
1

Lecture 25: Multi-core Processors

• Today’s topics:
� Writing parallel programs
� SMT
� Multi-core examples

• Reminder:
� Assignment 9 due Tuesday

2

Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence � simpler hardware
• Explicit communication � easier for the programmer to

restructure code
• Software-controlled caching
• Sender can initiate data transfer

3

Ocean Kernel

Procedure Solve(A)
begin

diff = done = 0;
while (!done) do

diff = 0;
for i

�

1 to n do
for j

�

1 to n do
temp = A[i,j];
A[i,j]

�

0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure

.
.

Row 1

Row k

Row 2k

Row 3k
…

4

Shared Address Space Model

int n, nprocs;
float **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A

�

G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i

�

mymin to mymax
for j

�
1 to n do

…
endfor

endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile

5

Message Passing Model

main()
read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA

�

malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0)

SEND(&myA[1,0], n, pid-1, ROW);
if (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);
if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);
if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i

�

1 to nn do
for j

�

1 to n do
…

endfor
endfor
if (pid != 0)

SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i

�

1 to nprocs-1 do
RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if (mydiff < TOL) done = 1;
for i

�

1 to nprocs-1 do
SEND(done, 1, I, DONE);

endfor
endif

endwhile

6

Multithreading Within a Processor

• Until now, we have executed multiple threads of an
application on different processors – can multiple
threads execute concurrently on the same processor?

• Why is this desireable?
� inexpensive – one CPU, no external interconnects
� no remote or coherence misses (more capacity misses)

• Why does this make sense?
� most processors can’t find enough work – peak IPC

is 6, average IPC is 1.5!
� threads can share resources � we can increase

threads without a corresponding linear increase in area

7

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
cycle, especially when there is a cache miss

• Fine-grained multithreading can only issue instructions from a single thread
in a cycle – can not find max work every cycle, but cache misses can be tolerated

• Simultaneous multithreading can issue instructions from any thread every
cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle

8

Performance Implications of SMT

• Single thread performance is likely to go down (caches,
branch predictors, registers, etc. are shared) – this effect
can be mitigated by trying to prioritize one thread

• With eight threads in a processor with many resources,
SMT yields throughput improvements of roughly 2-4

9

Pentium4: Hyper-Threading

• Two threads – the Linux operating system operates as if it
is executing on a two-processor system

• When there is only one available thread, it behaves like a
regular single-threaded superscalar processor

10

Multi-Programmed Speedup

11

Why Multi-Cores?

• New constraints: power, temperature, complexity

• Because of the above, we can’t introduce complex
techniques to improve single-thread performance

• Most of the low-hanging fruit for single-thread performance
has been picked

• Hence, additional transistors have the biggest impact on
throughput if they are used to execute multiple threads

… this assumes that most users will run multi-threaded
applications

12

Efficient Use of Transistors

Transistors can be used for:

• Cache hierarchies

• Number of cores

• Multi-threading within a
core (SMT)

� Should we simplify cores
so we have more available
transistors? Core

Cache bank

13

Design Space Exploration

• Bullet

p – scalar pipelines
t – threads
s – superscalar pipelines

From Davis et al., PACT 2005

14

• Commercial servers require high thread-level throughput
and suffer from cache misses

• Sun’s Niagara focuses on:
� simple cores (low power, design complexity,

can accommodate more cores)
� fine-grain multi-threading (to tolerate long

memory latencies)

Case Study I: Sun’s Niagara

15

Niagara Overview

16

SPARC Pipe

No branch predictor
Low clock speed (1.2 GHz)
One FP unit shared by all cores

17

Case Study II: Intel Core Architecture

• Single-thread execution is still considered important �
� out-of-order execution and speculation very much alive
� initial processors will have few heavy-weight cores

• To reduce power consumption, the Core architecture (14
pipeline stages) is closer to the Pentium M (12 stages)
than the P4 (30 stages)

• Many transistors invested in a large branch predictor to
reduce wasted work (power)

• Similarly, SMT is also not guaranteed for all incarnations
of the Core architecture (SMT makes a hotspot hotter)

18

Cache Organizations for Multi-cores

• L1 caches are always private to a core

• L2 caches can be private or shared – which is better?

P4P3P2P1

L1L1L1L1

L2L2L2L2

P4P3P2P1

L1L1L1L1

L2

19

Cache Organizations for Multi-cores

• L1 caches are always private to a core

• L2 caches can be private or shared

• Advantages of a shared L2 cache:
� efficient dynamic allocation of space to each core
� data shared by multiple cores is not replicated
� every block has a fixed “home” – hence, easy to find

the latest copy

• Advantages of a private L2 cache:
� quick access to private L2 – good for small working sets
� private bus to private L2 � less contention

20

Title

• Bullet

