
1

Lecture 12: Hardware for Arithmetic

• Today’s topics:

 Digital logic intro
 Logic for common operations
 Designing an ALU

2

Subword Parallelism

• ALUs are typically designed to perform 64-bit or 128-bit
arithmetic

• Some data types are much smaller, e.g., bytes for pixel
RGB values, half-words for audio samples

• Partitioning the carry-chains within the ALU can convert
the 64-bit adder into 4 16-bit adders or 8 8-bit adders

• A single load can fetch multiple values, and a single
add instruction can perform multiple parallel additions,
referred to as subword parallelism

3

Digital Design Basics

• Two voltage levels – high and low (1 and 0, true and false)
Hence, the use of binary arithmetic/logic in all computers

• A transistor is a 3-terminal device that acts as a switch

V

V

0

0

Conducting 0

V

0

V

Non-conducting

4

Logic Blocks

• A logic block has a number of binary inputs and produces
a number of binary outputs – the simplest logic block is
composed of a few transistors

• A logic block is termed combinational if the output is only
a function of the inputs

• A logic block is termed sequential if the block has some
internal memory (state) that also influences the output

• A basic logic block is termed a gate (AND, OR, NOT, etc.)

We will only deal with combinational circuits today

5

Truth Table

• A truth table defines the outputs of a logic block for each
set of inputs

• Consider a block with 3 inputs A, B, C and an output E
that is true only if exactly 2 inputs are true

A B C E

6

Truth Table

• A truth table defines the outputs of a logic block for each
set of inputs

• Consider a block with 3 inputs A, B, C and an output E
that is true only if exactly 2 inputs are true

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Can be compressed by only
representing cases that
have an output of 1

7

Boolean Algebra

• Equations involving two values and three primary operators:

 OR : symbol + , X = A + B  X is true if at least one of
A or B is true

 AND : symbol . , X = A . B  X is true if both A and B
are true

 NOT : symbol , X = A  X is the inverted value of A

8

Boolean Algebra Rules

• Identity law : A + 0 = A ; A . 1 = A

• Zero and One laws : A + 1 = 1 ; A . 0 = 0

• Inverse laws : A . A = 0 ; A + A = 1

• Commutative laws : A + B = B + A ; A . B = B . A

• Associative laws : A + (B + C) = (A + B) + C
A . (B . C) = (A . B) . C

• Distributive laws : A . (B + C) = (A . B) + (A . C)
A + (B . C) = (A + B) . (A + C)

9

DeMorgan’s Laws

• A + B = A . B

• A . B = A + B

• Confirm that these are indeed true

10

Pictorial Representations

AND OR NOT

What logic function is this?

Source: H&P textbook

Source: H&P textbook

11

Boolean Equation

• Consider the logic block that has an output E that is true
only if exactly two of the three inputs A, B, C are true

Multiple correct equations:

Two must be true, but all three cannot be true:
E = ((A . B) + (B . C) + (A . C)) . (A . B . C)

Identify the three cases where it is true:
E = (A . B . C) + (A . C . B) + (C . B . A)

12

Sum of Products

• Can represent any logic block with the AND, OR, NOT operators
 Draw the truth table
 For each true output, represent the corresponding inputs

as a product
 The final equation is a sum of these products

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

(A . B . C) + (A . C . B) + (C . B . A)

• Can also use “product of sums”
• Any equation can be implemented

with an array of ANDs, followed by
an array of ORs

13

NAND and NOR

• NAND : NOT of AND : A nand B = A . B

• NOR : NOT of OR : A nor B = A + B

• NAND and NOR are universal gates, i.e., they can be
used to construct any complex logical function

14

Common Logic Blocks – Decoder

Takes in N inputs and activates one of 2N outputs

I0 I1 I2 O0 O1 O2 O3 O4 O5 O6 O7

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

3-to-8
Decoder

I0-2 O0-7

15

Common Logic Blocks – Multiplexor

• Multiplexor or selector: one of N inputs is reflected on the
output depending on the value of the log2N selector bits

2-input mux
Source: H&P textbook

16

Adder Algorithm

1 0 0 1
0 1 0 1

Sum 1 1 1 0
Carry 0 0 0 1

A B Cin Sum Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Truth Table for the above operations:

17

Adder Algorithm

1 0 0 1
0 1 0 1

Sum 1 1 1 0
Carry 0 0 0 1

A B Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Truth Table for the above operations:

Equations:
Sum = Cin . A . B +

B . Cin . A +
A . Cin . B +
A . B . Cin

Cout = A . B . Cin +
A . B . Cin +
A . Cin . B +
B . Cin . A

= A . B +
A . Cin +
B . Cin

18

Carry Out Logic

Equations:
Sum = Cin . A . B +

B . Cin . A +
A . Cin . B +
A . B . Cin

Cout = A . B . Cin +
A . B . Cin +
A . Cin . B +
B . Cin . A

= A . B +
A . Cin +
B . Cin

Source: H&P textbook

19

1-Bit ALU with Add, Or, And

• Multiplexor selects between Add, Or, And operations

Source: H&P textbook

20

32-bit Ripple Carry Adder

1-bit ALUs are connected
“in series” with the
carry-out of 1 box
going into the carry-in
of the next box

Source: H&P textbook

