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Lecture 26: Recap

• Announcements:
� Assgn 9 (and earlier assignments) will be ready for

pick-up from the CS front office later this week
� Office hours: all day next Tuesday
� Final exam: Wednesday 13th, 7:50-10am, EMCB 101
� Same rules as mid-term, except no laptops 

(open book, open notes/slides/assignments)
(print pages from the textbook CD if necessary)

� 20% pre-midterm, 80% post-midterm
� Advanced course in Spring: CS 7820 Parallel

Computer Architecture – more on multi-cores,
multi-thread programming, cache coherence and
synchronization, interconnection networks
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Cache Organizations for Multi-cores

• L1 caches are always private to a core

• L2 caches can be private or shared – which is better?

P4P3P2P1

L1L1L1L1

L2L2L2L2

P4P3P2P1

L1L1L1L1

L2
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Cache Organizations for Multi-cores

• L1 caches are always private to a core

• L2 caches can be private or shared

• Advantages of a shared L2 cache:
� efficient dynamic allocation of space to each core
� data shared by multiple cores is not replicated
� every block has a fixed “home” – hence, easy to find

the latest copy

• Advantages of a private L2 cache:
� quick access to private L2 – good for small working sets
� private bus to private L2 � less contention
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View from 5,000 Feet
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5-Stage Pipeline and Bypassing

• Some data hazard stalls can be eliminated: bypassing

Must worry about data,
control, and structural

hazards
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Example

lw    $1, 8($2) 

lw    $4, 8($1)
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Example

lw    $1, 8($2) 

sw    $1, 8($3)
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Branch Delay Slots
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Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-targetBranch

Predictor
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Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters
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An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1 

�

R1+R2
R2 

�

R1+R3
BEQZ R2

R3 

�

R1+R2
R1 

�

R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1 

�

R1+R2
T2 

�

T1+R3
BEQZ T2

T4 

�

T1+T2
T5 

�

T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ
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Cache Organization

10100000

Byte address

Tag

Data arrayTag array

How many offset/index/tag bits if the cache has
64 sets,

each set has 64 bytes,
4 ways

Way-1 Way-2

Compare
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Virtual Memory

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13



14

TLB

• Since the number of pages is very high, the page table
capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
may not even be found in the cache – two expensive
memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory wastage
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Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual 
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache
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I/O Hierarchy

CPU

Cache

Memory Bus

Memory

I/O
Controller

Network USB DVD …

I/O Bus

Disk
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RAID 3

• Data is bit-interleaved across several disks and a separate
disk maintains parity information for a set of bits

• For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1,
…, bit 7 is in disk-7; disk-8 maintains parity for all 8 bits

• For any read, 8 disks must be accessed (as we usually
read more than a byte at a time) and for any write, 9 disks
must be accessed as parity has to be re-calculated

• High throughput for a single request, low cost for
redundancy (overhead: 12.5%), low task-level parallelism
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RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our
data from a single disk on a read – in case of a disk error,
read all 9 disks

• Block interleaving reduces thruput for a single request (as
only a single disk drive is servicing the request), but
improves task-level parallelism as other disk drives are
free to service other requests

• On a write, we access the disk that stores the data and the
parity disk – parity information can be updated simply by
checking if the new data differs from the old data
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RAID 5

• If we have a single disk for parity, multiple writes can not
happen in parallel (as all writes must update parity info)

• RAID 5 distributes the parity block to allow simultaneous
writes
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Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

• P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops
and realizes it has the only valid copy, so it
downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state
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Directory-Based Example

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory
Directory
X           

Directory
Y           

A: Rd  X
B: Rd  X
C: Rd  X
A: Wr  X
A: Wr  X
C: Wr  X
B: Rd  X
A: Rd  X
A: Rd  Y
B: Wr  X
B: Rd  Y
B: Wr  X
B: Wr  Y
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Basic MIPS Instructions

• lw      $t1, 16($t2)
• add   $t3, $t1, $t2
• addi  $t3, $t3, 16
• sw     $t3, 16($t2)
• beq   $t1, $t2, 16
• blt  is implemented as  slt and bne
• j         64
• jr        $t1
• sll      $t1, $t1, 2

Convert to assembly:
while   (save[i] == k)

i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop:  sll      $t1, $s3, 2
add    $t1, $t1, $s6
lw      $t0, 0($t1)
bne    $t0, $s5, Exit
addi   $s3, $s3, 1
j         Loop

Exit:
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Registers

• The 32 MIPS registers are partitioned as follows:

� Register 0 :  $zero        always stores the constant 0
� Regs 2-3   :  $v0, $v1   return values of a procedure
� Regs 4-7   :  $a0-$a3   input arguments to a procedure
� Regs 8-15 :  $t0-$t7     temporaries
� Regs 16-23: $s0-$s7    variables
� Regs 24-25: $t8-$t9     more temporaries
� Reg   28     : $gp          global pointer
� Reg   29     : $sp           stack pointer
� Reg   30     : $fp            frame pointer
� Reg   31     : $ra           return address 
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Memory Organization

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

Proc A’s  values

Proc B’s  values

Proc C’s  values

…

High address

Low address

Stack grows
this way

$fp

$sp
$gp
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Procedure Calls/Returns

procA
{

int j;
j = …;
call procB(j);
… = j;

}

procB (int j)
{

int k;
… = j;
k = …;
return k;

