
1

Lecture 26: Recap

• Announcements:
� Assgn 9 (and earlier assignments) will be ready for

pick-up from the CS front office later this week
� Office hours: all day next Tuesday
� Final exam: Wednesday 13th, 7:50-10am, EMCB 101
� Same rules as mid-term, except no laptops

(open book, open notes/slides/assignments)
(print pages from the textbook CD if necessary)

� 20% pre-midterm, 80% post-midterm
� Advanced course in Spring: CS 7820 Parallel

Computer Architecture – more on multi-cores,
multi-thread programming, cache coherence and
synchronization, interconnection networks

2

Cache Organizations for Multi-cores

• L1 caches are always private to a core

• L2 caches can be private or shared – which is better?

P4P3P2P1

L1L1L1L1

L2L2L2L2

P4P3P2P1

L1L1L1L1

L2

3

Cache Organizations for Multi-cores

• L1 caches are always private to a core

• L2 caches can be private or shared

• Advantages of a shared L2 cache:
� efficient dynamic allocation of space to each core
� data shared by multiple cores is not replicated
� every block has a fixed “home” – hence, easy to find

the latest copy

• Advantages of a private L2 cache:
� quick access to private L2 – good for small working sets
� private bus to private L2 � less contention

4

View from 5,000 Feet

5

5-Stage Pipeline and Bypassing

• Some data hazard stalls can be eliminated: bypassing

Must worry about data,
control, and structural

hazards

6

Example

lw $1, 8($2)

lw $4, 8($1)

7

Example

lw $1, 8($2)

sw $1, 8($3)

8

Branch Delay Slots

9

Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-targetBranch

Predictor

10

Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters

11

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1

�

R1+R2
R2

�

R1+R3
BEQZ R2

R3

�

R1+R2
R1

�

R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1

�

R1+R2
T2

�

T1+R3
BEQZ T2

T4

�

T1+T2
T5

�

T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

12

Cache Organization

10100000

Byte address

Tag

Data arrayTag array

How many offset/index/tag bits if the cache has
64 sets,

each set has 64 bytes,
4 ways

Way-1 Way-2

Compare

13

Virtual Memory

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13

14

TLB

• Since the number of pages is very high, the page table
capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
may not even be found in the cache – two expensive
memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory wastage

15

Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache

16

I/O Hierarchy

CPU

Cache

Memory Bus

Memory

I/O
Controller

Network USB DVD …

I/O Bus

Disk

17

RAID 3

• Data is bit-interleaved across several disks and a separate
disk maintains parity information for a set of bits

• For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1,
…, bit 7 is in disk-7; disk-8 maintains parity for all 8 bits

• For any read, 8 disks must be accessed (as we usually
read more than a byte at a time) and for any write, 9 disks
must be accessed as parity has to be re-calculated

• High throughput for a single request, low cost for
redundancy (overhead: 12.5%), low task-level parallelism

18

RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our
data from a single disk on a read – in case of a disk error,
read all 9 disks

• Block interleaving reduces thruput for a single request (as
only a single disk drive is servicing the request), but
improves task-level parallelism as other disk drives are
free to service other requests

• On a write, we access the disk that stores the data and the
parity disk – parity information can be updated simply by
checking if the new data differs from the old data

19

RAID 5

• If we have a single disk for parity, multiple writes can not
happen in parallel (as all writes must update parity info)

• RAID 5 distributes the parity block to allow simultaneous
writes

20

Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

• P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops
and realizes it has the only valid copy, so it
downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state

21

Directory-Based Example

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory
Directory
X

Directory
Y

A: Rd X
B: Rd X
C: Rd X
A: Wr X
A: Wr X
C: Wr X
B: Rd X
A: Rd X
A: Rd Y
B: Wr X
B: Rd Y
B: Wr X
B: Wr Y

22

Basic MIPS Instructions

• lw $t1, 16($t2)
• add $t3, $t1, $t2
• addi $t3, $t3, 16
• sw $t3, 16($t2)
• beq $t1, $t2, 16
• blt is implemented as slt and bne
• j 64
• jr $t1
• sll $t1, $t1, 2

Convert to assembly:
while (save[i] == k)

i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit:

23

Registers

• The 32 MIPS registers are partitioned as follows:

� Register 0 : $zero always stores the constant 0
� Regs 2-3 : $v0, $v1 return values of a procedure
� Regs 4-7 : $a0-$a3 input arguments to a procedure
� Regs 8-15 : $t0-$t7 temporaries
� Regs 16-23: $s0-$s7 variables
� Regs 24-25: $t8-$t9 more temporaries
� Reg 28 : $gp global pointer
� Reg 29 : $sp stack pointer
� Reg 30 : $fp frame pointer
� Reg 31 : $ra return address

24

Memory Organization

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

Proc A’s values

Proc B’s values

Proc C’s values

…

High address

Low address

Stack grows
this way

$fp

$sp
$gp

25

Procedure Calls/Returns

procA
{

int j;
j = …;
call procB(j);
… = j;

}

procB (int j)
{

int k;
… = j;
k = …;
return k;

}

procA:
$s0 = … # value of j
$t0 = … # some tempval
$a0 = $s0 # the argument
…
jal procB
…
… = $v0

procB:
$t0 = … # some tempval
… = $a0 # using the argument
$s0 = … # value of k
$v0 = $s0;
jr $ra

