
1

Lecture: Out-of-order Processors

• Topics: out of order processor design details and examples

2

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

3

Problem 1

• Show the renamed version of the following code:
Assume that you have 4 rename registers T1-T4

R1  R2+R3
R3  R4+R5
BEQZ R1
R1  R1 + R3
R1  R1 + R3
R3  R1 + R3

4

Problem 1

• Show the renamed version of the following code:
Assume that you have 4 rename registers T1-T4

R1  R2+R3 T1  R2+R3
R3  R4+R5 T2  R4+R5
BEQZ R1 BEQZ T1
R1  R1 + R3 T4  T1+T2
R1  R1 + R3 T1  T4+T2
R3  R1 + R3 T2  T1 +R3

5

Design Details - I

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions
that enter also get placed in the ROB – the process of an
instruction leaving the ROB (in order) is called commit –
an instruction commits only if it and all instructions before
it have completed successfully (without an exception)

• To preserve precise exceptions, a result is written into the
register file only when the instruction commits – until then,
the result is saved in a temporary register in the ROB

6

Design Details - II

• Instructions get renamed and placed in the issue queue –
some operands are available (T1-T6; R1-R32), while
others are being produced by instructions in flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6)
and broadcast the operand tag (T1-T6) to the issue queue –
instructions now know if their operands are ready

• When a ready instruction issues, it reads its operands from
T1-T6 and R1-R32 and executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more
names (T1-T6), name dependences can be avoided

7

Design Details - III

• If instr-3 raises an exception, wait until it reaches the top
of the ROB – at this point, R1-R32 contain results for all
instructions up to instr-3 – save registers, save PC of instr-3,
and service the exception

• If branch is a mispredict, flush all instructions after the
branch and start on the correct path – mispredicted instrs
will not have updated registers (the branch cannot commit
until it has completed and the flush happens as soon as the
branch completes)

• Potential problems: ?

8

Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB

9

The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
of R1 is now in P33 and not P1 – on an exception, P33 is
copied to memory and not P1

• An instruction in the issue queue need not modify its
input operand when the producer commits

• When instruction-1 commits, we no longer have any use
for P1 – it is put in a free pool and a new instruction can
now enter the pipeline  for every instr that commits, a
new instr can enter the pipeline  number of in-flight
instrs is a constant = number of extra (rename) registers

10

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

11

Problem 3

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers. When does each instr leave the IQ?

R1  R2+R3
R1  R1+R5
BEQZ R1
R1  R4 + R5
R4  R1 + R7
R1  R6 + R8
R4  R3 + R1
R1  R5 + R9

12

Problem 3

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers. When does each instr leave the IQ?

R1  R2+R3 P33  P2+P3
R1  R1+R5 P34  P33+P5
BEQZ R1 BEQZ P34
R1  R4 + R5 P35  P4+P5
R4  R1 + R7 P36  P35+P7
R1  R6 + R8 P1  P6+P8
R4  R3 + R1 P33  P3+P1
R1  R5 + R9 P34  P5+P9

13

Problem 3

• Show the renamed version of the following code:
Assume that you have 36 physical registers and 32
architected registers. When does each instr leave the IQ?

R1  R2+R3 P33  P2+P3 cycle i
R1  R1+R5 P34  P33+P5 i+1
BEQZ R1 BEQZ P34 i+2
R1  R4 + R5 P35  P4+P5 i
R4  R1 + R7 P36  P35+P7 i+1
R1  R6 + R8 P1  P6+P8 j
R4  R3 + R1 P33  P3+P1 j+1
R1  R5 + R9 P34  P5+P9 j+2
Width is assumed to be 4.
j depends on the #stages between issue and commit.

14

OOO Example

• Assume there are 36 physical registers and 32 logical
registers, and width is 4

• Estimate the issue time, completion time, and commit time
for the sample code

IQ

15

Assumptions

• Perfect branch prediction, instruction fetch, caches

• ADD  dep has no stall; LD  dep has one stall

• An instr is placed in the IQ at the end of its 5th stage,
an instr takes 5 more stages after leaving the IQ
(ld/st instrs take 6 more stages after leaving the IQ)

IQ

16

OOO Example

Original code Renamed code
ADD R1, R2, R3
LD R2, 8(R1)
ADD R2, R2, 8
ST R1, (R3)
SUB R1, R1, R5
LD R1, 8(R2)
ADD R1, R1, R2