}

procA:
$s0 = … # value of j
$t0  = … # some tempval
$a0 = $s0  # the argument
…
jal  procB
…
… = $v0

procB:
$t0  = … # some tempval
… = $a0 # using the argument
$s0 = … # value of k
$v0 = $s0;
jr   $ra
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Saves and Restores

• Caller saves:

� $ra, $a0, $t0, $fp

• Callee saves:

� $s0

procA:
$s0 = … # value of j
$t0  = … # some tempval
$a0 = $s0  # the argument
…
jal  procB
…
… = $v0

procB:
$t0  = … # some tempval
… = $a0 # using the argument
$s0 = … # value of k
$v0 = $s0;
jr   $ra

• As every element is saved on stack,
the stack pointer is decremented

• If the callee’s values cannot remain
in registers, they will also be spilled
into the stack (don’t have to create
space for them at the start of the proc)
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Recap – Numeric Representations

• Decimal        3510  =  3 x 101 + 5 x 100

• Binary          001000112  =  1 x 25 +  1 x 21 +  1 x 20

• Hexadecimal (compact representation)
0x 23    or   23hex     =   2 x 161 +  3 x 160

0-15 (decimal)   � 0-9, a-f  (hex)

Dec  Binary  Hex
0    0000     00
1    0001     01
2    0010     02
3    0011     03

Dec  Binary  Hex
4    0100     04
5    0101     05
6    0110     06
7    0111     07

Dec  Binary  Hex
8    1000     08
9    1001     09

10    1010     0a
11    1011     0b

Dec  Binary  Hex
12    1100     0c
13    1101     0d
14    1110     0e
15    1111     0f
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2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals  a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x        … hence, can compute the negative of a number by
-x = x’ + 1             inverting all bits and adding 1

This format can directly undergo addition without any conversions!
Each number represents the quantity

x31 -231 +  x30 230 + x29 229 + … + x1 21 + x0 20
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Multiplication Example

Multiplicand 1000ten
Multiplier x    1001ten

---------------
1000

0000
0000

1000
----------------

Product 1001000ten

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product
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Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

-1000
10
101
1010

-1000
10ten Remainder

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient
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Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

0001001010        0001001010      0000001010    0000001010
100000000000 � 0001000000� 0000100000�0000001000
Quo:   0                   000001               0000010         000001001

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient
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Binary FP Numbers

• 20.45 decimal = ? Binary

• 20 decimal = 10100 binary

• 0.45 x 2 = 0.9     (not greater than 1, first bit after binary point is 0)
0.90 x 2 = 1.8      (greater than 1, second bit is 1, subtract 1 from 1.8)
0.80 x 2 = 1.6      (greater than 1, third bit is 1, subtract 1 from 1.6)
0.60 x 2 = 1.2      (greater than 1, fourth bit is 1, subtract 1 from 1.2)
0.20 x 2 = 0.4      (less than 1, fifth bit is 0)
0.40 x 2 = 0.8      (less than 1, sixth bit is 0)
0.80 x 2 = 1.6      (greater than 1, seventh bit is 1, subtract 1 from 1.6)

… and the pattern repeats

10100.011100110011001100…
Normalized form = 1.0100011100110011…  x 24
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IEEE 754 Format

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)
1   0111 1110  1000…000

Double: (1 + 11 + 52)
1   0111 1111 110    1000…000

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

-5.0
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FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999  x 101 +     1.610 x 10-1

Convert to the larger exponent:
9.999  x 101 +     0.016 x 101

Add
10.015  x 101

Normalize
1.0015  x 102

Check for overflow/underflow
Round
1.002  x 102

Re-normalize



35

Performance Measures

• Performance = 1 / execution time
• Speedup = ratio of performance
• Performance improvement = speedup -1
• Execution time = clock cycle time x CPI x number of instrs

Program takes 100 seconds on ProcA  and 150 seconds on ProcB

Speedup of A over B = 150/100  = 1.5
Performance improvement of A over B = 1.5 – 1 = 0.5 = 50%

Speedup of B over A = 100/150 = 0.66   (speedup less than 1 means
performance went down)

Performance improvement of B over A = 0.66 – 1 = -0.33 = -33%
or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined
into a single number using AM, weighted AM, or GM
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Boolean Algebra

A        B        C               E
0            0            0                     0
0            0            1                     0
0            1            0                     0
0            1            1                     1
1            0            0                     0
1            0            1                     1
1            1            0                     1
1            1            1                     0

(A . B . C) + (A . C . B) + (C . B . A)

• Can also use “product of sums”
• Any equation can be implemented
with an array of ANDs, followed by
an array of ORs

• A + B = A . B

• A . B  =  A + B

Any truth table can be expressed
as a sum of products
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Adder Implementations

• Ripple-Carry adder – each 1-bit adder feeds its carry-out to next stage –
simple design, but we must wait for the carry to propagate thru all bits

• Carry-Lookahead adder – each bit can be represented by an equation
that only involves input bits (ai, bi) and initial carry-in (c0)  -- this is a
complex equation, so it’s broken into sub-parts

For bits ai, bi,, and ci, a carry is generated if   ai.bi = 1   and a carry is
propagated if  ai + bi = 1

Ci+1 = gi + pi . Ci

Similarly, compute these values for a block of 4 bits, then for a block
of 16 bits, then for a block of 64 bits….Finally, the carry-out for the
64th bit is represented by an equation such as this:
C4 = G3+ G2.P3 + G1.P2.P3 + G0.P1.P2.P3 + C0.P0.P1.P2.P3

Each of the sub-terms is also a similar expression
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Title

• Bullet


