Lecture 24: Security, Multiprocessors

e Today’s topics:

= Security
= Cache coherence in multiprocessors

Consistenay Moded,

s
Qo]
éé-& \ {- Q
w , > /
\ QH&C/Q_/) Lp_., QC% :

(Qg_J\
Meltdown M ons k s

Spectre: Variant 1

if (x < arrayl_size)
y = array2[arrayl[x]];

Z O@A\Qa (’Q/vt'g o«(paqg-\,ci.a, A clear Code

Spectre: Variant 1 \tm Atbacke PRAME
—m
(Repc

x is controlled by Thanks to bpred, x can be anything

attacker
\ J arrayl|] is the secret
' : Tk -
Victim if (x < arrayl_size) ‘/a—f@oﬁ[x\s\, _
code ™ v=array2[arrayl[x]] J =g
, .
// \ Secret
\>

Access pattern of array2|[] betrays

\\,J Rl & ¢ thesecret
75- (Lo)\o“’{‘D ’(\/\
ol [] M@gzuu T
[_R

o —
a%ﬁ] £ a/mqoi

\W RT e sec

Spectre: Variant 2 LS E‘Q]

Victim code

R1 < (from attacker)
“R2 € some secret
e —

Attacker code LabeIO if (...)

LabelO: if (1) # \

Labell: ... C Victim code
—labell:

w [R2]

1L v 50 r\\
Multiprocessor Taxonomy . ,_t2 3 SQg\
)] & =~ 0 \ \

—_— 5 "

—_—

e SISD: single instruction and single data stream: uniprocessor

e MISD: no commercial multiprocessor: imagine data going

D \
k/

e SIMD: vector architectures: lower flexibility \3
..l/

e MIMD: most multiprocessors today: easy to construct with S

- _ -) — |
off-the-shelf computers, most flexibility /’3 C [
(>R 9

SL X ,
] s U
Vo —

1 (’/‘L)’ W7 6

Memory Organization - |

e Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

e Multiple processors connected to a single centralized
memory —since all processors see the same memory
organization = uniform memory access (UMA)

e Shared-memory because all processors can access the
entire memory address space

e Can centralized memory emerge as a bandwidth
bottleneck? — not if you have large caches and employ
fewer than a dozen processors

Snooping-Based Protocols

e Three states for a block: invalid, shared, modified
e A write is placed on the bus and sharers invalidate themselves
e The protocols are referred to as M3, MSI, MESI, etc.

P11 7 PBoax P4

RL X
W X

T
7

S>IMDg

|/O System WD

Snooping-Based Protocols

e Three states for a block: invalid, shared, modified
e A write is placed on the bus and sharers invalidate themselves
e The protocols are referred to as MSI, MESI, etc.

Main Memory |/O System

Example

e P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

e P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

e P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

e P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops

I and realizes it has the only valid copy, so it

downgrades itself to shared state and

responds with data, X is placed in cache-2
in shared state, memory is also updated

Main Memory
10

Example

Request | Cache Request | Who responds | State in | Statein | State in | Statein
Hit/Miss | on the bus Cache 1l | Cache 2 | Cache 3 | Cache 4
Inv Inv Inv Inv

P1: Rd X Rd Miss Rd X Memory S Inv Inv Inv
P2: Rd X Rd Miss Rd X Memory S S Inv Inv
P2: WrX Perms Upgrade X No response. Inv M Inv Inv
Miss Other caches = ==
invalidate. (>
P3: Wr X Wr Miss Wr X P2 responds Inv _Jlnv M Inv
P3:Rd X RdHit - - Inv Inv M Inv
P4:Rd X Rd Miss Rd X P3 responds. Inv Inv S 2 S
Mem wrtbk
/

b,
~ to Mewn

Cache Coherence Protocols

e Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

e Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

» Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

» Write-update: when a processor writes, it updates other
shared copies of that block

12

Constructing Locks

e Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel

processes modifying the data

e A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

e The hardware must provide some basic primitives that
allow us to construct locks with different properties

~

Rd $1000
Add $100
Wr $1100

Bank balance
S1000

Parallel (unlocked) banking transactions

\

Rd $1000
Add $200
Wr $1200

13

Synchronization

e The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

e Atomic exchange: swap contents of register and memory
e Special case of atomic exchange: test & set: transfer

memory location into register and write 1 into memory
(if memory has 0, lock is free)

e lock: t&s register, location When multiple parallel threads
bnz resister lock execute this code, only one
cS 5 ’ will be able to enter CS

st location, #0

14

Coherence Vs. Consistency

e Coherence guarantees (i) write propagation
(a write will eventually be seen by other processors), and
(ii) write serialization (all processors see writes to the
same location in the same order)

e The consistency model defines the ordering of writes and
reads to different memory locations — the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions

15

Consistency Example

e Consider a multiprocessor with bus-based snooping cache
coherence

Initially A=B=0
P1 P2

A< B& 1

if (B==0) if (A ==0)
Crit.Section Crit.Section

Consistency Example

e Consider a multiprocessor with bus-based snooping cache
coherence

Initially A=B=0
P1 P2

A< B& 1

if (B==0) if (A ==0)
Crit.Section Crit.Section

The programmer expected the
above code to implement a
lock — because of 000, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities 17

