
1

Lecture 24: Security, Multiprocessors

• Today’s topics:

 Security
 Cache coherence in multiprocessors

2

Meltdown

3

Spectre: Variant 1

if (x < array1_size)
y = array2[array1[x]];

4

Spectre: Variant 1

if (x < array1_size)
y = array2[array1[x]];

Victim
Code

x is controlled by
attacker

array1[] is the secret

Access pattern of array2[] betrays
the secret

Thanks to bpred, x can be anything

5

Spectre: Variant 2

R1  (from attacker)
R2  some secret
Label0: if (…)

… …

Victim code

Victim code
Label1:

lw [R2]

Attacker code

Label0: if (1)

Label1: …

6

Multiprocessor Taxonomy

• SISD: single instruction and single data stream: uniprocessor

• MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

• SIMD: vector architectures: lower flexibility

• MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility

7

Memory Organization - I

• Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors

8

Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

9

Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

10

Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

• P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops
and realizes it has the only valid copy, so it
downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state, memory is also updated

11

Example

State in
Cache 4

State in
Cache 3

State in
Cache 2

State in
Cache 1

Who respondsRequest
on the bus

Cache
Hit/Miss

Request

InvInvInvInv

InvInvInvSMemoryRd XRd MissP1: Rd X

InvInvSSMemoryRd XRd MissP2: Rd X

InvInvMInvNo response.
Other caches

invalidate.

Upgrade XPerms
Miss

P2: Wr X

InvMInvInvP2 respondsWr XWr MissP3: Wr X

InvMInvInv--Rd HitP3: Rd X

SSInvInvP3 responds.
Mem wrtbk

Rd XRd MissP4: Rd X

12

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

Write-update: when a processor writes, it updates other
shared copies of that block

13

Constructing Locks

• Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel
processes modifying the data

• A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

• The hardware must provide some basic primitives that
allow us to construct locks with different properties

Bank balance
$1000

Rd $1000
Add $100
Wr $1100

Rd $1000
Add $200
Wr $1200

Parallel (unlocked) banking transactions

14

Synchronization

• The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
memory location into register and write 1 into memory
(if memory has 0, lock is free)

• lock: t&s register, location
bnz register, lock
CS

st location, #0

When multiple parallel threads
execute this code, only one
will be able to enter CS

15

Coherence Vs. Consistency

• Coherence guarantees (i) write propagation
(a write will eventually be seen by other processors), and
(ii) write serialization (all processors see writes to the
same location in the same order)

• The consistency model defines the ordering of writes and
reads to different memory locations – the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions

16

Consistency Example

• Consider a multiprocessor with bus-based snooping cache
coherence

Initially A = B = 0
P1 P2

A  1 B  1
… …

if (B == 0) if (A == 0)
Crit.Section Crit.Section

17

Consistency Example

• Consider a multiprocessor with bus-based snooping cache
coherence

Initially A = B = 0
P1 P2

A  1 B  1
… …

if (B == 0) if (A == 0)
Crit.Section Crit.Section

The programmer expected the
above code to implement a

lock – because of ooo, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities

