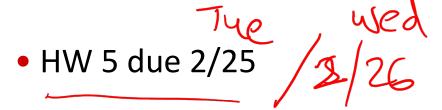
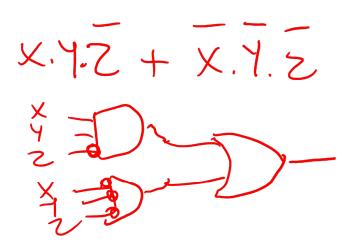
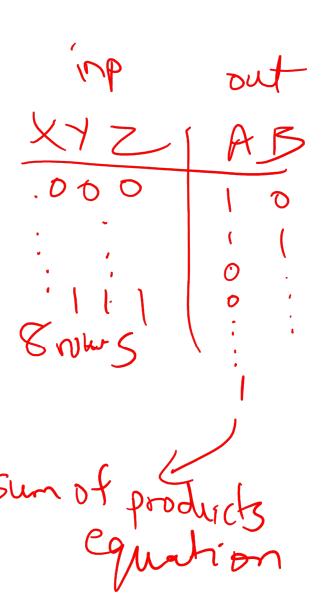
Lecture 13: ALUs, Adders

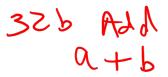


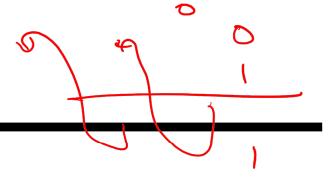
- Today's topics:
 - ALU
 - Carry-lookahead adder





Adder Algorithm





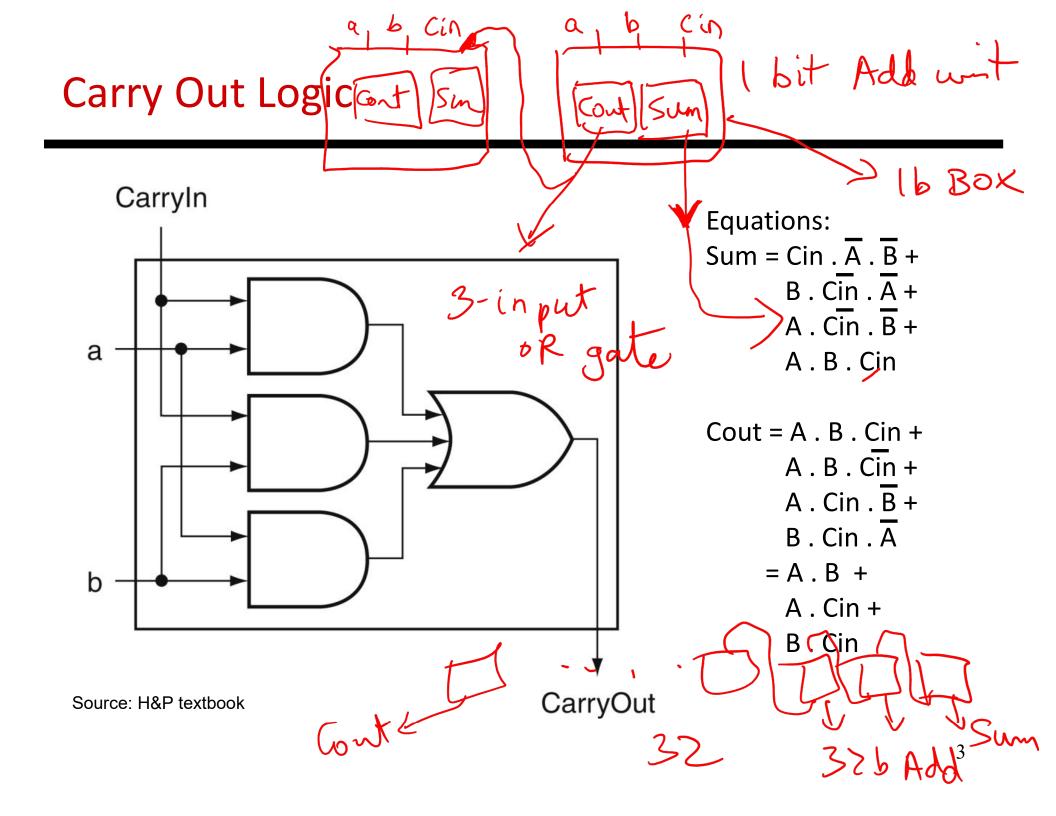
Carryin: a bits: 1 0 0 1 b bits: 0 1 0 1 Sum 1 1 1 0 Carry 0 0 0 1

Truth Table for the above operations:

 Α	В	Cin	Sum Cout
0	0	0	0 / 0
0	0	1	1 0
0	1	0	1 0
0	1	1	0 1
1	0	0	1 0
1	0	1	0 1
1	1	0	0 1
1	1	1	
			1

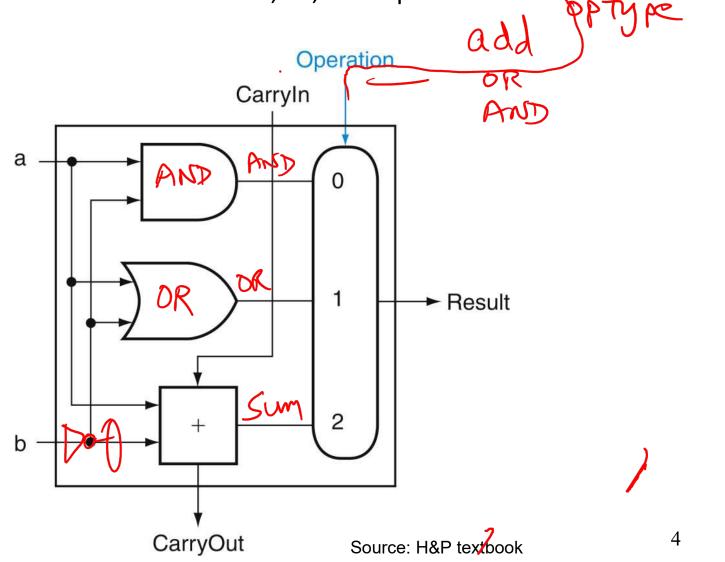
Equations:

$$= A . B +$$



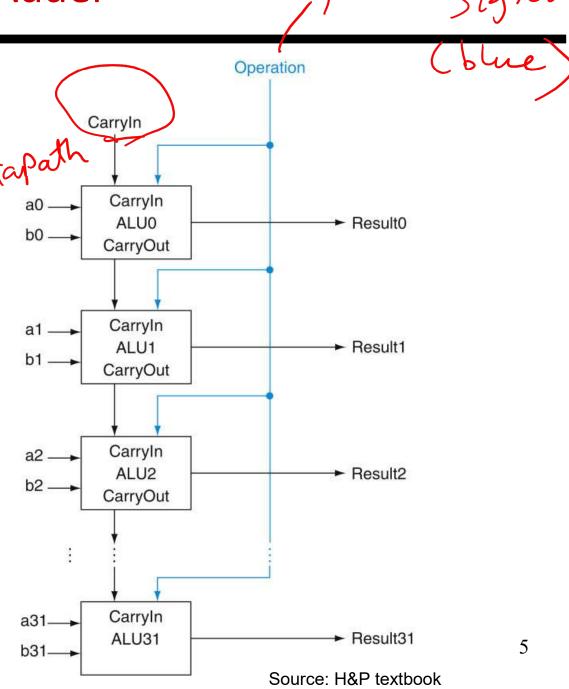
1-Bit ALU with Add, Or, And

• Multiplexor selects between Add, Or, And operations



32-bit Ripple Carry Adder

1-bit ALUs are connected "in series" with the carry-out of 1 box going into the carry-in of the next box



Incorporating Subtraction

SuB

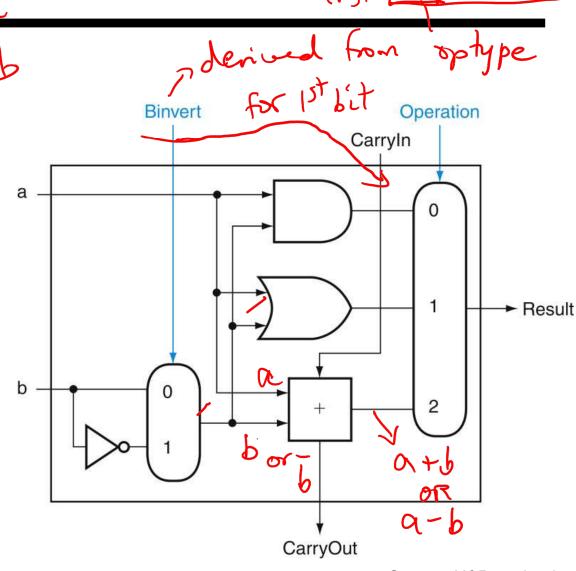
32b Q - b

b => -b Loinvall bits, +1

Must invert bits of B and add a 1

- Include an inverter
- CarryIn for the first bit is 1
- The Carryln signal (for the first bit) can be the same as the Binvert signal

Add or sub AND



Source: H&P textbook

Incorporating NOR and NAND

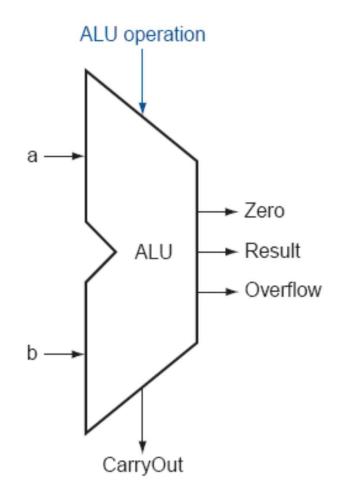


Source: H&P textbook

Control Lines

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Op
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
NAND	1	1	01
NOR	1	1	00



Source: H&P textbook

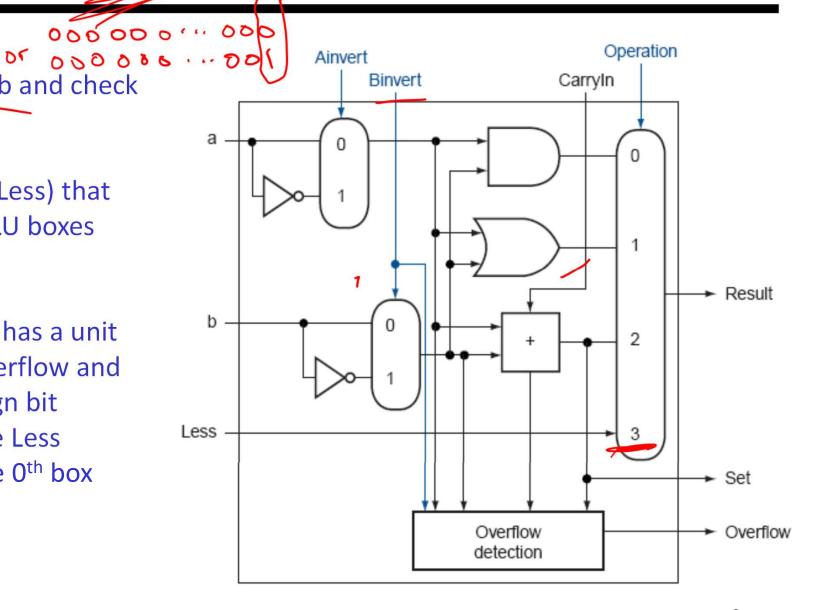
Incorporating slt

if a < b then set out to 1
else out to 0

Perform a – b and check
 the sign

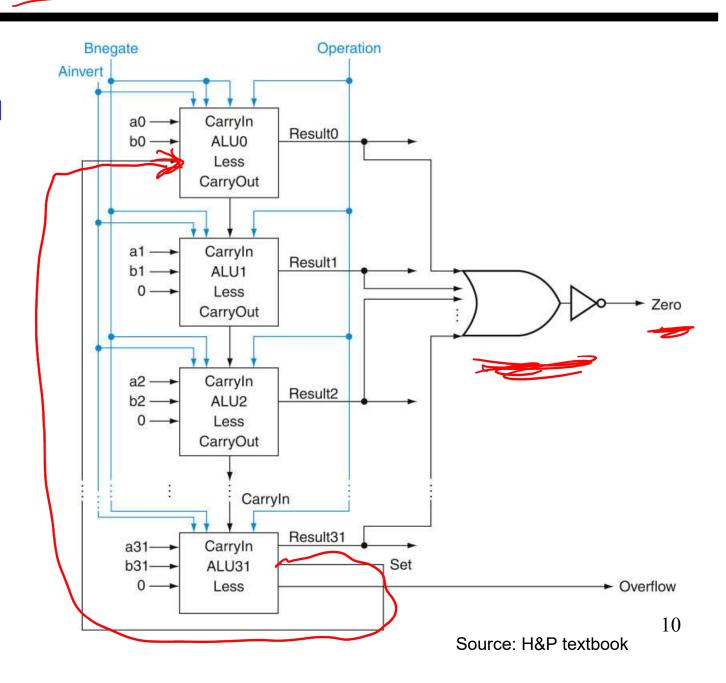
eithe

- New signal (Less) that is zero for ALU boxes 1-31
- The 31st box has a unit to detect overflow and sign – the sign bit serves as the Less signal for the 0th box



Incorporating beq

 Perform a – b and confirm that the result is all zero's

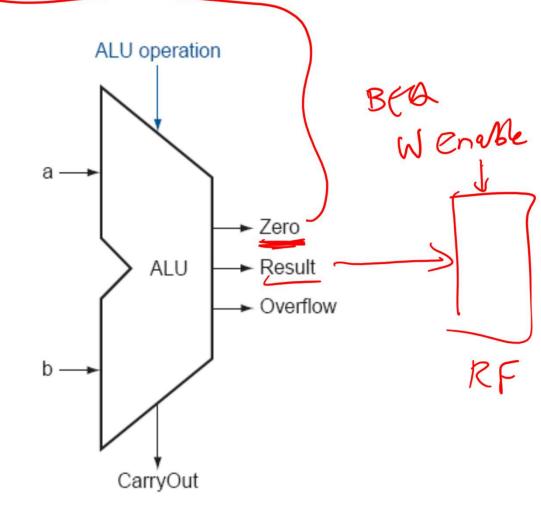


Control Lines

PC+4 or Label

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Op
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
NOR	1	1	00
NAND	1	1	01
SLT	0	1	11
BEQ	0	1	10



Speed of Ripple Carry

- Products
 it box sequentially
- The carry propagates thru every 1-bit box: each 1-bit box sequentially implements AND and OR — total delay is the time to go through 64 gates!
- We've already seen that any logic equation can be expressed as the sum of products – so it should be possible to compute the result by going through only 2 gates!
- Caveat: need many parallel gates and each gate may have a very large number of inputs it is difficult to efficiently build such large gates, so we'll find a compromise:
 - moderate number of gates
 - moderate number of inputs to each gate
 - moderate number of sequential gates traversed

Computing CarryOut

Cout = A . B + A . Cin + B . Cin

```
CarryIn1 = b0.CarryIn0 + a0.CarryIn0 + a0.b0

CarryIn2 = b1.CarryIn1 + a1.CarryIn1 + a1.b1

= b1.b0.c0 + b1.a0.c0 + b1.a0.b0 + a1.b0.c0 + a1.a0.b0 + a1.b1
```

CarryIn32 = a really large sum of really large products

 Potentially fast implementation as the result is computed by going thru just 2 levels of logic – unfortunately, each gate is enormous and slow

Expl extremes
(improchical)

13

Generate and Propagate

Equation re-phrased:

Stated verbally, the current pair of bits will *generate* a carry if they are both 1 and the current pair of bits will *propagate* a carry if either is 1 $C_{out} > C_{out} > C_{out}$

Generate signal =
$$ai.bi$$
 = $9i$
Propagate signal = $ai + bi$ = $9i$

Therefore,
$$Ci+1 = Gi + Pi$$
. Ci

Generate and Propagate AND

= g0 + p0.c0

c2 = g1 + p1.c1

9i - P31 P38 ··· Po · C

= g1 + p1.g0 + p1.p0.c0c3 = g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0

c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0

ンクスラ Either,

a carry was just generated, or

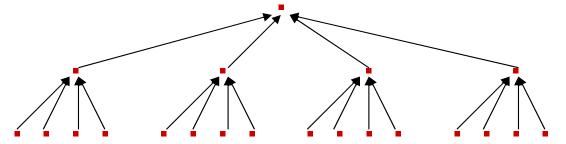
a carry was generated in the last step and was propagated, or

a carry was generated two steps back and was propagated by both the next two stages, or

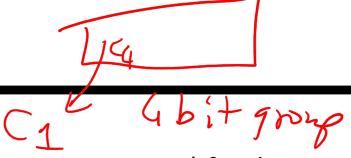
a carry was generated N steps back and was propagated by every single one of the N next stages

Divide and Conquer

- The equations on the previous slide are still difficult to implement as logic functions – for the 32nd bit, we must AND every single propagate bit to determine what becomes of c0 (among other things)
- Hence, the bits are broken into groups (of 4) and each group computes its group-generate and group-propagate
- For example, to add 32 numbers, you can partition the task as a tree



