Lecture 25: Multi-core Processors

e Today'’s topics:
= Writing parallel programs
= SMT
* Multi-core examples

 Reminder:
» Assignment 9 due Tuesday

Shared-Memory Vs. Message-Passing

Shared-memory:

* Well-understood programming model

« Communication is implicit and hardware handles protection
« Hardware-controlled caching

Message-passing:

* No cache coherence - simpler hardware

e Explicit communication - easier for the programmer to
restructure code

« Software-controlled caching

e Sender can initiate data transfer

Ocean Kernel

Procedure Solve(A)

begin Row 1
diff = done = 0;
while (done) do
diff = 0; Row k

fori < 1ltondo
forj < 1ltondo
temp = A[i,j];
Ali,j] € 0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] — temp);
end for
end for
if (diff < TOL) then done = 1;
end while
end procedure

Row 2k

Row 3k

Shared Address Space Model

procedure Solve(A)
int i, j, pid, done=0;

int n, nprocs; float temp, mydiff=0;
float **A, diff; int mymin = 1 + (pid * n/procs);
LOCKDEC(diff_lock); int mymax = mymin + n/nprocs -1;
BARDEC(barl); while ('done) do
mydiff = diff = O;
BARRIER(barl,nprocs);
main() for i € mymin to mymax
begin forj< 1tondo
read(n); read(nprocs);
A < G_MALLOC(); endfor
initialize (A); endfor
CREATE (nprocs,Solve,A); LOCK(diff_lock);
WAIT_FOR_END (nprocs); diff += mydiff;
end main UNLOCK(diff_lock);

BARRIER (barl, nprocs);

if (diff < TOL) then done = 1,

BARRIER (barl, nprocs);
endwhile

Message Passing Model

main() fori € 1tonn do
read(n); read(nprocs); forj € 1tondo
CREATE (nprocs-1, Solve);
Solve(); endfor
WAIT _FOR_END (nprocs-1); endfor
if (pid 1= 0)
procedure Solve() SEND(mydiff, 1, 0, DIFF);
inti, j, pid, nn = n/nprocs, done=0; RECEIVE(done, 1, 0, DONE);
float temp, tempdiff, mydiff = O; else
myA < malloc(...) for i € 1 to nprocs-1 do
initialize(myA); RECEIVE(tempdiff, 1, *, DIFF);
while (done) do mydiff += tempdiff;
_myO!iff = 0; endfor
if (pid !=0) if (mydiff < TOL) done = 1;
- SEND(&myA[1,0], n, pid-1, ROW); fori € 1 to nprocs-1 do
if (pid != nprocs-1) SEND(done, 1, I, DONE):
SEND(&myA[nn’O]’ n, p|d+1’ ROW)’ endfor
if (pid '=0) endif

RECEIVE(&myA[0,0], n, pid-1, ROW); andwhile
if (pid '= nprocs-1)
RECEIVE(&myA[nn+1,0], n, pid+1, ROW); 5

Multithreading Within a Processor

« Until now, we have executed multiple threads of an
application on different processors — can multiple
threads execute concurrently on the same processor?

* Why is this desireable?
» Inexpensive — one CPU, no external interconnects
» N0 remote or coherence misses (more capacity misses)

* Why does this make sense?
» most processors can’t find enough work — peak IPC
IS 6, average IPC is 1.5!
» threads can share resources - we can increase
threads without a corresponding linear increase in area
6

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Thread 1
1
B Thread 2
v Thread 3
Cycles B s Thread 4
Idle
Superscalar Fine-Grained Simultaneous
Multithreading Multithreading

» Superscalar processor has high under-utilization — not enough work every
cycle, especially when there is a cache miss

» Fine-grained multithreading can only issue instructions from a single thread
in a cycle — can not find max work every cycle, but cache misses can be tolerated

« Simultaneous multithreading can issue instructions from any thread every
cycle — has the highest probability of finding work for every issue slot

Performance Implications of SMT

 Single thread performance is likely to go down (caches,
branch predictors, registers, etc. are shared) — this effect
can be mitigated by trying to prioritize one thread

« With eight threads in a processor with many resources,
SMT yields throughput improvements of roughly 2-4

Pentium4: Hyper-Threading

e Two threads — the Linux operating system operates as if it
IS executing on a two-processor system

* When there is only one available thread, it behaves like a
regular single-threaded superscalar processor

Multi-Programmed Speedup

- Tt I N

- + i P, B
- e e s I S

- s S oo E Sk T

i I I
- L G — _ e et
i R g T -

- o B L ey

- i o) B e |

- b b
-+ b ———— - q _ F—-——~
- i T I

i gy — R iy

- & g O T

- + e I

- + bzl T et

i g --L 1T 1--4

- e T s

- + bl F lemrd

- e gt I Lmsan *
e bmrgmee W I—wrmenmed

N i = [=5

- + g O B e

- I— — -

e

dnpeadg pswwelboidnnpy

Isde
WIBIXI S
pEeELUy
SEIN|
duwe
Jalaoe]
ayenbs
e
L
Bsall
ndde
LB
LIS
asimdnm
Jjoag
zdizg
KELIOA
defs
g ad
o8
Jasied
fyelo
Jouw
el i

Jda
dizf

10

Why Multi-Cores?

 New constraints: power, temperature, complexity

» Because of the above, we can’t introduce complex
techniques to improve single-thread performance

» Most of the low-hanging fruit for single-thread performance
has been picked

* Hence, additional transistors have the biggest impact on
throughput if they are used to execute multiple threads

... this assumes that most users will run multi-threaded

applications .

Efficient Use of Transistors

Transistors can be used for:

» Cache hierarchies

* Number of cores

e Multi-threading within a
core (SMT)

» Should we simplify cores

SO we have more available
transistors? Core

Cache bank 12

Design Space Exploration

Table 3: Maximum AIPC for medium-scale CMTs for SPEC JBB, TPC-C, TPC-W, and XML Test.

Note: The L1 refers to the primary data/instruction cache size. The L2 cache configuration size (MH

with the total number of cores for that CMT configuration.

From Davis et al., PACT 2005

t — threads

S — superscalar pipelines

Core SPEC JBB 2000 TPC-C TPC-W XML Test

Config] 11 L2 Cores AIPC] Ll L2 Cores AIPC] L1 L2 Cores AIPC] LI L2 Cores AIPC
Ip2t [16/32 1.5/12_20 9.8 [16/32 2.5/10 16 5.8 Jl6/32 151220 _ 8.6 [16/32 15/12_ 20 1138
Ipdt f16/32 1.5/12 17 132 [16/32 2.5/10 14 82 [16/32 1512 17 10.6 [16/32 1512 17 148
Ip8t |16/32 2.5/10 12 117 [32/32 1.5/12_14 89 [32/32 1512 14 130 [16/32 15/12 14 1338
2p2t 1632 1512 16 8.6 16532 1512 16 5.1 16532 1512 16 7.5 16532 151216 10.5
2pat |32/32 1.5/12__ 14120 |32/32 2.5/10__ 12 78 |32/32 151214 106 |16/32 15/12_ 14 152
2p8t J16/32 1.5/12 12 165 [32/32 2.5/10 9 9.5 §32/32 1512 12 13.6|32/32 1512 12 189
2pl6t)32/64 2510 7 133 |o4/64 2510 7 RSB o464 1512 o JRERI32/64 1512 9 169
3p3t [32/32 1.5/12 13 10.3 [32/32 2.5/10 10 59 [32/32 1512 13 85 1632 1512 13 127
3p6t [32/32 15/12_ 11144 [32/32 25109 85 |32/32 1512 11 113 |3232 15/12_11__16.5
3plat)3e4 1512 9 JREEIM32/64 25010 7 107 Jeales 15/12 o 146 |32/64 15/12_ 9
3p24t|32/64 25110 5 13.6 [32/64 2510 5 109 |32/64 1512 6 140 |32/64 15126 155
4p8t [32/32 1.5/12 9 149 [32/32 2.5/10 7 85 [e4/64 1512 9115|1632 15129 166
dpl6tf32/64 1.5/12 7 168 §32/64 25110 5 98 lea/64 1.512 7 144]132/64 1512 7 185
Dsit |64/64 1.5/12 11 44 |64/6a 1512 11 2.8 |o64/64 1512 11 3.7 J64l6d 1512 11 55

252t |64/64 1.5/12_10 7.0 |e4/64 1512 10 43 |64l64 1512 10 5.8 |64l64 1512 10 8.6

2sat |64/64 1512 o 105 |64/64 1512 9 6.4 |oa/64 1512 9 8.7 |64/64 1512 9 124
258t |64/64 15/12 7 121 f64/64 L5/12__7 8.1 |64/64 1512 7 106 |64/64 15127 127
4slt |oa/64 1512 7 29 feal6d 1512 7 19 fe4/64 1512 7 26 fed4/64 1512 7 37

452t |64/64 1.5/12 6 4.5 |6al6h 1.5/12 6 20 |64/64 1512 6 30 |64/64 1512 6 58

asat |e4/64 15125 66 |o4l6a 1512 5 41 |eales 1512 5 .

TS [over T+ 85 fever 1o 1 55 Jever 1o] P — scalar pipelines

Case Study I: Sun’s Niagara

« Commercial servers require high thread-level throughput
and suffer from cache misses

e Sun’s Niagara focuses on:
» simple cores (low power, design complexity,
can accommodate more cores)
» fine-grain multi-threading (to tolerate long
memory latencies)

14

Niagara Overview

15

10 and
shared
functions

adid oaedg [N Aem ¢

adid oxedg [N Aem ¢

adid oaedg A Aem ¢

adid oaedg [N Aem ¢

adid oaedg [N Aem ¢

adid oaedg [N Aem ¢

adid daedg [N Aem ¢

adid daedg [N Aem ¢

Crossbar

o S
=
2 2
o RS
o
ki
e &
lw D)
- W
- 5
= >

SPARC Pipe

Fetch ~Thrd Sel ~ Decode ~ Execute ~ Memory = WB

Regfile
x4 —l
- T DCache
[Cache [—P[nst Thrd Alu Dtlb >
; & > P —>
Itlb buf x 4 Sel Decode Mu} : Stbuf x 4 Crossbar
Mux Shft | Interface
Fy /T/ Div «—
Thread selects : 4 Instruction type
Thl cad g misses
5€1¢Ct <4— traps & interrupts
logic <4— resource conflicts
Thrd PC logic No branch predictor
izlllx X 4 Low clock speed (1.2 GHz)
One FP unit shared by all cores

Case Study Il Intel Core Architecture

 Single-thread execution is still considered important =»
= out-of-order execution and speculation very much alive
= |nitial processors will have few heavy-weight cores

* To reduce power consumption, the Core architecture (14
pipeline stages) is closer to the Pentium M (12 stages)
than the P4 (30 stages)

* Many transistors invested in a large branch predictor to
reduce wasted work (power)

« Similarly, SMT is also not guaranteed for all incarnations
of the Core architecture (SMT makes a hotspot hotter) -

Cache Organizations for Multi-cores

e L1 caches are always private to a core

» L2 caches can be private or shared — which is better?

P1L || P2 || P3 || P4 P1L || P2 || P3 || P4
[[[[[[[[
L1 || L1 || L1 || L1 L1 || L1 || L1 || L1
| | | | —
12 || L2 || L2 || L2
I E———

18

Cache Organizations for Multi-cores

* L1 caches are always private to a core
» L2 caches can be private or shared

» Advantages of a shared L2 cache:
= efficient dynamic allocation of space to each core
» data shared by multiple cores is not replicated
= every block has a fixed “home” — hence, easy to find
the latest copy

« Advantages of a private L2 cache:
» quick access to private L2 — good for small working sets

* private bus to private L2 - less contention o

Title

e Bullet

20