26

Saves and Restores

• Caller saves:

� $ra, $a0, $t0, $fp

• Callee saves:

� $s0

procA:
$s0 = … # value of j
$t0 = … # some tempval
$a0 = $s0 # the argument
…
jal procB
…
… = $v0

procB:
$t0 = … # some tempval
… = $a0 # using the argument
$s0 = … # value of k
$v0 = $s0;
jr $ra

• As every element is saved on stack,
the stack pointer is decremented

• If the callee’s values cannot remain
in registers, they will also be spilled
into the stack (don’t have to create
space for them at the start of the proc)

27

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
0x 23 or 23hex = 2 x 161 + 3 x 160

0-15 (decimal) � 0-9, a-f (hex)

Dec Binary Hex
0 0000 00
1 0001 01
2 0010 02
3 0011 03

Dec Binary Hex
4 0100 04
5 0101 05
6 0110 06
7 0111 07

Dec Binary Hex
8 1000 08
9 1001 09

10 1010 0a
11 1011 0b

Dec Binary Hex
12 1100 0c
13 1101 0d
14 1110 0e
15 1111 0f

28

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x … hence, can compute the negative of a number by
-x = x’ + 1 inverting all bits and adding 1

This format can directly undergo addition without any conversions!
Each number represents the quantity

x31 -231 + x30 230 + x29 229 + … + x1 21 + x0 20

29

Multiplication Example

Multiplicand 1000ten
Multiplier x 1001ten

1000

0000
0000

1000

Product 1001000ten

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product

30

Division

1001ten Quotient
Divisor 1000ten | 1001010ten Dividend

-1000
10
101
1010

-1000
10ten Remainder

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient

31

Division

1001ten Quotient
Divisor 1000ten | 1001010ten Dividend

0001001010 0001001010 0000001010 0000001010
100000000000 � 0001000000� 0000100000�0000001000
Quo: 0 000001 0000010 000001001

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient

32

Binary FP Numbers

• 20.45 decimal = ? Binary

• 20 decimal = 10100 binary

• 0.45 x 2 = 0.9 (not greater than 1, first bit after binary point is 0)
0.90 x 2 = 1.8 (greater than 1, second bit is 1, subtract 1 from 1.8)
0.80 x 2 = 1.6 (greater than 1, third bit is 1, subtract 1 from 1.6)
0.60 x 2 = 1.2 (greater than 1, fourth bit is 1, subtract 1 from 1.2)
0.20 x 2 = 0.4 (less than 1, fifth bit is 0)
0.40 x 2 = 0.8 (less than 1, sixth bit is 0)
0.80 x 2 = 1.6 (greater than 1, seventh bit is 1, subtract 1 from 1.6)

… and the pattern repeats

10100.011100110011001100…
Normalized form = 1.0100011100110011… x 24

33

IEEE 754 Format

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent -0.75ten in single and double-precision formats

Single: (1 + 8 + 23)
1 0111 1110 1000…000

Double: (1 + 11 + 52)
1 0111 1111 110 1000…000

• What decimal number is represented by the following
single-precision number?
1 1000 0001 01000…0000

-5.0

34

FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999 x 101 + 1.610 x 10-1

Convert to the larger exponent:
9.999 x 101 + 0.016 x 101

Add
10.015 x 101

Normalize
1.0015 x 102

Check for overflow/underflow
Round
1.002 x 102

Re-normalize

35

Performance Measures

• Performance = 1 / execution time
• Speedup = ratio of performance
• Performance improvement = speedup -1
• Execution time = clock cycle time x CPI x number of instrs

Program takes 100 seconds on ProcA and 150 seconds on ProcB

Speedup of A over B = 150/100 = 1.5
Performance improvement of A over B = 1.5 – 1 = 0.5 = 50%

Speedup of B over A = 100/150 = 0.66 (speedup less than 1 means
performance went down)

Performance improvement of B over A = 0.66 – 1 = -0.33 = -33%
or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined
into a single number using AM, weighted AM, or GM

36

Boolean Algebra

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

(A . B . C) + (A . C . B) + (C . B . A)

• Can also use “product of sums”
• Any equation can be implemented
with an array of ANDs, followed by
an array of ORs

• A + B = A . B

• A . B = A + B

Any truth table can be expressed
as a sum of products

37

Adder Implementations

• Ripple-Carry adder – each 1-bit adder feeds its carry-out to next stage –
simple design, but we must wait for the carry to propagate thru all bits

• Carry-Lookahead adder – each bit can be represented by an equation
that only involves input bits (ai, bi) and initial carry-in (c0) -- this is a
complex equation, so it’s broken into sub-parts

For bits ai, bi,, and ci, a carry is generated if ai.bi = 1 and a carry is
propagated if ai + bi = 1

Ci+1 = gi + pi . Ci

Similarly, compute these values for a block of 4 bits, then for a block
of 16 bits, then for a block of 64 bits….Finally, the carry-out for the
64th bit is represented by an equation such as this:
C4 = G3+ G2.P3 + G1.P2.P3 + G0.P1.P2.P3 + C0.P0.P1.P2.P3

Each of the sub-terms is also a similar expression

38

Title

• Bullet

