Lecture 9: Addition, Multiplication & Division

- Today's topics:
 - Addition
 - Multiplication
 - Division

Assembly Mid 1 signed / z's comp

Hw 2 Hw 3

HW 4

150 points

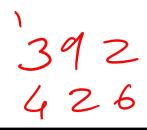
Lue

me next

. Inday

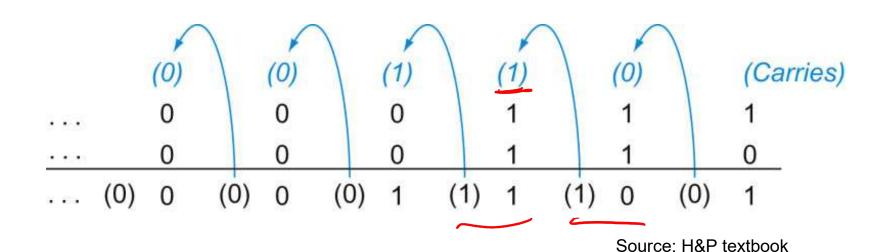
1

Addition and Subtraction



818

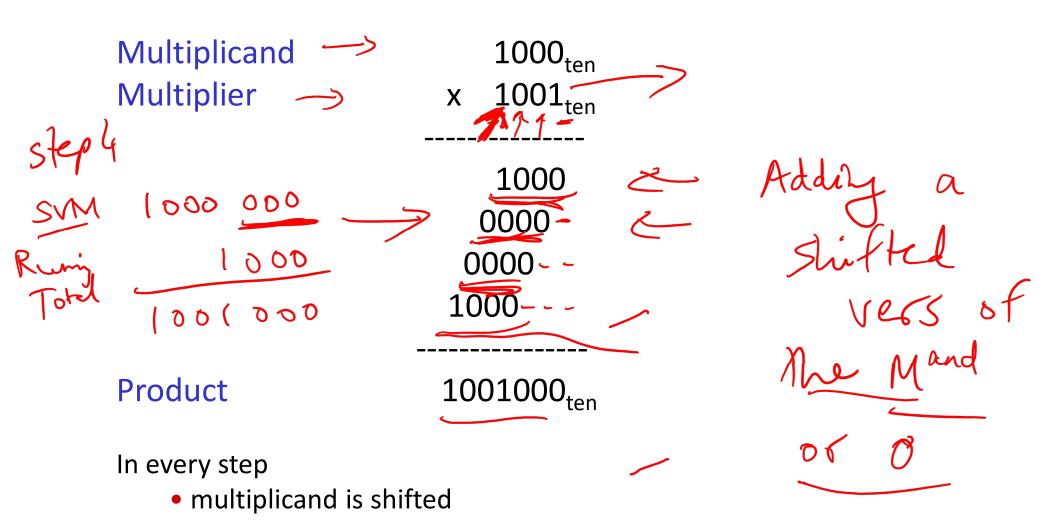
- Addition is similar to decimal arithmetic
- For subtraction, simply add the negative number hence, subtract A-B involves negating B's bits, adding 1 and A



Overflows

- For an unsigned number, overflow happens when the last carry (1) cannot be accommodated
- For a signed number, overflow happens when the most significant bit is not the same as every bit to its left
 - when the sum of two positive numbers is a negative result
 - when the sum of two negative numbers is a positive result
 - The sum of a positive and negative number will never overflow
- MIPS allows addu and subu instructions that work with unsigned integers and never flag an overflow – to detect the overflow, other instructions will have to be executed