IQ

17

OOO Example

Original code Renamed code
ADD R1, R2, R3 ADD P33, P2, P3
LD R2, 8(R1) LD P34, 8(P33)
ADD R2, R2, 8 ADD P35, P34, 8
ST R1, (R3) ST P33, (P3)
SUB R1, R1, R5 SUB P36, P33, P5
LD R1, 8(R2) Must wait
ADD R1, R1, R2

IQ

18

OOO Example

Original code Renamed code InQ Iss Comp Comm
ADD R1, R2, R3 ADD P33, P2, P3
LD R2, 8(R1) LD P34, 8(P33)
ADD R2, R2, 8 ADD P35, P34, 8
ST R1, (R3) ST P33, (P3)
SUB R1, R1, R5 SUB P36, P33, P5
LD R1, 8(R2)
ADD R1, R1, R2

IQ

19

OOO Example

Original code Renamed code InQ Iss Comp Comm
ADD R1, R2, R3 ADD P33, P2, P3 i i+1 i+6 i+6
LD R2, 8(R1) LD P34, 8(P33) i i+2 i+8 i+8
ADD R2, R2, 8 ADD P35, P34, 8 i i+4 i+9 i+9
ST R1, (R3) ST P33, (P3) i i+2 i+8 i+9
SUB R1, R1, R5 SUB P36, P33, P5 i+1 i+2 i+7 i+9
LD R1, 8(R2)
ADD R1, R1, R2

IQ

20

OOO Example

Original code Renamed code InQ Iss Comp Comm
ADD R1, R2, R3 ADD P33, P2, P3 i i+1 i+6 i+6
LD R2, 8(R1) LD P34, 8(P33) i i+2 i+8 i+8
ADD R2, R2, 8 ADD P35, P34, 8 i i+4 i+9 i+9
ST R1, (R3) ST P33, (P3) i i+2 i+8 i+9
SUB R1, R1, R5 SUB P36, P33, P5 i+1 i+2 i+7 i+9
LD R1, 8(R2) LD P1, 8(P35) i+7 i+8 i+14 i+14
ADD R1, R1, R2 ADD P2, P1, P35 i+9 i+10 i+15 i+15

IQ

21

OOO Example

Original code Renamed code InQ Iss Comp Comm Prev Map
ADD R1, R2, R3 ADD P33, P2, P3 i i+1 i+6 i+6 P1
LD R2, 8(R1) LD P34, 8(P33) i i+2 i+8 i+8 P2
ADD R2, R2, 8 ADD P35, P34, 8 i i+4 i+9 i+9 P34
ST R1, (R3) ST P33, (P3) i i+2 i+8 i+9
SUB R1, R1, R5 SUB P36, P33, P5 i+1 i+2 i+7 i+9 P33
LD R1, 8(R2) LD P1, 8(P35) i+7 i+8 i+14 i+14 P36
ADD R1, R1, R2 ADD P2, P1, P35 i+9 i+10 i+15 i+15 P1

IQ

22

Constraints Worth Remembering

• Don’t exceed rename width, issue width, commit width

• Make notes about a register’s previous mapping (so you can
release it upon that instruction’s commit)

• Stall when out of registers

• Delay instructions with data dependences

• Factor in 5/6 stages for completion, depending on instr type

• InQ and Commit columns must monotonically increase;
Issue and Complete times can be ooo

23

Additional Details

• When does the decode stage stall? When we either run
out of registers, or ROB entries, or issue queue entries

• Issue width: the number of instructions handled by each
stage in a cycle. High issue width  high peak ILP

• Window size: the number of in-flight instructions in the
pipeline. Large window size  high ILP

• No more WAR and WAW hazards because of rename
registers – must only worry about RAW hazards

24

Branch Mispredict Recovery

• On a branch mispredict, must roll back the processor state:
throw away IFQ contents, ROB/IQ contents after branch

• Committed map table is correct and need not be fixed

• The speculative map table needs to go back to an earlier state

• To facilitate this spec-map-table rollback, it is checkpointed
at every branch

25

Waking Up a Dependent

• In an in-order pipeline, an instruction leaves the decode
stage when it is known that the inputs can be correctly
received, not when the inputs are computed

• Similarly, an instruction leaves the issue queue before its
inputs are known, i.e., wakeup is speculative based on the
expected latency of the producer instruction

26

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

