Lecture 19: Branches

e Today’s topics:

= Branch prediction
= (Also see class notes on pipelining, hazards, etc.)

N C\M% n Mo~

PoP/PoC Summary

Without bypassing:
PoP is typically whenever the register file write is completed
PoC is typically at the start of register file read

PoP is when the value to be written to the register is available

For an Add, right after the ALU stage

For a Load, right after the DM stage

For an FP-Add, right after all the FP-Add stages have finished
PoCis right before one of the compute units needs its input

For an Add, right before the ALU stage

For a Load, right before the ALU stage

For a store, one operand is needed right before ALU stage

one operand is needed right before DM stage

[Mo M Hol67 M
Control Hazards & ore b Coot cyde

yd CPL
|!E5::3,5l!i!: X ool W42 i Eee -

e Simple techniques to handle control hazard stalls: ¢ ¢7 = |.(/(7
» for every branch, introduce a stall cycle (note: every —
) 6t instruction is a branch!)

» assume the branch is not taken and start fetching the CP T =

/>l next instruction — if the branch is taken, need hardware |3 /7
+PrD to cancel the effect of the wrong-path instruction
» fetch the next instruction (branch delay slot) and 1 —

execute it anyway — if the instruction turns out to be (oy)f/’ﬁ>
on the correct path, useful work was done — if the "

instruction turns out to be on the wrong path, DB% DV)(%\

hopefully program state is not lost ((Q fa,j@

» make a smarter guess and fetch instructions from the
expected target B Prdichsn

Control Hazards c SJene)(u* DHCJ’
\Sv, © v (= E C foa” 9_
2;_‘%5\;~ //7 p 7) Ej‘ce/\
%69‘ L IF |D/RY AW | DM || RW | Y€
¥ 3 1| T4
- - - — T2 2P gle*fﬁ
P ber []LIF D/R || ALU|| DM || RW
A e X || R 2|
e ﬁ IF || D/R || ALU || DM || RW
i 12| 22|l Tz
@ﬁ\#\ (e
) -y (C F | D/R || ALU || DM || RW
oF s (Talen) . o 16 owe br
F@”ﬂl@ N e X0 s sl
2N\ Dﬁckb -

a. From before

—

add $s1, $s2, $s3

if $s2 = 0 then ——

—

Delay slot

A

Becomes

if $s2 = 0 then ——

add $s1, $s2, $s3

A

b. From target

sub $t4, $t5, $t6 J\ |
InS 0—0\9\
add $s1, $s2, $s3
if $s1 = 0 then ——)&f\
Delay slot ‘DP ‘(,C
Becomes “’5{;\1):;" 1) j 6‘;&]\
AN
add $s1, $s2, $s3 \ LY \j
if $s1 = 0 then ——
(D)
sub $t4, $t5, $t6 b ()‘G N 0" 0 f
6

Source: H&P textbook

Pipeline without Branch Predictor

T
Y

L

1
Pipeline with Branch Predictor X7 3&!

> AI\S 2

colf, 2

Branch
Predictor

e
T o -3 akﬁ/\ - W
\Q)\ N — docr
2
] value 0 1 pcedh NTT

'@A \raline 2151 frﬂ\ T

e

5 oy bl 8

Bimodal Predictor

40)
14 bits
Table of
Branch PC > 16K entries
) Q , \q&) saturating
counters

-
S 6
14 b

ZM e

2-Bit Prediction

e For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)

... sound familiar?

e |f (counter >= 2), predict taken, else predict not taken

e The counter attempts to capture the common case for

each branch

Indexing functions
Multiple branch predictors
History, trade-offs

10

Slowdowns from Stalls

e Perfect pipelining with no hazards = an instruction
completes every cycle (total cycles ~ num instructions)
- speedup = increase in clock speed = num pipeline stages

e With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled

instruction completes

e Total cycles = number of instructions + stall cycles

11

Multicycle Instructions

5 30 Erasdar Bohanos [LEEA)L A dghis rosorsed.

e Multiple parallel pipelines — each pipeline can have a different
number of stages

e |nstructions can now complete out of order — must make sure

that writes to a register happen in the correct order
12

