 
and results in a more pronounced performance “step” 
traversing the increasing secondary cache sizes.  TPC- 
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Figure 4: SPEC JBB average core IPC range (maximum to minimum) for medium-scale CMTs.  The 
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W has slightly higher average core IPC and exhibits 
similar performance to TPC-C.  XML Test has the 
highest average core IPC. 

 
4.2. CMT performance 

 
Historically, the goal of optimizing the processor 

core was to squeeze out every last percent of 
performance that can be achieved with reasonable 
area costs.  However, in the CMT design space, this is 
a local optimization that does not yield high aggregate 
performance.  This is exemplified by the aggregate 
IPC results for the 2p4t core configuration shown in 
Figure 5.  The top two lines are the aggregate IPC’s 
(AIPCs) for a particular cache configuration and the 
bottom two lines are the corresponding average core 
IPC’s.  C1 represents the 2p4t configuration with the 
best core IPC, 64KB data and instruction cache, but 
its corresponding AIPC underperforms due to the 
small number of cores that can be fit on the die.  On 
the other hand, C2 is a “mediocre” 2p4t configuration 
with only a 32 KB data and instruction cache, but it 
has the best AIPC by maximizing the number of cores 
for a given secondary cache size, as indicated in 
Figure 5.  C2 also illustrates that too many cores on 
the chip can degrade overall performance.  As both 
the total number of cores that can be fit on the chip 
and the performance of each of those cores are 
strongly dependent on the amount of on-chip 
secondary cache, it is important to balance processing 
and cache needs.  We present the best results for each 
core configuration and all of the benchmarks used in 
this study in Figure 6 for the medium-scale CMTs.  
This figure provides the maximum AIPC (y-axis) 
across all cache configurations for all pipeline/thread 
configurations (x-axis).  The number of cores and 

cache configurations that yield the AIPC in Figure 6 is 
provided in Table 3 for each pipeline/thread 
configuration.  The CMTs are clustered by pipeline and 
pipeline architecture, scalar vs. superscalar. 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

1.0MB 1.5MB 2.0MB 2.5MB

Secondary Cache Size

IP
C

C1 IPC
C1 AIPC
C2 IPC
C2 AIPC

6 5

3

8

5
3

2

4

Core IPC

AIPC

C2
C1

C2

C1
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C1 has the best average core IPC.  C2 has the 
best aggregate IPC by using more cores on the 
die.  The number of cores for each CMT is 
labeled next the upper pair of lines.  
 

Table 3 shows the maximum AIPC for SPEC JBB, 
TPC-C, TPC-W, and XML Test for medium-scale 
CMTs.  This table lists the best configuration for each 
core configuration and highlights the overall best CMT 
configuration in black boxes.  The AIPC scales 
proportionally with the number of cores.  Thus, the 
reader can derive the omitted (due to space constraints) 
small-scale and large-scale CMT results from the 
medium-scale results in Table 3. 
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Table 3: Maximum AIPC for medium-scale CMTs for SPEC JBB, TPC-C, TPC-W, and XML Test. 
Core

Config L1 L2 Cores AIPC L1 L2 Cores AIPC L1 L2 Cores AIPC L1 L2 Cores AIPC
1p2t 16/32 1.5/12 20 9.8 16/32 2.5/10 16 5.8 16/32 1.5/12 20 8.6 16/32 1.5/12 20 11.8
1p4t 16/32 1.5/12 17 13.2 16/32 2.5/10 14 8.2 16/32 1.5/12 17 10.6 16/32 1.5/12 17 14.8
1p8t 16/32 2.5/10 12 11.7 32/32 1.5/12 14 8.9 32/32 1.5/12 14 13.0 16/32 1.5/12 14 13.8
2p2t 16/32 1.5/12 16 8.6 16/32 1.5/12 16 5.1 16/32 1.5/12 16 7.5 16/32 1.5/12 16 10.5
2p4t 32/32 1.5/12 14 12.9 32/32 2.5/10 12 7.8 32/32 1.5/12 14 10.6 16/32 1.5/12 14 15.2
2p8t 16/32 1.5/12 12 16.5 32/32 2.5/10 9 9.5 32/32 1.5/12 12 13.6 32/32 1.5/12 12 18.9

