Lecture 13: ALUs, Adders

_’}% UQ@A\
e HW 5 due 2/25 /2/2@
)) , -
e Today’s topics: f out™
Xdz (pB
= ALU 0B O \ TO
= Carry-lookahead adder . Co
E \ '. | o
1 o
gmws \ L

YN + XY 2 |

7
—1;‘:3% s of 53

Adder Algorithm y\poffi\ “‘\

Ca/fjm: = |
& bk 1 0 O 1
B ()L*’S 0 1 1 \
Equations:
Sum 1 \1 \1 \\O Gm =Cin.A.B +
Carry | 1/‘ ~— B.Gn.A+
A.Cin.B+
Truth Table for the above operations: A . B.Cin
A B Cin Sum Lout A Cin A
5 5 5 0/ 0 Cout=A.B.Cin+ s
0 0 1 1 0 A.B.Cin+
v T o 10 A.Cin.B+
0 1 1 0o 1 B.Cin.A
1 0 0 1 0 =A.B +
1 0 1 0 1 A .Cin +
1 1 0 0 1 B . Cin
1 1 1 1 1 2

> b ROX

Equations:

Sum=Cin.A.B+
B.Cin.A+
A.Cin.B+
A.B.gn

Cout=A.B.Cin+
A.B.Cin+
A.Cin.B+
B.Cin.A
=A.B +
A.Cin+

BCGin
Source: H&P textbook Qov\k L CarrYOUt &/ /\\/\Q

52 230 AA&SM

> Bafloed & (o \mJL Unal
1-Bit ALU with Add, Or, And

1 1

e Multiplexor selects between Add, Or, And operatlons
Py p_
- Operat

Carryln
d A

—

a__.—*P\tQP P D (--\

— ") °

I) OR >D& 1 > Result

CarryOut Source: H&P texlgook 4

32-bit Ripple Carry Adder

1-bit ALUs are connected
“in series” with the
carry-out of 1 box

going into the carry-in

of the next box

Carryln

Operation

L

Carryln
ALUO
CarryOut

-

al —»

b1 —»

Carryin
ALUA
CarryOut

Y

Result0

Y

Result1

Y \i

a2 —»

b2 —»

Carryin
ALU2
CarryOut

A

Result2

¢

|

a3l —»

b31—

Carryln
ALU31

Source:

Result31 5

H&P textbook

Subs a - b

Incorporating Subtraction by
—
b= _b 7_49 p A\&nw{r ﬁ:*" ‘VﬁjP@/
- \5 5
Cod all bits +4 s BT e
) g \\5 Y
Must invert bits of Band add a 1) | ,‘ (0-\

¢ Include an inverter

e Carryln for the first bit is 1 5
 The Carryln signal (for the , /i) 1 > Result
first bit) can be me Y
()

as the Binvert 5|gnal b 0), r . ,
Ac)\& o¥ L[>o_t/ o N
Sab D 7 N+
o |

ofx
Y o-b
A sz CarryOut
l e — Source: H&P textbook

6

Incorporating NOR and NAND

Ainvert Operation —_—

— Binvert Carryln 7&Q '\’l>> ;>

—

Y

) "

= 0 ’.) 'Tp /w
NMEaeB o
VAN T[> NAND

!
iﬁjs(

S

=

s \
%

(=

b_/
N

Y b
b e | o
+ 2
|—[>xk1 b ~—
_/ oY
b Y
CarryOut 7

Source: H&P textbook

Control Lines

What are the values
of the control lines

and what operations l
do they correspond to?
a—»

ALU operation

"‘Ai Bn_Op — Zero
AND 0 0 00 o
OR O O 01 ALU |— Result
Add 0 0 10 - Overflow
Sub 0 1 10 .
NAND 1 1 01
NOR 1 1 00

/ CarryOut

Source: H&P textbook

o< b A SR EN]

Incorporating slt clse v 0
,H‘Q/ 000 OD o ‘!¢ OD _
O \!Ck eu B s & Ba b Ainvert Operation
e Perform a — b and check Binvert Carryin
the sign 1 v
8 a_ s H——ad % o
e New signal (Less) that 1 ' J
is zero for ALU boxes .F:D 1
1_31 //r
L r [~ Result
e The 31°t box has a unit b ﬂ‘ y " ol 2
to detect overflow and : |
signh — the sign bit
Less . 3
sgrves as the Less =y
signal for the 0t box I ~ Set
QOverflow = QOverflow
detection
9

Source: H&P textbook

Incorporating beg

Bnegate Operation

Ainvert
[3 o

ivll

* Performa—b and G| G |
confirm that the bﬂ; Pﬁ:ﬁ: —
result is all zero’s CarryOut

| &
'Yy Vv L

al —{ Carryln

Result1

b1 — ALU1 T -
00— Less
CarryOut > >—D3—‘ Zero
I\ —=

e ——
a2 —» Carryln

L

Yy

b2 ALU2 Result2
00— Less
CarryOut

'

Carryln

—_—

as3l—-» Carryln —:F{esultm
b31—s ALU31 ¢ Set
00— Less ' = QOverflow
N 10
\ /

Source: H&P textbook

Control Lines = |

What are the values
of the control lines

and what operations l Bf@‘
do they correspond to? W @nq/ﬁ(.

