
1

Lecture 18: Multiprocessors

• Topics: multiprocessor intro and taxonomy, symmetric
shared-memory multiprocessors (Sections 6.1-6.3)

2

Why Multiprocessors?

• Parallelism improvements in single tasks/threads yield
marginal returns

• For parallelism 4N, it is more cost-effective to connect
four small processors together than build a large
processor with four times the width

• Applications are often inherently parallel

3

Taxonomy

• SISD: single instruction and single data stream: uniprocessor

• MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

• SIMD: vector architectures: lower flexibility

• MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility

4

Memory Organization - I

• Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization � uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors

5

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

6

Memory Organization - II

• For higher scalability, memory is distributed among
processors � distributed memory multiprocessors

• If one processor can directly address the memory local
to another processor, the address space is shared �
distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
communicate data � cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory

7

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

8

Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence � simpler hardware
• Explicit communication � easier for the programmer to

restructure code
• Sender can initiate data transfer

9

Ocean Kernel

Procedure Solve(A)
begin

diff = done = 0;
while (!done) do

diff = 0;
for i

�

1 to n do
for j

�

1 to n do
temp = A[i,j];
A[i,j]

�

0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure

10

Shared Address Space Model

int n, nprocs;
float **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A

�

G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i

�

mymin to mymax
for j

�
1 to n do

…
endfor

endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile

11

Message Passing Model

main()
read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA

�

malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0)

SEND(&myA[1,0], n, pid-1, ROW);
if (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);
if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);
if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i

�

1 to nn do
for j

�

1 to n do
…

endfor
endfor
if (pid != 0)

SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i

�

1 to nprocs-1 do
RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if (mydiff < TOL) done = 1;
for i

�

1 to nprocs-1 do
SEND(done, 1, I, DONE);

endfor
endif

endwhile

12

SMPs

• Centralized main memory and many caches � many
copies of the same data

• A system is cache coherent if a read returns the most
recently written value for that word

Time Event Value of X in Cache-A Cache-B Memory
0 - - 1
1 CPU-A reads X 1 - 1
2 CPU-B reads X 1 1 1
3 CPU-A stores 0 in X 0 1 0

13

Cache Coherence

A memory system is coherent if:
• P writes to X; no other processor writes to X; P reads X

and receives the value previously written by P

• P1 writes to X; no other processor writes to X; sufficient
time elapses; P2 reads X and receives value written by P1

• Two writes to the same location by two processors are
seen in the same order by all processors – write serialization

• The memory consistency model defines “time elapsed”
before the effect of a processor is seen by others

14

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

� Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

� Write-update: when a processor writes, it updates other
shared copies of that block

15

Design Issues

• Invalidate
• Find data
• Writeback / writethrough

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

• Cache block states
• Contention for tags
• Enforcing write serialization

16

Example Protocol

Write back block; change to invalidExclusiveBusWrite miss

Invalidate blockSharedBusWrite miss

Place block on bus; change to sharedExclusiveBusRead miss

No action; allow memory to respondSharedBusRead miss

Conflict miss: write back, place write
miss on bus

ExclusiveProcWrite miss

Conflict miss: place write miss on busSharedProcWrite miss

Place write miss on busInvalidProcWrite miss

Place write miss on busSharedProcWrite hit

Write data in cacheExclusiveProcWrite hit

Conflict miss: write back block, place
read miss on bus

ExclusiveProcRead miss

Conflict miss: place read miss on busSharedProcRead miss

Place read miss on busInvalidProcRead miss

Read data in cacheShared/exclProcRead hit

ActionBlock stateSourceRequest

17

Title

• Bullet

