Lecture 25: Synchronization, Consistency, VM

e Today’s topics:

= Synchronization primitives
= Consistency models
= Virtual memory basics



Snooping-Based Protocols

e Three states for a block: invalid, shared, modified
e A write is placed on the bus and sharers invalidate themselves
e The protocols are referred to as MSI, MESI, etc.

Main Memory |/O System




Cache Coherence Protocols

e Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

e Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

» Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

» Write-update: when a processor writes, it updates other
shared copies of that block



Constructing Locks

e Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel

processes modifying the data

e A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

e The hardware must provide some basic primitives that
allow us to construct locks with different properties

~

Rd $1000
Add $100
Wr $1100

Bank balance
S1000

Parallel (unlocked) banking transactions

\

Rd $1000
Add $200
Wr $1200




Synchronization

e The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

e Atomic exchange: swap contents of register and memory
e Special case of atomic exchange: test & set: transfer

memory location into register and write 1 into memory
(if memory has 0, lock is free)

e lock: t&s register, location When multiple parallel threads
bnz resister lock execute this code, only one
cS 5 ’ will be able to enter CS

st location, #0




Coherence Vs. Consistency

e Coherence guarantees (i) write propagation
(a write will eventually be seen by other processors), and
(ii) write serialization (all processors see writes to the
same location in the same order)

e The consistency model defines the ordering of writes and
reads to different memory locations — the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions



Consistency Example

e Consider a multiprocessor with bus-based snooping cache
coherence

Initially A=B=0
P1 P2

A< B& 1

if (B==0) if (A ==0)
Crit.Section Crit.Section




Consistency Example

e Consider a multiprocessor with bus-based snooping cache
coherence

Initially A=B=0
P1 P2

A< B& 1

if (B==0) if (A ==0)
Crit.Section Crit.Section

The programmer expected the
above code to implement a
lock — because of 000, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities



Sequential Consistency

e A multiprocessor is sequentially consistent if the result
of the execution is achievable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

e The multiprocessor in the previous example is not
sequentially consistent

e Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read — very intuitive for
the programmer, but extremely slow



Relaxed Consistency

e Sequential consistency is very slow

e The programming complications/surprises are caused when the
program has race conditions (two threads dealing with same
data and at least one of the threads is modifying the data)

e |f programmers are disciplined and enforce mutual exclusion
when dealing with shared data, we can allow some re-orderings

and higher performance

e This is effective at balancing performance & programming effort

10



Virtual Memory

e Processes deal with virtual memory — they have the
illusion that a very large address space is available to
them

e There is only a limited amount of physical memory that is
shared by all processes — a process places part of its
virtual memory in this physical memory and the rest is
stored on disk (called swap space)

e Thanks to locality, disk access is likely to be uncommon

e The hardware ensures that one process cannot access

the memory of a different process .



Virtual Memory

12



Address Translation

e The virtual and physical memory are broken up into pages

8KB page size

—

virtual page page offset >
number

‘ Translated to physical
page number

—

Physical address



Memory Hierarchy Properties

e A virtual memory page can be placed anywhere in physical
memory (fully-associative)

e Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

e A page table (indexed by virtual page number) is used for
translating virtual to physical page number

e The page table is itself in memory

14