2p16t 32/64 2.5/10 7 13.3 64/64 2.5/10 7 11.8 64/64 1.5/12 9 15.2 32/64 1.5/12 9 16.9
3p3t 32/32 1.5/12 13 10.3 32/32 2.5/10 10 5.9 32/32 1.5/12 13 8.5 16/32 1.5/12 13 12.7
3p6t 32/32 1.5/12 11 14.4 32/32 2.5/10 9 8.5 32/32 1.5/12 11 11.3 32/32 1.5/12 11 16.5

3p12t 32/64 1.5/12 9 17.3 32/64 2.5/10 7 10.7 64/64 1.5/12 9 14.6 32/64 1.5/12 9 20.1
3p24t 32/64 2.5/10 5 13.6 32/64 2.5/10 5 10.9 32/64 1.5/12 6 14.0 32/64 1.5/12 6 15.5
4p8t 32/32 1.5/12 9 14.9 32/32 2.5/10 7 8.5 64/64 1.5/12 9 11.5 16/32 1.5/12 9 16.6

4p16t 32/64 1.5/12 7 16.8 32/64 2.5/10 5 9.8 64/64 1.5/12 7 14.4 32/64 1.5/12 7 18.5
2s1t 64/64 1.5/12 11 4.4 64/64 1.5/12 11 2.8 64/64 1.5/12 11 3.7 64/64 1.5/12 11 5.5
2s2t 64/64 1.5/12 10 7.0 64/64 1.5/12 10 4.3 64/64 1.5/12 10 5.8 64/64 1.5/12 10 8.6
2s4t 64/64 1.5/12 9 10.5 64/64 1.5/12 9 6.4 64/64 1.5/12 9 8.7 64/64 1.5/12 9 12.4
2s8t 64/64 1.5/12 7 12.1 64/64 1.5/12 7 8.1 64/64 1.5/12 7 10.6 64/64 1.5/12 7 12.7
4s1t 64/64 1.5/12 7 2.9 64/64 1.5/12 7 1.9 64/64 1.5/12 7 2.6 64/64 1.5/12 7 3.7
4s2t 64/64 1.5/12 6 4.5 64/64 1.5/12 6 2.9 64/64 1.5/12 6 3.9 64/64 1.5/12 6 5.8
4s4t 64/64 1.5/12 5 6.6 64/64 1.5/12 5 4.1 64/64 1.5/12 5 5.6 64/64 1.5/12 5 7.8
4s8t 64/64 1.5/12 4 8.5 64/64 1.5/12 4 5.5 64/64 1.5/12 4 7.2 64/64 1.5/12 4 9.1

SPEC JBB 2000 TPC-C TPC-W XML Test

Note:  The L1 refers to the primary data/instruction cache size.  The L2 cache configuration size (MB)/set associativity (SA) are provided along 
with the total number of cores for that CMT configuration. 
 
4.3. Discussion 
 
We have shown that augmenting CMPs with fine-grain 
multithreading, creating CMTs, is crucial to increasing 
the performance of commercial server applications.  
Furthermore, scalar CMT variants with 4 or more 
threads outperformed nearly all of the superscalar CMT 
configurations given the constant die size constraint.  
While multiple processor cores can exploit TLP, fine-
grain multithreading is also necessary to alleviate the 
otherwise poor core utilization for these applications.  
However, we found that fine-grain multithreading runs 
into two limits.  First, the addition of too many threads 
results in a saturated integer pipeline that was 
insensitive to L1 cache parameters.  In our studies, we 
found that this saturation occurred with about 8 threads 
per integer pipeline for scalar cores.  Second, a CMT 
built with too many total threads for the secondary 
cache size can end up saturating the memory bandwidth 
with secondary cache misses, as the aggregate working 
set overflows the secondary cache.  We encountered 
memory saturation primarily for the configurations that 
had the smallest secondary cache size (occupying 24-
28% of the CMT area) and 8 or more threads per core.  
We found aggregate IPC to be optimized by a processor 
centric design, requiring only 25-40% of the area 
devoted to the shared secondary cache.  When focusing 

