Lecture 26: Recap

• Announcements:

- Assgn 9 (and earlier assignments) will be ready for pick-up from the CS front office later this week
- Office hours: all day next Tuesday
- Final exam: Wednesday 13th, 7:50-10am, EMCB 101
- Same rules as mid-term, except no laptops (open book, open notes/slides/assignments) (print pages from the textbook CD if necessary)
- 20% pre-midterm, 80% post-midterm
- Advanced course in Spring: CS 7820 Parallel Computer Architecture – more on multi-cores, multi-thread programming, cache coherence and synchronization, interconnection networks

Cache Organizations for Multi-cores

- L1 caches are always private to a core
- L2 caches can be private or shared which is better?

Cache Organizations for Multi-cores

- L1 caches are always private to a core
- L2 caches can be private or shared
- Advantages of a shared L2 cache:
 - efficient dynamic allocation of space to each core
 - data shared by multiple cores is not replicated
 - every block has a fixed "home" hence, easy to find the latest copy
- Advantages of a private L2 cache:
 - quick access to private L2 good for small working sets
 - private bus to private L2 \rightarrow less contention

View from 5,000 Feet

5-Stage Pipeline and Bypassing

Some data hazard stalls can be eliminated: bypassing

Example

Example

Branch Delay Slots

Pipeline with Branch Predictor

Bimodal Predictor

An Out-of-Order Processor Implementation

Cache Organization

Virtual Memory

• The virtual and physical memory are broken up into pages

TLB

- Since the number of pages is very high, the page table capacity is too large to fit on chip
- A translation lookaside buffer (TLB) caches the virtual to physical page number translation for recent accesses
- A TLB miss requires us to access the page table, which may not even be found in the cache – two expensive memory look-ups to access one word of data!
- A large page size can increase the coverage of the TLB and reduce the capacity of the page table, but also increases memory wastage

Cache and TLB Pipeline

Virtually Indexed; Physically Tagged Cache

I/O Hierarchy

RAID 3

- Data is bit-interleaved across several disks and a separate disk maintains parity information for a set of bits
- For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1, ..., bit 7 is in disk-7; disk-8 maintains parity for all 8 bits
- For any read, 8 disks must be accessed (as we usually read more than a byte at a time) and for any write, 9 disks must be accessed as parity has to be re-calculated
- High throughput for a single request, low cost for redundancy (overhead: 12.5%), low task-level parallelism

- Data is block interleaved this allows us to get all our data from a single disk on a read – in case of a disk error, read all 9 disks
- Block interleaving reduces thruput for a single request (as only a single disk drive is servicing the request), but improves task-level parallelism as other disk drives are free to service other requests
- On a write, we access the disk that stores the data and the parity disk – parity information can be updated simply by checking if the new data differs from the old data

- If we have a single disk for parity, multiple writes can not happen in parallel (as all writes must update parity info)
- RAID 5 distributes the parity block to allow simultaneous writes

Example

- P1 reads X: not found in cache-1, request sent on bus, memory responds, X is placed in cache-1 in shared state
- P2 reads X: not found in cache-2, request sent on bus, everyone snoops this request, cache-1 does nothing because this is just a read request, memory responds, X is placed in cache-2 in shared state

- P1 writes X: cache-1 has data in shared state (shared only provides read perms), request sent on bus, cache-2 snoops and then invalidates its copy of X, cache-1 moves its state to modified
- P2 reads X: cache-2 has data in invalid state, request sent on bus, cache-1 snoops and realizes it has the only valid copy, so it downgrades itself to shared state and responds with data, X is placed in cache-2 in shared state

Directory-Based Example

Basic MIPS Instructions

- lw \$t1, 16(\$t2)
- add \$t3, \$t1, \$t2
- addi \$t3, \$t3, 16
- sw \$t3, 16(\$t2)
- beq \$t1, \$t2, 16
- blt is implemented as slt and bne
- j 64
- jr \$t1
- sll \$t1, \$t1, 2

Convert to assembly: while (save[i] == k) i += 1; i and k are in \$s3 and \$s5 and base of array save[] is in \$s6

Loop:	sll	\$t1, \$s3, 2
	add	\$t1, \$t1, \$s6
	W	\$t0, 0(\$t1)
	bne	\$t0, \$s5, Exit
	addi	\$s3, \$s3, 1
	j	Loop
Exit:		22

- The 32 MIPS registers are partitioned as follows:
 - Register 0 : \$zero

 - Regs 4-7 : \$a0-\$a3
 - Regs 8-15 : \$t0-\$t7
 - Regs 16-23: \$s0-\$s7
 - Regs 24-25: \$t8-\$t9
 - Reg 28 : \$gp
 - Reg 29 : \$sp
 - Reg 30 : \$fp
 - Reg 31 : \$ra

always stores the constant 0 Regs 2-3 : \$v0, \$v1 return values of a procedure input arguments to a procedure temporaries variables more temporaries global pointer stack pointer frame pointer return address

Memory Organization

Procedure Calls/Returns

Saves and Restores

- Caller saves:
 - \$ra, \$a0, \$t0, \$fp
- Callee saves:\$s0

- As every element is saved on stack, the stack pointer is decremented
- If the callee's values cannot remain in registers, they will also be spilled into the stack (don't have to create space for them at the start of the proc)

procA: \$\$0 = ... # value of j \$t0 = ... # some tempval \$a0 = \$\$0 # the argument ... jal procB = \$v0

```
procB:

$t0 = ... # some tempval

... = $a0 # using the argument

$s0 = ... # value of k

$v0 = $s0;

jr $ra
```

