Lecture 12: Hardware for Arithmetic

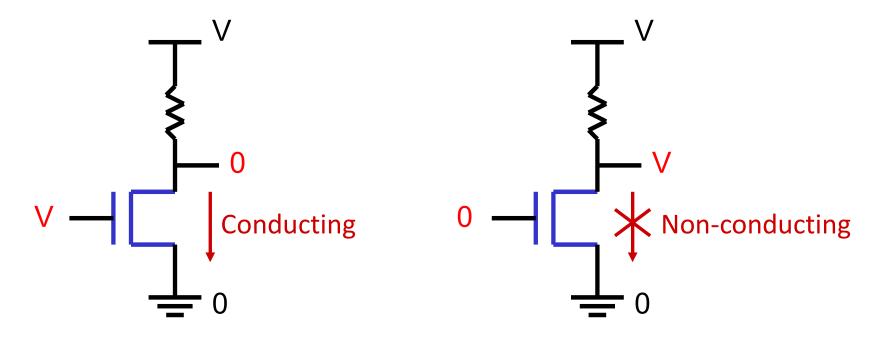
- Today's topics:
 - Digital logic intro
 - Logic for common operations
 - Designing an ALU

Subword Parallelism

- ALUs are typically designed to perform 64-bit or 128-bit arithmetic
- Some data types are much smaller, e.g., bytes for pixel RGB values, half-words for audio samples
- Partitioning the carry-chains within the ALU can convert the 64-bit adder into 4 16-bit adders or 8 8-bit adders
- A single load can fetch multiple values, and a single add instruction can perform multiple parallel additions, referred to as subword parallelism

Digital Design Basics

- Two voltage levels high and low (1 and 0, true and false)
 Hence, the use of binary arithmetic/logic in all computers
- A transistor is a 3-terminal device that acts as a switch



Logic Blocks

- A logic block has a number of binary inputs and produces a number of binary outputs – the simplest logic block is composed of a few transistors
- A logic block is termed combinational if the output is only a function of the inputs
- A logic block is termed sequential if the block has some internal memory (state) that also influences the output
- A basic logic block is termed a gate (AND, OR, NOT, etc.)
 - We will only deal with combinational circuits today

Truth Table

 A truth table defines the outputs of a logic block for each set of inputs

 Consider a block with 3 inputs A, B, C and an output E that is true only if exactly 2 inputs are true

Α	В	С	E

Truth Table

- A truth table defines the outputs of a logic block for each set of inputs
- Consider a block with 3 inputs A, B, C and an output E that is true only if exactly 2 inputs are true

Α	В	C	E	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	Can be compressed by only
1	0	1	1	representing cases that
1	1	0	1	have an output of 1
1	1	1	0	
				6

Boolean Algebra

- Equations involving two values and three primary operators:
 - OR: symbol + , X = A + B → X is true if at least one of A or B is true
 - AND : symbol . , X = A . B → X is true if both A and B are true
 - NOT : symbol $X = A \rightarrow X$ is the inverted value of A

Boolean Algebra Rules

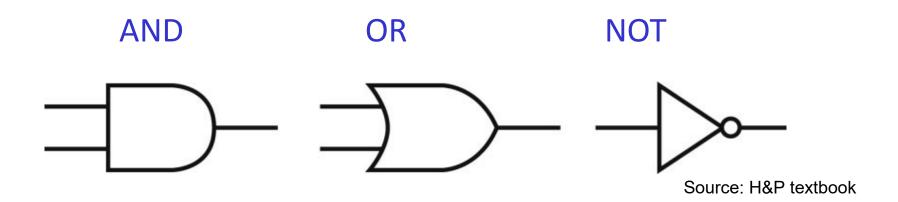
- Identity law: A + 0 = A; $A \cdot 1 = A$
- Zero and One laws: A + 1 = 1; A.0 = 0
- Inverse laws : $A \cdot A = 0$; A + A = 1
- Commutative laws: A + B = B + A ; A . B = B . A
- Associative laws : A + (B + C) = (A + B) + C
 A . (B . C) = (A . B) . C
- Distributive laws : A . (B + C) = (A . B) + (A . C)A + (B . C) = (A + B) . (A + C)

DeMorgan's Laws

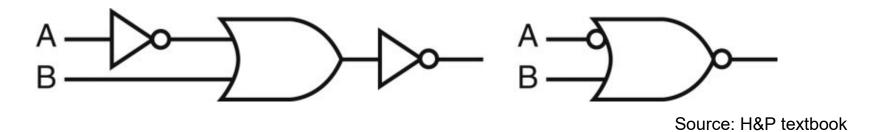
$$\bullet \ \overline{A + B} = \overline{A} \cdot \overline{B}$$

Confirm that these are indeed true

Pictorial Representations



What logic function is this?



Boolean Equation

 Consider the logic block that has an output E that is true only if exactly two of the three inputs A, B, C are true

Multiple correct equations:

Two must be true, but all three cannot be true:

$$E = ((A . B) + (B . C) + (A . C)) . \overline{(A . B . C)}$$

Identify the three cases where it is true:

$$E = (A . B . \overline{C}) + (A . C . \overline{B}) + (C . B . \overline{A})$$

Sum of Products

- Can represent any logic block with the AND, OR, NOT operators
 - Draw the truth table
 - For each true output, represent the corresponding inputs as a product
 - The final equation is a sum of these products

Α	В	C	Е	
(0	0	0	<u> </u>
(0	1	0	$(A . B . \overline{C}) + (A . C . \overline{B}) + (C . B . \overline{A})$
() 1	0	0	
() 1	1	1	 Can also use "product of sums"
1	L 0	0	0	 Any equation can be implemented with an array of ANDs, followed by
1	L 0	1	1	an array of ORs
1	1	0	1	an anay or one
1	1	1	0	12