on the processor core itself, a larger primary instruction 
cache than the primary data cache is always the best 
policy.  Surprisingly, high primary cache set 
associativity was not required for these applications, 
even with more threads than set associative ways. 

For a given primary data and instruction cache 
configuration, the performance difference based on set 
associativity varied less than 3% for the best aggregate 
IPC configurations, as long as the caches were at least 
two-way set associative.  We also found that the best 
performing configurations required enough threads and 
primary cache to bring the pipeline utilization up to the 
60-85% range, as the area costs for adding additional 
pipelines and threads per pipeline is much smaller than 
adding an additional core.  For small, medium, and 
large-scale CMTs, the best configuration was with 3 
pipelines and 12 threads per core for Spec JBB amd 
XML Test, while 2 pipelines and 16 threads per core 
performed best for TPC-C and TPC-W.  We also found 
that the best performing CMT configuration was highly 
dependent on a step function of the number of cores 
that can be squeezed on the die, allowing a CMT 
composed of slightly lower performance cores to yield 
superior aggregate performance by employing more of 
those cores.  As a corollary to this step function 
regarding core size, processor cores with smaller 
primary caches were favored, even without penalizing 



the larger caches with additional latency, as the smaller-
cache cores maximized the number of on-chip cores. 

Interestingly enough, for small, medium, and large-
scale CMTs, the worst performing configurations for 
SPEC JBB and XML Test included both 
“underthreaded” and “overthreaded” configurations, 
while the worst performing configurations for TPC-C 
and TPC-W were always “underthreaded” 
configurations.  This matches our intuition, as the low 
IPC of a single TPC-C or TPC-W thread makes 
underthreading more detrimental, while the more 
moderate IPC of a single SPEC JBB or XML Test 
thread makes it more susceptible to both underthreading 
and overthreading.  Finally, 2-way superscalar 
configurations outperformed all 4-way superscalar 
configurations with the same number of threads. 
 
4.4. Technology trends 
 

One of our assumptions is that a large, near reticle 
limit die will be used for the CMT chip.  However, even 
with a mature silicon process, wafer yield for a reticle-
limited die is extremely low. Thus, we note that our 
results apply to a 225-250 mm2 chip in the subsequent 
process generation, which is much more 
manufacturable and affordable.  The results we 
presented for small-scale, medium-scale, and large-
scale CMTs could then map to the 90 nm, 65 nm, 45 nm 
process generations, respectively.  Furthermore, adding 
more SOC components or engines beyond the base 
CMT would promote a similar process generation 
“migration,” even with a larger die.  Regardless of the 
reasons for using the next silicon process generation, 
the results are still valid because the clock frequencies 
for both on-chip and off-chip components scale 
proportionally if the clocking rules in Table 1 are used. 
For the highest end servers,  however, an expensive, 
reticle-limited die may still be appropriate, as the cost 
of these servers are often dominated by components 
other than the processor (e.g. memory).   

FB-DIMM memory provides sufficient bandwidth 
for CMT designs in 130 nm, 90nm, and 65 nm 
generations, but pin pressure for the FB-DIMM 
interface reappears when we continue to double the 
memory bandwidth for the 45nm process technology.  
As DDR2 is the memory technology of choice for the 
130nm generation, we also simulated a more bandwidth 
constrained 4-channel DDR2 memory system for the 
small-scale CMT designs.  The DDR2 results differed 
from the FB-DIMM results in that more on-chip cache 
was optimal (40-60% of the area instead of 25-40%), 
and the penalty for being “overthreaded” was more 
pronounced.  When examining the amount of secondary 
cache memory per thread, we observed that for SPEC 

JBB 15 KB/thread, TPC-C 25 KB/ thread, and TPC-W 
and XML TEST less than 10 KB/thread was required to 
prevent severe performance degradation using the FB-
DIMM memory interface.  This secondary cache 
memory requirement is doubled when using a DDR 
memory interface.  Given the likelihood of future 
insufficient memory bandwidth, we believe that CMT 
designs in 45 nm and beyond will be skewed towards a 
more equal balance in the area between the upper level 
caches and the processor cores.  However, there are 
techniques like cache compression described in [3] that 
counteract the effects of memory bandwidth scaling and 
the resulting pin pressure and thereby would shift the 
optimal CMT configurations back toward core-centric 
as a result of increasing on-chip cache efficiency.  

 
5. Related work 

 
Scaling superscalar processors leverage existing 

intellectual property (IP) and reduce initial design 
effort.  However, replicated hardware or other 
evolutionary, ILP-focused industry solutions 
[19][10][11] are not necessarily ideal for commercial 
server applications.  Superscalar processors require 
large issue widths and/or large number of threads to 
achieve a small fraction of their peak performance on 
commercial workloads [14][4][27].  This is likely to 
lead to low aggregate performance in a CMP due to the 
small number of superscalar cores that will fit on a die.  
[12] also leverages existing IP and presents a 
performance evaluation of a heterogeneous CMP.  This 
architecture study focuses on a CPU-intensive diverse 
workload instead of the commercial server 
homogeneous workloads that we use. 

A large body of research exists that is concerned 
with optimizing the commercial application space and 
the microprocessors that execute these programs 
[3][5][7][12][17][22][27].  SMT is one possible 
solution to hiding long latency events and high cache 
miss rates.  Most of industry appears to be heading 
down this path [6][19], but we believe that the area 
overhead and low utilization of the superscalar 
processor cores will ultimately result in a CMT of lower 
aggregate performance than one composed of simple 
cores, similar to the approach described in [13].  In 
addition, both Intel [19] and IBM [10] have stated the 
limits of SMT to be two threads, and it is clear from our 
results that two threads are not sufficient to mask the 
long latency events in all of these benchmarks.  

[4] and [27] provided motivation for using simple 
core CMPs for commercial server applications.  The 
Piranha project investigated using CMPs with simple, 
single-issue in-order cores running OLTP and DSS 
workloads, TPC-B and TPC-D [5], compared to 



monolithic superscalar processors.   The Piranha 
processors outperformed the monolithic cores, but 
lacked the key feature of fine-grained multithreading to 
mask memory latency inside the processor core, which 
this study has demonstrated to be critical to achieve 
high aggregate CMT performance.  Piranha was also a 
research prototype targeting the 180 nm generation, and 
as such selected a particular CMT design point (eight 
1p1t 64 KB instruction and data caches with a 1MB 
secondary cache) [5] to compare against a monolithic 
superscalar processor of similar die size.  Our study 
greatly expands on the Piranha work by not only 
exploring the addition of fine-grain multithreading to 
simple cores and comparing scalar and superscalar 
CMTs, but also by exploring multiple technology 
generations, cache configurations, and a significant 
portion of this CMT design space, all while running 
large scale full system simulations of SPEC JBB, TPC-
C, TPC-W and XML Test. 

[9] presents an exploration of CMPs built from 
either in-order or out-of-order superscalar processors, 
but differs form our work in many ways.  [9] uses a 
different class of benchmarks (SPEC CPU2000), uses 
partial CMP simulation to extrapolate CMP 
performance, does not examine either multithreaded or 
scalar cores, and provides a private L2 cache per core, 
which greatly increases data sharing overhead.  They 
also use performance-scaling techniques that overlook 
the memory saturation issues that we encountered.  This 
is even more relevant because their area model predicts 
higher core counts for CMPs in the same process 
generation, which greatly increases memory bandwidth 
requirements.  Furthermore, there is no mention of 
memory coherence, which is required for this 
application domain.  In contrast to [9], we use large 
scale applications from the target domain, perform full 
system simulations of all CMT configurations, both 
scalar and superscalar, examine a CMT architecture 
with a large shared secondary cache to exploit data 
sharing, and maintain full memory coherence.  Our 
study points toward CMTs built from small scalar cores 
as performing best for commercial workloads, while 
their study pointed towards CMPs built from large out-
of-order superscalar cores as performing best, unless 
the application was bandwidth bound. 

 
6. Conclusions 

 
In this paper, we explored the performance of 

multithreaded scalar and superscalar core CMTs on 
commercial workloads for small, medium and (to a 
limited extent) large-scale systems.  When comparing 
area-equivalent scalar and superscalar CMT 
configurations, we found that scalar CMTs with small 

primary caches significantly outperform their 
superscalar counterparts by 37-46%.  Even though the 
superscalar processors achieve a higher core IPC than 
the scalar processors, the increased number of small 
scalar cores that can be fit on a die more than makes up 
for this difference.  This ability of “mediocre” cores to 
provide the best aggregate performance on commercial 
workloads is a key contribution of this throughput 
study.  Our study showed multithreading was also 
crucial to achieve good application performance; 
however, too many threads led to execution pipeline 
saturation or, in the extreme case, to memory bandwidth 
saturation.  This is counter to the multithreading 
efficiency limits of 2 threads stated by [10] and [19].  
However, our design is targeting a CMT with a high-
bandwidth memory subsytem, which is crucial to being 
able to keep the large number of threads fed.   

We also found that the best performing 
configuration was highly dependent on a step function 
of the number of cores that could be squeezed on the 
die.  As a result, processor cores with smaller primary 
caches were favored, even without penalizing the larger 
caches with additional latency, as the smaller-cache 
cores maximized the number of on-chip cores.  Table 4 
shows the optimal small, medium, and large-scale CMT 
configurations.  While one single configuration did not 
perform optimally for all of the benchmarks, our results 
show a range, usually using 4-8 threads per pipeline, of 
high performing CMT configurations.  
 

Table 4: Maximum AIPC for all benchmarks. 
Benchmark Core Small Scale Medium Scale Large Scale

Cores, AIPC Cores, AIPC Cores, AIPC
SPEC JBB2000 3p12t 5, 9.6 9, 17.3 15, 30.8
TPC-C 2p16t 5, 6.4 7, 11.8 12, 20.8
TPC-W 2p16t 5,  8.3 9, 15.2 15, 27.7
XML Test 3p12t 5, 11 9, 20.1 15, 35.4  

 

Our results show that it is necessary to perform full 
system simulation to achieve accurate performance 
estimates.  Basing performance predictions on scaled or 
partial systems simulations would not have revealed the 
dramatic performance drop-off for “overthreaded’ 
configurations, which saturate the memory subsystem.  
We purposely assumed each CMT had an aggressive 
memory subsystem, but this interface still became 
saturated for large numbers of threads and/or cores.  We 
were surprised that multiple scalar pipelines sharing a 
single instruction and single data cache port was not a 
source of significant performance degradation, even 
with instruction buffers for each thread.  Likewise, both 
the primary and secondary caches were relatively 
insensitive to variations in set associativity, regardless 
of capacity or the number of supported threads.  In this 
study, we have temporarily circumvented the memory 
wall by reducing processor frequency for CMT 



configurations and by scaling DRAM interface 
frequencies over time. Eventually future physical 
constraints, such as limited package pins in the 45 nm 
generation, will present a challenge to future computer 
architects by limiting off-chip bandwidth for 
commercial server benchmarks.   
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