Recap – Numeric Representations

- Decimal $35_{10} = 3 \times 10^1 + 5 \times 10^0$
- Binary $00100011_2 = 1 \times 2^5 + 1 \times 2^1 + 1 \times 2^0$
- Hexadecimal (compact representation) 0x 23 or $23_{hex} = 2 \times 16^1 + 3 \times 16^0$

0-15 (decimal) \rightarrow 0-9, a-f (hex)

Dec	Binary	Hex									
0	0000	00	4	0100	04	8	1000	08	12	1100	0c
1	0001	01	5	0101	05	9	1001	09	13	1101	0d
2	0010	02	6	0110	06	10	1010	0a	14	1110	0e
3	0011	03	7	0111	07	11	1011	0b	15	1111	Of
										2	27

2's Complement

 $\begin{array}{l} 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{two} = 0_{ten} \\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{two} = 1_{ten} \\ \cdots \\ 0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ two = 2^{31} - 1 \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ two = -2^{31} \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ two = -(2^{31} - 1) \\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ two = -(2^{31} - 1) \\ 1000\ 000\ 000\ 000\ 00\ 000\ 000\ 0$

Note that the sum of a number x and its inverted representation x' always equals a string of 1s (-1).

$$x + x' = -1$$
 $x' + 1 = -x$ $-x = x' + 1$... hence, can compute the negative of a number byinverting all bits and adding 1

This format can directly undergo addition without any conversions! Each number represents the quantity

 $x_{31} - 2^{31} + x_{30} 2^{30} + x_{29} 2^{29} + ... + x_1 2^1 + x_0 2^0$

Multiplication Example

Multiplicand Multiplier	1000 _{ten} x 1001 _{ten}		
	1000		
	0000		
	0000		
	1000		
Product	1001000 _{ten}		

In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

Division

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Division

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Binary FP Numbers

- 20.45 decimal = ? Binary
- 20 decimal = 10100 binary
- $0.45 \times 2 = 0.9$ (not greater than 1, first bit after binary point is 0) $0.90 \times 2 = 1.8$ (greater than 1, second bit is 1, subtract 1 from 1.8) $0.80 \times 2 = 1.6$ (greater than 1, third bit is 1, subtract 1 from 1.6) $0.60 \times 2 = 1.2$ (greater than 1, fourth bit is 1, subtract 1 from 1.2) $0.20 \times 2 = 0.4$ (less than 1, fifth bit is 0) $0.40 \times 2 = 0.8$ (less than 1, sixth bit is 0) $0.80 \times 2 = 1.6$ (greater than 1, seventh bit is 1, subtract 1 from 1.6) ... and the pattern repeats

10100.01110011001100...Normalized form = 1.0100011100110011... x 2⁴

IEEE 754 Format

Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent – Bias)

• Represent -0.75_{ten} in single and double-precision formats

```
Single: (1 + 8 + 23)
1 0111 1110 1000...000
```

```
Double: (1 + 11 + 52)
1 0111 1111 110 1000...000
```

What decimal number is represented by the following single-precision number?

```
1 1000 0001 01000...0000
-5.0
```

• Consider the following decimal example (can maintain only 4 decimal digits and 2 exponent digits)

9.999 x 10^{1} + 1.610 x 10^{-1} Convert to the larger exponent: 9.999 x 10^{1} + 0.016 x 10^{1} Add 10.015 x 10^{1} Normalize 1.0015 x 10^{2} Check for overflow/underflow Round 1.002 x 10^{2} Re-normalize

Performance Measures

- Performance = 1 / execution time
- Speedup = ratio of performance
- Performance improvement = speedup -1
- Execution time = clock cycle time x CPI x number of instrs

Program takes 100 seconds on ProcA and 150 seconds on ProcB

Speedup of A over B = 150/100 = 1.5Performance improvement of A over B = 1.5 - 1 = 0.5 = 50%

Speedup of B over A = 100/150 = 0.66 (speedup less than 1 means performance went down) Performance improvement of B over A = 0.66 - 1 = -0.33 = -33%or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined into a single number using AM, weighted AM, or GM 35

Boolean Algebra

• $\overline{A + B} = \overline{A} \cdot \overline{B}$

•
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Α	В	С	E
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Any truth table can be expressed as a sum of products

$$(A \cdot B \cdot \overline{C}) + (A \cdot C \cdot \overline{B}) + (C \cdot B \cdot \overline{A})$$

- Can also use "product of sums"
- Any equation can be implemented with an array of ANDs, followed by an array of ORs

Adder Implementations

- Ripple-Carry adder each 1-bit adder feeds its carry-out to next stage simple design, but we must wait for the carry to propagate thru all bits
- Carry-Lookahead adder each bit can be represented by an equation that only involves input bits (a_i, b_i) and initial carry-in (c₀) -- this is a complex equation, so it's broken into sub-parts

For bits a_i , b_i , and c_i , a carry is generated if $a_i \cdot b_i = 1$ and a carry is propagated if $a_i + b_i = 1$ $C_{i+1} = g_i + p_i \cdot C_i$

Similarly, compute these values for a block of 4 bits, then for a block of 16 bits, then for a block of 64 bits....Finally, the carry-out for the 64^{th} bit is represented by an equation such as this: $C_4 = G_3 + G_2 \cdot P_3 + G_1 \cdot P_2 \cdot P_3 + G_0 \cdot P_1 \cdot P_2 \cdot P_3 + C_0 \cdot P_0 \cdot P_1 \cdot P_2 \cdot P_3$

Each of the sub-terms is also a similar expression

Title

• Bullet