NAND and NOR

- NAND: NOT of AND: A nand B = A.B
- NOR: NOT of OR: A nor B = A + B
- NAND and NOR are universal gates, i.e., they can be used to construct any complex logical function

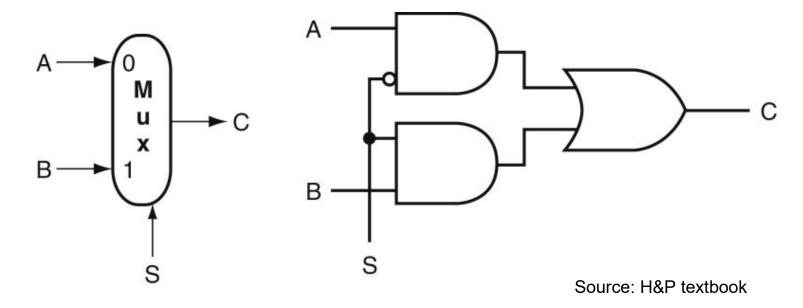
Common Logic Blocks – Decoder

Takes in N inputs and activates one of 2^N outputs

I ₀	I ₁	I ₂		O ₀	01	02	O ₃	O ₄	O ₅	O ₆	O ₇
0	0	0		1	0	0	0	0	0	0	0
0	0	1		0	1	0	0	0	0	0	0
0	1	0		0	0	1	0	0	0	0	0
0	1	1		0	0	0	1	0	0	0	0
1	0	0		0	0	0	0	1	0	0	0
1	0	1		0	0	0	0	0	1	0	0
1	1	0		0	0	0	0	0	0	1	0
1	1	1		0	0	0	0	0	0	0	1
			l ₀₋₂			to-8 code			O ₀ ,	-7	

Common Logic Blocks – Multiplexor

 Multiplexor or selector: one of N inputs is reflected on the output depending on the value of the log₂N selector bits



2-input mux

Adder Algorithm

	1	0	0	1	
	0	1	0	1	
Sum	1	1	1	0	
Carry	0	0	0	1	

Truth Table for the above operations:

Α	В	Cin	Sum Cout
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Adder Algorithm

	1	0	0	1	
	0	1	0	1	
Sum	1	1	1	0	
Carry	0	0	0	1	

Truth Table for the above operations:

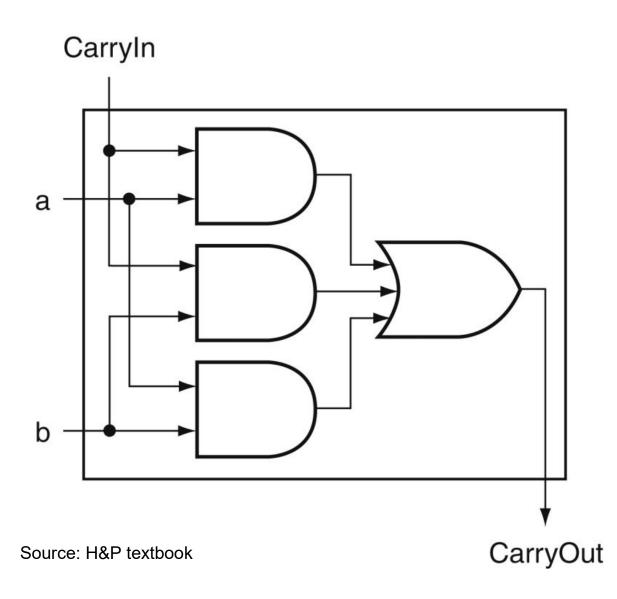
 Α	В	Cin	Sum Cout
0	0	0	0 0
0	0	1	1 0
0	1	0	1 0
0	1	1	0 1
1	0	0	1 0
1	0	1	0 1
1	1	0	0 1
1	1	1	1 1

Equations:

Sum = Cin
$$.\overline{A} .\overline{B} + B .\overline{Cin} .\overline{A} + A .\overline{Cin} .\overline{B} + A .B .\overline{Cin}$$

B. Cin

Carry Out Logic

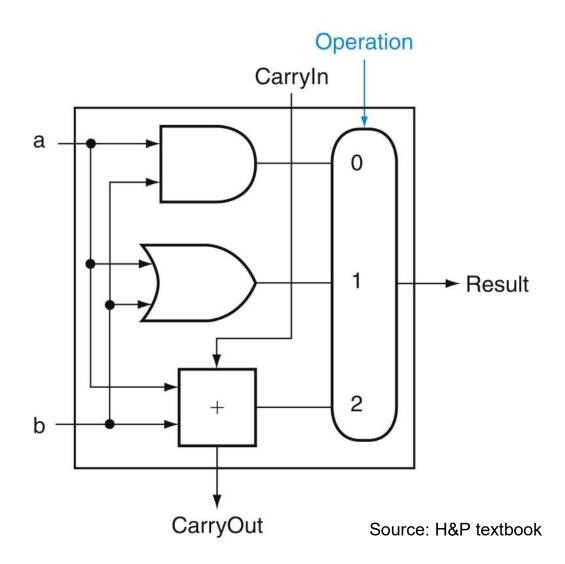


Equations:

Sum = Cin
$$.\overline{A} .\overline{B} + B .Cin .\overline{A} + A .Cin .\overline{B} + A .B .Cin$$

1-Bit ALU with Add, Or, And

• Multiplexor selects between Add, Or, And operations



32-bit Ripple Carry Adder

1-bit ALUs are connected "in series" with the carry-out of 1 box going into the carry-in of the next box

