
1

Lecture 19: Branches

• Today’s topics:

 Branch prediction
 (Also see class notes on pipelining, hazards, etc.)

2

PoP/PoC Summary

Without bypassing:
PoP is typically whenever the register file write is completed
PoC is typically at the start of register file read

With bypassing:
PoP is when the value to be written to the register is available

For an Add, right after the ALU stage
For a Load, right after the DM stage
For an FP-Add, right after all the FP-Add stages have finished

PoC is right before one of the compute units needs its input
For an Add, right before the ALU stage
For a Load, right before the ALU stage
For a store, one operand is needed right before ALU stage

one operand is needed right before DM stage

3

Pipeline Depth

4

Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every

6th instruction is a branch!)
 assume the branch is not taken and start fetching the

next instruction – if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

 fetch the next instruction (branch delay slot) and
execute it anyway – if the instruction turns out to be
on the correct path, useful work was done – if the
instruction turns out to be on the wrong path,
hopefully program state is not lost

 make a smarter guess and fetch instructions from the
expected target

5

Control Hazards

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

6

Branch Delay Slots

Source: H&P textbook

7

Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4

8

Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-targetBranch

Predictor

9

Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters

10

2-Bit Prediction

• For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)
… sound familiar?

• If (counter >= 2), predict taken, else predict not taken

• The counter attempts to capture the common case for
each branch

Indexing functions
Multiple branch predictors
History, trade-offs

11

Slowdowns from Stalls

• Perfect pipelining with no hazards an instruction
completes every cycle (total cycles ~ num instructions)
 speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
instruction completes

• Total cycles = number of instructions + stall cycles

12

Multicycle Instructions

• Multiple parallel pipelines – each pipeline can have a different
number of stages

• Instructions can now complete out of order – must make sure
that writes to a register happen in the correct order

