Lecture 18: Multiprocessors

e Topics: multiprocessor intro and taxonomy, symmetric
shared-memory multiprocessors (Sections 6.1-6.3)

Why Multiprocessors?

 Parallelism improvements in single tasks/threads yield
marginal returns

e For parallelism 4N, it is more cost-effective to connect
four small processors together than build a large
processor with four times the width

» Applications are often inherently parallel

Taxonomy

e SISD: single instruction and single data stream: uniprocessor

* MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

« SIMD: vector architectures: lower flexibility

« MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility

Memory Organization - |

» Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

« Multiple processors connected to a single centralized
memory — since all processors see the same memory
organization - uniform memory access (UMA)

« Shared-memory because all processors can access the
entire memory address space

« Can centralized memory emerge as a bandwidth
bottleneck? — not if you have large caches and employ
fewer than a dozen processors

SMPs or Centralized Shared-Memory

Main Memory /O System

Memory Organization -

 For higher scalability, memory is distributed among
processors - distributed memory multiprocessors

* If one processor can directly address the memory local
to another processor, the address space is shared -
distributed shared-memory (DSM) multiprocessor

* If memories are strictly local, we need messages to
communicate data - cluster of computers or multicomputers

* Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory

Distributed Memory Multiprocessors

Memory Memory Memory Memory

Shared-Memory Vs. Message-Passing

Shared-memory:

* Well-understood programming model

« Communication is implicit and hardware handles protection
« Hardware-controlled caching

Message-passing:

* No cache coherence - simpler hardware

e Explicit communication - easier for the programmer to
restructure code

e Sender can initiate data transfer

Ocean Kernel

Procedure Solve(A)
begin
diff = done = 0;
while (done) do
diff = 0;
fori < 1tondo
forj< 1tondo
temp = A[i,J];
Ali,j] € 0.2 * (A[i,j] + neighbors);
diff += abs(A[l,]] — temp);
end for
end for
if (diff < TOL) then done = 1;
end while
end procedure

Shared Address Space Model

procedure Solve(A)
int i, j, pid, done=0;

int n, nprocs; float temp, mydiff=0;
float **A, diff; int mymin = 1 + (pid * n/procs);
LOCKDEC(diff_lock); int mymax = mymin + n/nprocs -1;
BARDEC(barl); while ('done) do
mydiff = diff = O;
BARRIER(barl,nprocs);
main() for i € mymin to mymax
begin forj< 1tondo
read(n); read(nprocs);
A < G_MALLOC(); endfor
initialize (A); endfor
CREATE (nprocs,Solve,A); LOCK(diff_lock);
WAIT_FOR_END (nprocs); diff += mydiff;
end main UNLOCK(diff_lock);

BARRIER (barl, nprocs);
if (diff < TOL) then done = 1,
BARRIER (barl, nprocs);

_ 10
endwhile

Message Passing Model

main() fori € 1tonn do
read(n); read(nprocs); forj € 1tondo
CREATE (nprocs-1, Solve);
Solve(); endfor
WAIT _FOR_END (nprocs-1); endfor
if (pid 1= 0)
procedure Solve() SEND(mydiff, 1, 0, DIFF);
inti, j, pid, nn = n/nprocs, done=0; RECEIVE(done, 1, 0, DONE);
float temp, tempdiff, mydiff = O; else
myA < malloc(...) for i € 1 to nprocs-1 do
initialize(myA); RECEIVE(tempdiff, 1, *, DIFF);
while (done) do mydiff += tempdiff;
_myO!iff = 0; endfor
if (pid !=0) if (mydiff < TOL) done = 1;
- SEND(&myA[1,0], n, pid-1, ROW); fori € 1 to nprocs-1 do
if (pid != nprocs-1) SEND(done, 1, I, DONE):
SEND(&myA[nn’O]’ n, p|d+1’ ROW)’ endfor
if (pid '=0) endif

RECEIVE(&myA[0,0], n, pid-1, ROW); andwhile
if (pid '= nprocs-1)
RECEIVE(&myA[nn+1,0], n, pid+1, ROW); 11

SMPs

» Centralized main memory and many caches - many
copies of the same data

» A system is cache coherent if a read returns the most
recently written value for that word

Time Event Value of Xin Cache-A Cache-B

Memory
0

- - 1
CPU-A reads X -

1 1
2 CPU-B reads X 1 1
3 0

1
1
CPU-A stores 0 in X 1 0

12

Cache Coherence

A memory system is coherent if:
* P writes to X; no other processor writes to X; P reads X
and receives the value previously written by P

« P1 writes to X; no other processor writes to X; sufficient
time elapses; P2 reads X and receives value written by P1

* Two writes to the same location by two processors are
seen in the same order by all processors — write serialization

 The memory consistency model defines “time elapsed”
before the effect of a processor is seen by others

13

Cache Coherence Protocols

 Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

» Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the

shared bus so they can update the sharing status of the
block, if necessary

» Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

» Write-update: when a processor writes, it updates other
shared copies of that block

14

Design Issues

e Invalidate
* Find data

« Writeback / writethrough

e Cache block states
« Contention for tags
« Enforcing write serialization

Main Memory

I/O System

15

Example Protocol

Request | Source Block state Action

Read hit Proc Shared/excl Read data in cache
Read miss Proc Invalid Place read miss on bus
Read miss Proc Shared Conflict miss: place read miss on bus
Read miss Proc Exclusive Conflict miss: write back block, place

read miss on bus

Write hit Proc Exclusive Write data in cache

Write hit Proc Shared Place write miss on bus
Write miss Proc Invalid Place write miss on bus
Write miss Proc Shared Conflict miss: place write miss on bus
Write miss Proc Exclusive Conflict miss: write back, place write

miss on bus

Read miss Bus Shared No action; allow memory to respond
Read miss Bus Exclusive Place block on bus; change to shared
Write miss Bus Shared Invalidate block
Write miss Bus Exclusive Write back block; change to invalif

Title

e Bullet

17

