
1

Lecture 24: Security, Multiprocessors

• Today’s topics: 

 Security
 Cache coherence in multiprocessors
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Meltdown
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Spectre: Variant 1

if  (x  <  array1_size)  
y = array2[ array1[x] ];
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Spectre: Variant 1

if  (x  <  array1_size)  
y = array2[ array1[x] ];

Victim 
Code

x  is controlled by 
attacker

array1[ ] is the secret

Access pattern of array2[ ] betrays 
the secret

Thanks to bpred, x can be anything
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Spectre: Variant 2

R1  (from attacker)
R2  some secret
Label0:  if (…) 

… … 

Victim code 

Victim code 
Label1:

lw [R2]

Attacker code 

Label0: if (1)

Label1:  …
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Multiprocessor Taxonomy

• SISD: single instruction and single data stream: uniprocessor

• MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

• SIMD: vector architectures: lower flexibility

• MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility
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Memory Organization - I

• Centralized shared-memory multiprocessor   or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors
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Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.
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Caches

Processor

Caches

Processor

Caches
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Caches

Main Memory I/O System
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Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.
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Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

• P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops
and realizes it has the only valid copy, so it
downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state, memory is also updated
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Example

State in 
Cache 4

State in 
Cache 3

State in 
Cache 2

State in 
Cache 1

Who respondsRequest
on the bus

Cache
Hit/Miss

Request

InvInvInvInv

InvInvInvSMemoryRd XRd MissP1: Rd X

InvInvSSMemoryRd XRd MissP2: Rd X

InvInvMInvNo response.
Other caches 

invalidate.

Upgrade XPerms 
Miss

P2: Wr X

InvMInvInvP2 respondsWr XWr MissP3: Wr X

InvMInvInv--Rd HitP3: Rd X

SSInvInvP3 responds. 
Mem wrtbk

Rd XRd MissP4: Rd X
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Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

Write-update: when a processor writes, it updates other
shared copies of that block
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Constructing Locks

• Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel
processes modifying the data

• A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

• The hardware must provide some basic primitives that
allow us to construct locks with different properties

Bank balance
$1000

Rd $1000
Add $100
Wr $1100

Rd $1000
Add $200
Wr $1200

Parallel (unlocked) banking transactions
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Synchronization

• The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
memory location into register and write 1 into memory
(if memory has 0, lock is free)

• lock:    t&s register, location
bnz register, lock
CS

st location, #0

When multiple parallel threads
execute this code, only one
will be able to enter CS
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Coherence Vs. Consistency

• Coherence guarantees (i) write propagation
(a write will eventually be seen by other processors), and
(ii) write serialization (all processors see writes to the
same location in the same order)

• The consistency model defines the ordering of writes and
reads to different memory locations – the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions
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Consistency Example

• Consider a multiprocessor with bus-based snooping cache
coherence

Initially A = B = 0
P1                        P2

A  1 B  1
…                        …

if (B == 0)           if (A == 0)
Crit.Section         Crit.Section
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Consistency Example

• Consider a multiprocessor with bus-based snooping cache
coherence

Initially A = B = 0
P1                        P2

A  1 B  1
…                        …

if (B == 0)           if (A == 0)
Crit.Section         Crit.Section

The programmer expected the
above code to implement a

lock – because of ooo, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities


