Lecture 16: Basic Pipelining
t—___—-

e Today’s topics:

= 5-stage pipeline

= Hazards 24 o 5’\%‘5\‘0\)?3
| A | A | B+ | B | B |CHC/C

%ile 16% 32% 45% 58% 71% 86%

Rank 38 77 108 139 170 206
Score 90 84 79.1 /5.5 71 62.6
Lf)\‘rh/ "M

Latches and Clocks in a Single-Cycle Design

PC Instr Reg ALU Addr Data

Mem File Memory

Y Y Y

e The entire instruction executes in a single cycle
e Green blocks are latches
e At the rising edge, a new PCis recordedT
e At the rising edge, the result of the previous cycle is recorded T
e At the falling edge, the address of LW/SW is recorded so T
we can access the data memory in the 29 half of the cycle

Multi-Stage Circuit

PC

e |Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
multiple stages, each separated by a latch

L3

L4

Reg
File

L5

The Assembly Line Thopd = | car
24 (S

Q o A 2.4 fs
’)\ Unpipelined / Start and finish a job before moving to the next

a7y St
T2 3¢l

Pipelined 1 aap W\

Performance Improvements? T Jeal

* Does it take longer to finish each individual job? ‘\\D es
— (24 brs) (25 s

e Does it take shorter ta finish a series ofjpbs? Yes e ouhd)

Ne
* What assumptions were made while answering thesej
questions? Tha] ¢ o orkd f “’\’Ms Lot S)f“f%
Task s f@/&(}g ¢plct into 3

e |s a 10-stage pipeline better than a 5 stage pipeline?
r@ew?b | ’ ﬁ Oﬁ%’f ;Lo,na% —
— - b) =)
5 5 peedp= 29

0 1-9-9 gt

(

A 5-Stage Pipeline L

R ARG — P - — Dot
B Kc%gz M /jclﬁu Q:t/l K::z ~l cce
14 [| o L G 17

]
T5
7
|
o
L
|
=
[
2|

o
L1
] @7

Tpc =1 =21 T4 e e g%
T S \-bovoo[‘M % a—— J:
PR el ket 2

Source: H&P textbook 6

A 5-Stage Pipeline

Q(,'\/(\ Use the PC to access the I—cachjand increment PC by 4

L Time (in clock cycles) Z/, R‘%ﬂ ??_\ "'!/ Cf) I'VIPO’"‘Q—
C cCC LL CC/ CC 3 cC4 cCs CC 6
> IM — Reg l>\3| DM _Reg

l_/ 1 —

=b
O
\i
v
g
L
-
+
>
2
<
S
z
il
2
H
\ LKW

lextCrypoled [HE=1H

@/\% M {rsly

A 5-Stage Pipeline = '5M oy,

(fc= 0:67
Read registers, compare registers, compute branch target; for now, assume Cf _
branches take 2 cyc (there is enough work that branches € asily take more) E3Y
R \ . [

| . =

T%[m cycles} 6\(W [%m

cC1 cca

st 2 E%p%\

A 5-Stage Pipeline //7 s pertmemed nfla

ALU computation, effective’address computation for load/store <
Cyda

—

Time (in clock cycles) /

cC1 cca

el | PR T L N | e
U e ,r \72 ‘_ r_ Ur
>

Vi
- RY :
sl =
AT A U ade
I [—H; %7
muanvd =2

I

/l\ A

=
|
—Iz
7
8
v
L

A 5-Stage Pipeline

Write result of ALU computation or load into register file

Time (in clock cycles)

cC1

cca

i

cC 4

DM

=y

N
L

cC 6

r: Reg

I

11

Pipeline Summary . Csers Loshe oo+ be

-
1M RR ALU

ADDR1,R2, > R3 RdRLR2 RI+R2 @ Wr R3

BEQ R1,R2,100 RdR1,R2 -- -
/\&mpare, Set PC

LD 8[R3] > R?6 RAR3 ~ R3+8 Getdata WrR6

ST 8[R3] € R6 Rd R3,R6 R3+8 Wr data --

I A T I 4
wate (C(ng%

| ML \rshs

Performance Improvements? {6+ cacly

[PC= T =085
e Does it take longer to finish each individual job? No (u}&ak>

oo 1M (raks

—

e Does it take shorter to finish a series of jobs?

—— (M Cydey
e What assumptions were made while answering these Some
guestions? Lu bl
— No dependences between instructions Fonn Br
— Easy to partition circuits into uniform pipeline stages
— No latch overhead <

e |s a 10-stage pipeline better than a 5-stage pipeline?

T D@FMG”‘

13

Quantitative Effects

e As a result of pipelining:

» Time in ns per instruction goes up

» Each instruction takes more cycles to execute

» But... average CPl remains roughly the same

» Clock speed goes up

» Total execution time goes down, resulting in lower
average time per instruction

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed

14

Conflicts/Problems

e |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

e Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2

e Branch target changes only at the end of the second stage
-- what do you do in the meantime?

15

Hazards

e Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

e Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

e Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways

16