Ai Bn Op e 1 /
AND O O 00 - Ee
OR 0 0 01 > AL et
Add g O 106 —» Overflow
Ssub 0 1 10 . s
NOR 1 1 00 KF
NAND 1 1 01
SIT 0 1 11
BEQ 0 1 10 CarryOut

Source: H&P textbook 11

B
Speed of Ripple Carry ®)7“/

<,
>V

:>
Prodscks 265
e The carry propagates thru every 1-bit box: each 1-bit box sequentially ('\/(»J;
implements AND and OR — total delay is the time to go through 64 gates! i
A — 10
e We've already seen that any logic equation can be expressed as the
sum of products — so it should be possible to compute the result by

going through only 2 gates! Suoen 38

Pod
e Caveat: need many parallel gates and each gate may have a very
large number of inputs — it is difficult to efficientl UI|d such large
g P yb ge W

gates, so we’ll find a compromise; “\(’ (
* moderate humber of gates 32—;)\‘% B“ULJQ O
= moderate r of inputs to each gate
= moderate number o tial gates traversed o

2 oS

12

CompUtiﬂg CarryOut COUt:A-B+2\\.Cin+B.Cin

Carrylnl = b0.Carryln0O + a0.CarryInO + a0.b0
Carryln2 = bl1.Carrylnl + al.Carrylnl + al.b1l

21.60.c0 + 31.30.0 + a1.30.b0 + al. blj

Carryln32 = a really large sum of really large products

-

e Potentially fast implementation as the result is computed
by going thru just 2 levels of logic — unfortunately, each
gate is enormous and slow

Generate and Propagate | C

Equation re-phrased: 41 «
Ci+1 = ai.bi + ai.Ci + bi.Ci
= (ai.l b|) + (ai + bi). C| — 4 L
“—Q

Stated verbaIIy, the cu rre?t pair of bits will generate a carry
if they are both 1 and the current pair of bits will propagate

a carry if eitheris 1 C % 6’ 4 F Cio
6 03
Generate signal =ai.bi_ = 9,
Propagate signal =ai + bi = P, -
L

Therefore, Ci+1 = Gi + Pi . Ci

14

=
€c1=90+p0.cO_

02—g1+p1.c1
- =9g1+p1.9g0+p1.p0.cO
c3 = 92+p2 1+ p2 0+

3= 3 N C G 3o
Eit3r12/er, N EJZ A > AND

a carry was just geriterated, or \

a carry was generated in the Igst step and-was propagated, or

a carry was generated two steps/backand was propagated by both
the next two stages, or

a carry was generated N steps back and was propagated by every
single one of the N next stages

15

Divide and Conquer

e The equations on the previous slide are still difficult to implement
as logic functions — for the 32" bit, we must AND every single
propagate bit to determine what becomes of cO (among other
things)

e Hence, the bits are broken into groups (of 4) and each group
computes its group-generate and group-propagate

e For example, to add 32 numbers, you can partition the task as

AN AN AN AN

16

P and G for 4-bit Blocks ﬂ

C1 T o
e Compute PO and GO (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)

o

e Carry out of the first group of 4 bits is Q \ (/\
_CL=G0+P0.0 AERAE
©)rp ()P

C2=G1+P1.GO + P1.P0.cO
C3=G2+ (P2.G1) + (P2.P1.GO) + (P2.P1.P0.c0)
C4 = G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.GO0) + (P3.P2.P1.P0.c0)
= ——— 43
e By having a tree of sub-computations, each AND, OR gate has few
inputs and logic signals have to travel through a modest set of %
gates (equal to the height of the tree) - '\'\P(Ai,

~

PO = p0.pl.p2.p3
GO=g3+g2.p3+gl.p2.p3+g0.pl.p2.p3 A Y SV;’({Y od
"n

Example

Add A 0001 1010 0011 0011
B 1110 0101 1110 1011

g 0000 0000 0010 0011
p 111 1111 1111 1011

18

Trade-Off Curve

#inputs to each gate

[

(e
& O
&
Truth table = A
« sum-of-products adder, (2, 2%%) ch_> -
\,&) ’
.\ ;

sequential gates

gp adder (3, 33)

Carry Lookahead GP adder (7, 5)

¢ ARippIe-Ca rry
(adder (64, 2)

7 # sequential gates

19

Carry Look-Ahead Adder

e 16-bit Ripple-carry
takes 32 steps

e This design takes
how many steps?
5 sequential steps

Car|ryln
v
a0 —= Carryin
b0 —= g Resuli0-3
al —=
b1 —
a2 — ALUO
b2 — PO —— pi
a3 —-» I T
b3 —» GO0 g/
C1 afied Carry-lookahead unit
a4 —= Carryin
b4 —= = Result4—7
a5 —
b5 —=
ab—s={ ALU1
b6 —= p{ —— pi+1
a7 — = gi+1
b7 —» G1 g
cz2 ;
R U
a8 —* Carryin |
b8 — - Resultg-11
a9 —=
b9 —»
al0—= ALUZ2
b10 —= P2 —— pi+2
all —= i+2
ori— [°
C3 ;
l— ci+3
al2 —= Cafryln
b12 —»= Result12-15
ald—=
B13—
ald —=| ALU3
b14 — P3 ——{ pi+3
a15—= ——= gi+3
15— @3 B ¢
l— ci+4
CarmyQu Source: H&P textbook

20

