Lecture 13: ALUs, Adders
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Equations:

Sum=Cin.A.B+
B.Cin.A+
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1-Bit ALU with Add, Or, And
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e Multiplexor selects between Add, Or, And operatlons
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32-bit Ripple Carry Adder

1-bit ALUs are connected
“in series” with the
carry-out of 1 box

going into the carry-in

of the next box
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Subs a - b
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Incorporating NOR and NAND

Ainvert Operation —_—

— Binvert Carryln 7&Q '\’l>> ;>
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Control Lines

What are the values
of the control lines

and what operations l
do they correspond to?
a—»

ALU operation

"‘Ai Bn_Op — Zero
AND 0 0 00 o
OR O O 01 ALU |— Result
Add 0 0 10 - Overflow
Sub 0 1 10 .
NAND 1 1 01
NOR 1 1 00

/ CarryOut

Source: H&P textbook
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e Perform a — b and check Binvert Carryin
the sign 1 v
8 a_ s H——ad % o
e New signal (Less) that 1 ' J
is zero for ALU boxes .F:D 1
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to detect overflow and : |
signh — the sign bit
Less . 3
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QOverflow = QOverflow
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Incorporating beg

Bnegate Operation
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Control Lines = |

What are the values
of the control lines

and what operations l Bf@‘
do they correspond to? W @nq/ﬁ(.

Ai Bn Op e 1 /
AND O O 00 - Ee
OR 0 0 01 > AL et
Add g O 106 —» Overflow
Ssub 0 1 10 . s
NOR 1 1 00 KF
NAND 1 1 01
SIT 0 1 11
BEQ 0 1 10 CarryOut
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B
Speed of Ripple Carry ® )7“/
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Prodscks 265
e The carry propagates thru every 1-bit box: each 1-bit box sequentially ('\/(»J;
implements AND and OR — total delay is the time to go through 64 gates! i
A — 10
e We've already seen that any logic equation can be expressed as the
sum of products — so it should be possible to compute the result by

going through only 2 gates! Suoen 38

Pod
e Caveat: need many parallel gates and each gate may have a very
large number of inputs — it is difficult to efficientl UI|d such large
g P yb ge W

gates, so we’ll find a compromise; “\(’ (
* moderate humber of gates 32—;)\‘% B“ULJQ O
= moderate r of inputs to each gate
= moderate number o tial gates traversed o

2 oS
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CompUtiﬂg CarryOut COUt:A-B+2\\.Cin+B.Cin

Carrylnl = b0.Carryln0O + a0.CarryInO + a0.b0
Carryln2 = bl1.Carrylnl + al.Carrylnl + al.b1l

21.60.c0 + 31.30.0 + a1.30.b0 + al. blj

Carryln32 = a really large sum of really large products

-

e Potentially fast implementation as the result is computed
by going thru just 2 levels of logic — unfortunately, each
gate is enormous and slow



Generate and Propagate | C

Equation re-phrased: 41 «
Ci+1 = ai.bi + ai.Ci + bi.Ci
= (ai.l b|) + (ai + bi). C| — 4 L
“—Q

Stated verbaIIy, the cu rre?t pair of bits will generate a carry
if they are both 1 and the current pair of bits will propagate

a carry if eitheris 1 C % 6’ 4 F Cio
6 03
Generate signal =ai.bi_ = 9,
Propagate signal =ai + bi = P, -
L

Therefore, Ci+1 = Gi + Pi . Ci
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=
€c1=90+p0.cO_

02—g1+p1.c1
- =9g1+p1.9g0+p1.p0.cO
c3 = 92+p2 1+ p2 0+

3= 3 N C G 3o
Eit3r12/er, N EJZ A > AND

a carry was just geriterated, or \

a carry was generated in the Igst step and-was propagated, or

a carry was generated two steps/backand was propagated by both
the next two stages, or

a carry was generated N steps back and was propagated by every
single one of the N next stages
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Divide and Conquer

e The equations on the previous slide are still difficult to implement
as logic functions — for the 32" bit, we must AND every single
propagate bit to determine what becomes of cO (among other
things)

e Hence, the bits are broken into groups (of 4) and each group
computes its group-generate and group-propagate

e For example, to add 32 numbers, you can partition the task as

AN AN AN AN
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P and G for 4-bit Blocks ﬂ

C1 T o
e Compute PO and GO (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)

o

e Carry out of the first group of 4 bits is Q \ (/\
_CL=G0+P0.0 AERAE
© )rp ()P

C2=G1+P1.GO + P1.P0.cO
C3=G2+ (P2.G1) + (P2.P1.GO) + (P2.P1.P0.c0)
C4 = G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.GO0) + (P3.P2.P1.P0.c0)
= ——— 43
e By having a tree of sub-computations, each AND, OR gate has few
inputs and logic signals have to travel through a modest set of %
gates (equal to the height of the tree) - '\'\P(Ai,

~

PO = p0.pl.p2.p3
GO=g3+g2.p3+gl.p2.p3+g0.pl.p2.p3 A Y SV;’({Y od
"n




Example

Add A 0001 1010 0011 0011
B 1110 0101 1110 1011

g 0000 0000 0010 0011
p 111 1111 1111 1011
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Trade-Off Curve

#inputs to each gate
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# sequential gates

gp adder (3, 33)

Carry Lookahead GP adder (7, 5)

¢ ARippIe-Ca rry
( adder (64, 2)

7 # sequential gates
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Carry Look-Ahead Adder

e 16-bit Ripple-carry
takes 32 steps

e This design takes
how many steps?
5 sequential steps
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