Lecture 16: Basic Pipelining
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e Today’s topics:

= 5-stage pipeline

= Hazards 24 o 5’\%‘5\‘0\)?3
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Latches and Clocks in a Single-Cycle Design

PC Instr Reg ALU Addr Data

Mem File Memory
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e The entire instruction executes in a single cycle
e Green blocks are latches
e At the rising edge, a new PCis recordedT
e At the rising edge, the result of the previous cycle is recorded T
e At the falling edge, the address of LW/SW is recorded so T
we can access the data memory in the 29 half of the cycle




Multi-Stage Circuit

PC

e |Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
multiple stages, each separated by a latch
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The Assembly Line Thopd = | car
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Performance Improvements? T Jeal

* Does it take longer to finish each individual job? ‘\\D es
— (24 brs) (25 s

e Does it take shorter ta finish a series ofjpbs? Yes e ouhd)

Ne
* What assumptions were made while answering thesej
questions? Tha] ¢ o orkd  f “’\’Ms Lot S)f“f%
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e |s a 10-stage pipeline better than a 5 stage pipeline?
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A 5-Stage Pipeline L
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A 5-Stage Pipeline

Q(,'\/(\ Use the PC to access the I—cachjand increment PC by 4
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A 5-Stage Pipeline = '5M oy,

(fc= 0:67
Read registers, compare registers, compute branch target; for now, assume Cf _
branches take 2 cyc (there is enough work that branches € asily take more) E3Y
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A 5-Stage Pipeline //7 s pertmemed nfla

ALU computation, effective’address computation for load/store <
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A 5-Stage Pipeline

Write result of ALU computation or load into register file

Time (in clock cycles)
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Pipeline Summary . Csers Loshe oo+ be

-
1M RR ALU

ADDR1,R2, > R3 RdRLR2 RI+R2 @ Wr R3

BEQ R1,R2,100 RdR1,R2 -- -
/\&mpare, Set PC

LD 8[R3] > R?6 RAR3 ~ R3+8 Getdata WrR6

ST 8[R3] € R6 Rd R3,R6 R3+8 Wr data  --
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Performance Improvements? {6+ cacly

[PC= T =085
e Does it take longer to finish each individual job? No (u}&ak>
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e Does it take shorter to finish a series of jobs?

—— (M Cydey
e What assumptions were made while answering these Some
guestions? Lu bl
— No dependences between instructions Fonn Br
— Easy to partition circuits into uniform pipeline stages
— No latch overhead <

e |s a 10-stage pipeline better than a 5-stage pipeline?
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Quantitative Effects

e As a result of pipelining:

» Time in ns per instruction goes up

» Each instruction takes more cycles to execute

» But... average CPl remains roughly the same

» Clock speed goes up

» Total execution time goes down, resulting in lower
average time per instruction

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed
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Conflicts/Problems

e |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

e Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2

e Branch target changes only at the end of the second stage
-- what do you do in the meantime?
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Hazards

e Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

e Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

e Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways
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