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Lecture: Networks, Disks, Datacenters

• Topics: networks wrap-up, disks and reliability, 
datacenters and energy proportionality
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Centralized Crossbar Switch
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Crossbar Properties

• Assuming each node has one input and one output, a
crossbar can provide maximum bandwidth: N messages
can be sent as long as there are N unique sources and
N unique destinations

• Maximum overhead: WN2 internal switches, where W is
data width and N is number of nodes

• To reduce overhead, use smaller switches as building
blocks – trade off overhead for lower effective bandwidth
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Switch with Omega Network
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Omega Network Properties

• The switch complexity is now O(N log N)

• Contention increases: P0  P5 and P1  P7 cannot
happen concurrently (this was possible in a crossbar)

• To deal with contention, can increase the number of
levels (redundant paths) – by mirroring the network, we
can route from P0 to P5 via N intermediate nodes, while
increasing complexity by a factor of 2
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Tree Network

• Complexity is O(N)
• Can yield low latencies when communicating with neighbors
• Can build a fat tree by having multiple incoming and outgoing links

P0 P3P2P1 P4 P7P6P5
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Bisection Bandwidth

• Split N nodes into two groups of N/2 nodes such that the
bandwidth between these two groups is minimum: that is
the bisection bandwidth

• Why is it relevant: if traffic is completely random, the
probability of a message going across the two halves is
½  – if all nodes send a message, the bisection
bandwidth will have to be N/2

• The concept of bisection bandwidth confirms that the
tree network is not suited for random traffic patterns, but
for localized traffic patterns
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Topology Examples
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Topology Examples

Grid
Hypercube

Torus

Criteria
64 nodes

Bus Ring 2Dtorus Hypercube Fully 
connected

Performance
Diameter

Bisection BW 
1
1
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2
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k-ary d-cube

• Consider a k-ary d-cube: a d-dimension array with k
elements in each dimension, there are links between
elements that differ in one dimension by 1 (mod k)

• Number of nodes N = kd

Number of switches :
Switch degree          :
Number of links        :
Pins per node           :

Avg. routing distance:
Diameter                   :
Bisection bandwidth  :
Switch complexity     :

Should we minimize or maximize dimension?
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k-ary d-Cube

• Consider a k-ary d-cube: a d-dimension array with k
elements in each dimension, there are links between
elements that differ in one dimension by 1 (mod k)

• Number of nodes N = kd

Number of switches :
Switch degree          :
Number of links        :
Pins per node           :

Avg. routing distance:
Diameter                   :
Bisection bandwidth  :
Switch complexity     :

N
2d + 1
Nd
2wd

d(k-1)/4
d(k-1)/2
2wkd-1

The switch degree, num links, pins per node, bisection bw for
a hypercube are half of what is listed above (diam and avg routing
distance are twice, switch complexity is              ) because unlike
the other cases, a hypercube does not have right and left neighbors.

Should we minimize or maximize dimension?

(2d + 1)2

(d + 1)2
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Warehouse-Scale Computer (WSC)

• 100K+ servers in one WSC

• ~$150M overall cost 

• Requests from millions of users (Google, Facebook, etc.)

• Cloud Computing: a model where users can rent compute
and storage within a WSC; there’s an associated
service-level agreement (SLA)

• Datacenter: a collection of WSCs in a single building,
possibly belonging to different clients and using different
hardware/architecture



13

PUE Metric and Power Breakdown

• PUE = Total facility power / IT equipment power
(power utilization effectiveness)

• It is greater than 1; ranges from 1.33 to 3.03, median of 1.69

• The cooling power is roughly half the power used by
servers

• Within a server, the approximate power distribution is as
follows:  Processors (33%), DRAM memory (30%), 
Disks (10%), Networking (5%), Miscellaneous (22%) 
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CapEx and OpEx

• Capital expenditure: infrastructure costs for the building,
power delivery, cooling, and servers

• Operational expenditure: the monthly bill for energy,
failures, personnel, etc.

• CapEx can be amortized into a monthly estimate by
assuming that the facilities will last 10 years, server
parts will last 3 years, and networking parts will last 4 
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CapEx/OpEx Case Study

• 8 MW facility : facility cost: $88M, server/networking
cost: $79M

• Monthly expense: $3.8M.  Breakdown:
 Servers 53%  (amortized CapEx)
 Networking 8% (amortized CapEx)
 Power/cooling infrastructure 20% (amortized CapEx)
 Other infrastructure 4% (amortized CapEx)

 Monthly power bill 13% (true OpEx)
 Monthly personnel salaries 2% (true OpEx)
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Improving Energy Efficiency

• An unloaded server dissipates a large amount of power

• Ideally, we want energy-proportional computing, but in
reality, servers are not energy-proportional

• Can approach energy-proportionality by turning on a few
servers that are heavily utilized

• See figures on next two slides for power/utilization profile
of a server and a utilization profile of servers in a WSC  
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Power/Utilization Profile

Source: H&P textbook.
Copyright © 2011, Elsevier Inc. All rights Reserved.
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Server Utilization Profile

Figure 6.3 Average CPU utilization of more than 5000 servers during a 6-month period at Google. Servers are rarely 
completely idle or fully utilized, in-stead operating most of the time at between 10% and 50% of their maximum utilization. (From 
Figure 1 in Barroso and Hölzle [2007].) The column the third from the right in Figure 6.4 calculates percentages plus or minus 5% 
to come up with the weightings; thus, 1.2% for the 90% row means that 1.2% of servers were between 85% and 95% utilized.

Source: H&P textbook.
Copyright © 2011, Elsevier Inc. All rights Reserved.
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Problem 1

Assume that a server consumes 100W at peak utilization
and 50W at zero utilization.  Assume a linear relationship
between utilization and power. The server is capable of
executing many threads in parallel.  Assume that a single
thread utilizes 25% of all server resources (functional units,
caches, memory capacity, memory bandwidth, etc.).
What is the total power dissipation when executing 99
threads on a collection of these servers, such that 
performance and energy are close to optimal?
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Problem 1

Assume that a server consumes 100W at peak utilization
and 50W at zero utilization.  Assume a linear relationship
between utilization and power. The server is capable of
executing many threads in parallel.  Assume that a single
thread utilizes 25% of all server resources (functional units,
caches, memory capacity, memory bandwidth, etc.).
What is the total power dissipation when executing 99
threads on a collection of these servers, such that 
performance and energy are close to optimal?

For near-optimal performance and energy, use 25 servers.
24 servers at 100% utilization, executing 96 threads,
consuming 2400W.  The 25th server will run the last 
3 threads and consume 87.5~W.
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Other Metrics

• Performance does matter, both latency and throughput

• An analysis of the Bing search engine shows that if a
200ms delay is introduced in the response, the next
click by the user is delayed by 500ms;  so a poor
response time amplifies the user’s non-productivity

• Reliability (MTTF) and Availability (MTTF/MTTF+MTTR)
are very important, given the large scale

• A server with MTTF of 25 years (amazing!) : 50K servers
would lead to 5 server failures a day; Similarly, annual disk
failure rate is 2-10%  1 disk failure every hour
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Important Problems

• Reducing power in power-down states

• Maximizing utilization

• Reducing cost with virtualization

• Reducing data movement

• Building a low-power low-cost processor

• Building a low-power low-cost hi-bw memory

• Low-power low-cost on-demand reliability
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Magnetic Disks

• A magnetic disk consists of 1-12 platters (metal or glass
disk covered with magnetic recording material on both
sides), with diameters between 1-3.5 inches

• Each platter is comprised of concentric tracks (5-30K) and
each track is divided into sectors (100 – 500 per track,
each about 512 bytes) 

• A movable arm holds the read/write heads for each disk
surface and moves them all in tandem – a cylinder of data
is accessible at a time
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Disk Latency

• To read/write data, the arm has to be placed on the
correct track – this seek time usually takes 5 to 12 ms
on average – can take less if there is spatial locality

• Rotational latency is the time taken to rotate the correct
sector under the head – average is typically more than
2 ms (15,000 RPM)

• Transfer time is the time taken to transfer a block of bits
out of the disk and is typically 3 – 65 MB/second

• A disk controller maintains a disk cache (spatial locality
can be exploited) and sets up the transfer on the bus
(controller overhead)
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RAID

• Reliability and availability are important metrics for disks

• RAID: redundant array of inexpensive (independent) disks

• Redundancy can deal with one or more failures

• Each sector of a disk records check information that allows
it to determine if the disk has an error or not (in other words,
redundancy already exists within a disk)

• When the disk read flags an error, we turn elsewhere for
correct data
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RAID 0 and RAID 1

• RAID 0 has no additional redundancy (misnomer) – it
uses an array of disks and stripes (interleaves) data
across the arrays to improve parallelism and throughput

• RAID 1 mirrors or shadows every disk – every write
happens to two disks

• Reads to the mirror may happen only when the primary
disk fails – or, you may try to read both together and the
quicker response is accepted

• Expensive solution: high reliability at twice the cost
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RAID 3

• Data is bit-interleaved across several disks and a separate
disk maintains parity information for a set of bits

• For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1,
…, bit 7 is in disk-7; disk-8 maintains parity for all 8 bits

• For any read, 8 disks must be accessed (as we usually
read more than a byte at a time) and for any write, 9 disks
must be accessed as parity has to be re-calculated

• High throughput for a single request, low cost for
redundancy (overhead: 12.5%), low task-level parallelism
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RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our
data from a single disk on a read – in case of a disk error,
read all 9 disks

• Block interleaving reduces thruput for a single request (as
only a single disk drive is servicing the request), but
improves task-level parallelism as other disk drives are
free to service other requests

• On a write, we access the disk that stores the data and the
parity disk – parity information can be updated simply by
checking if the new data differs from the old data
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RAID 5

• If we have a single disk for parity, multiple writes can not
happen in parallel (as all writes must update parity info)

• RAID 5 distributes the parity block to allow simultaneous
writes
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Other Reliability Approaches

• High reliability is also expected of memory systems;
many memory systems offer SEC-DED support – single
error correct, double error detect; implemented with an
8-bit code for every 64-bit data word on ECC DIMMs

• Some memory systems offer chipkill support – the ability
to recover from complete failure in one memory chip – many
implementations exist, some resembling RAID designs

• Caches are typically protected with SEC-DED codes

• Some cores implement various forms of redundancy,
e.g., DMR or TMR – dual or triple modular redundancy
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