P and G for 4-bit Blocks



 Compute P0 and G0 (super-propagate and super-generate) for the first group of 4 bits (and similarly for other groups of 4 bits)

$$P0 = p0.p1.p2.p3$$

 $G0 = g3 + g2.p3 + g1.p2.p3 + g0.p1.p2.p3$

- Carry out of the first group of 4 bits is

 C1 = G0 + P0.c0

 C2 = G1 + P1.G0 + P1.P0.c0

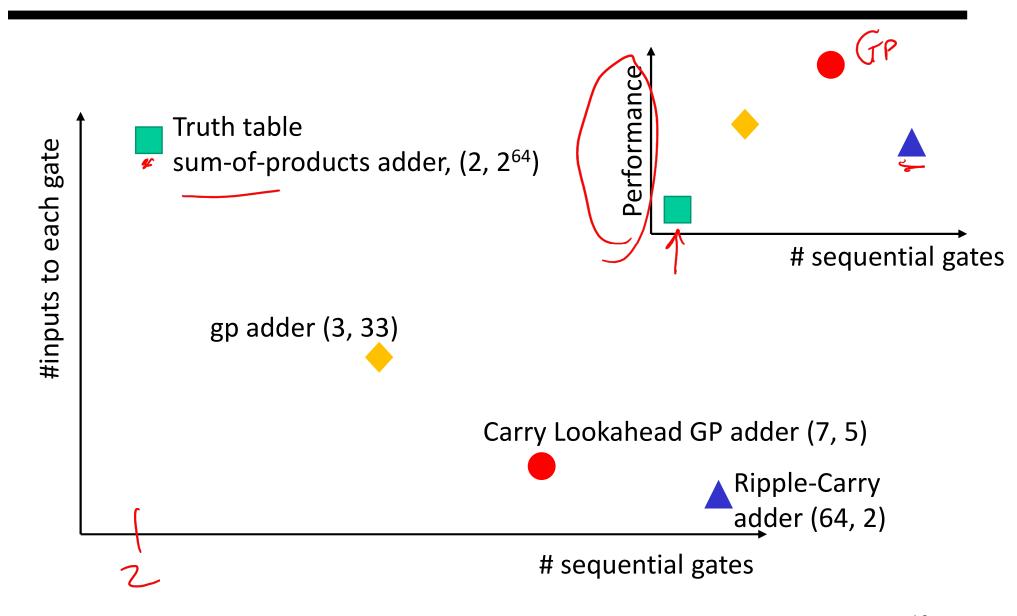
 C3 = G2 + (P2.G1) + (P2.P1.G0) + (P2.P1.P0.c0)

 C4 = G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0) + (P3.P2.P1.P0.c0)
- By having a tree of sub-computations, each AND, OR gate has few inputs and logic signals have to travel through a modest set of gates (equal to the height of the tree)

Example

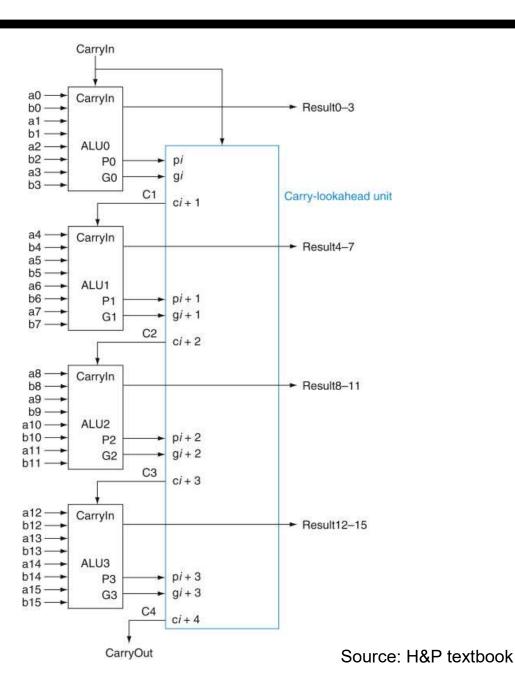
```
0001 1010 0011
                          0011
Add
     Α
         1110
              0101
                    1110
                          1011
     В
         0000
               0000 0010
                          0011
     g
                     1111
         1111
               1111
                          1011
     p
     C4 = 1
```

Trade-Off Curve



Carry Look-Ahead Adder

- 16-bit Ripple-carry takes 32 steps
- This design takes how many steps?5 sequential steps



20