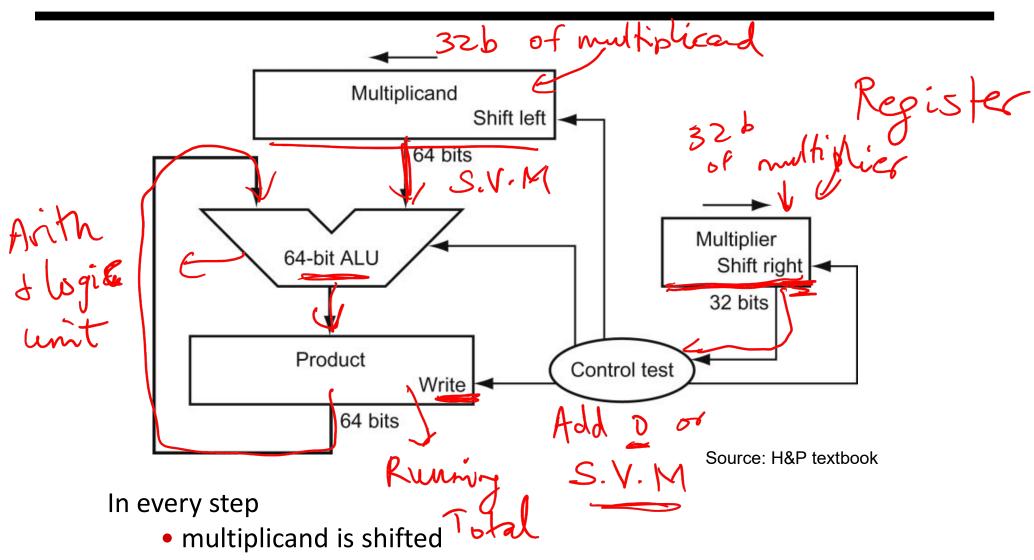
Multiplication Example



- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

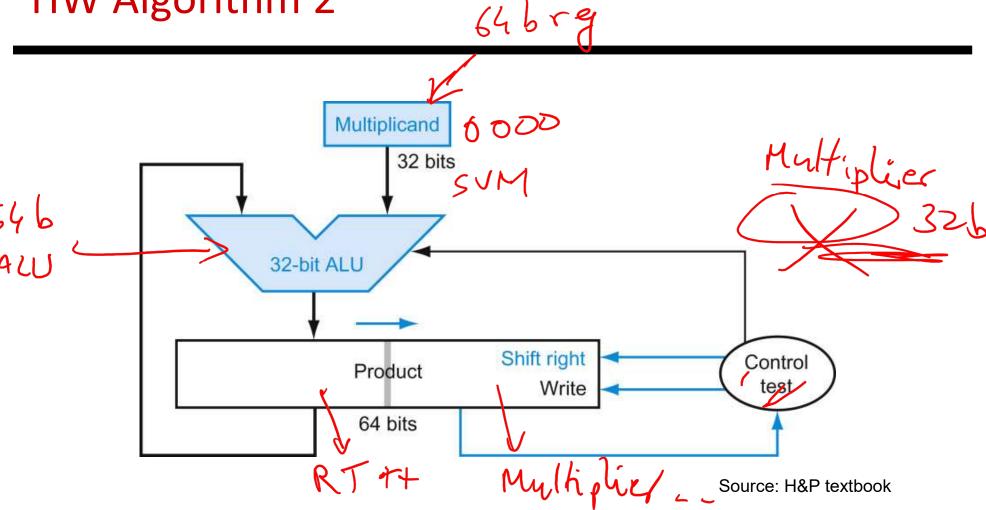
HW Algorithm 1

Mult two 326 numbers
=> 646 result



- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

HW Algorithm 2

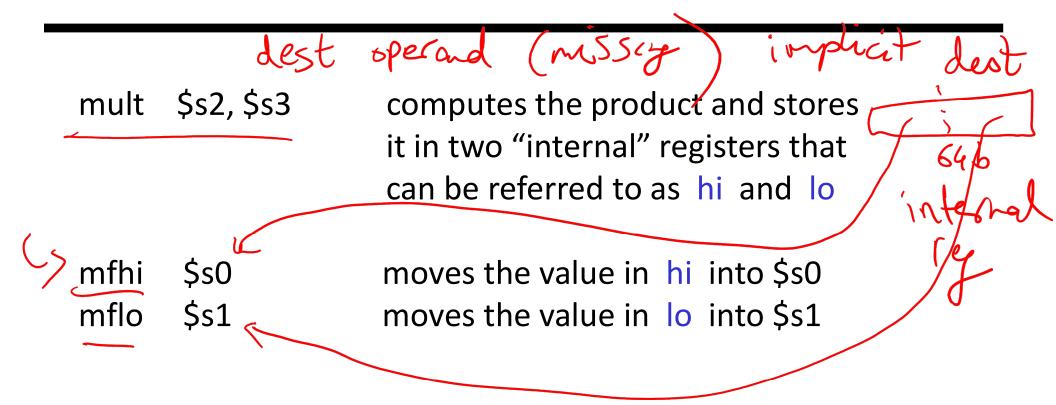


- 32-bit ALU and multiplicand is untouched
- the sum keeps shifting right
- at every step, number of bits in product + multiplier = 64, hence, they share a single 64-bit register

Notes

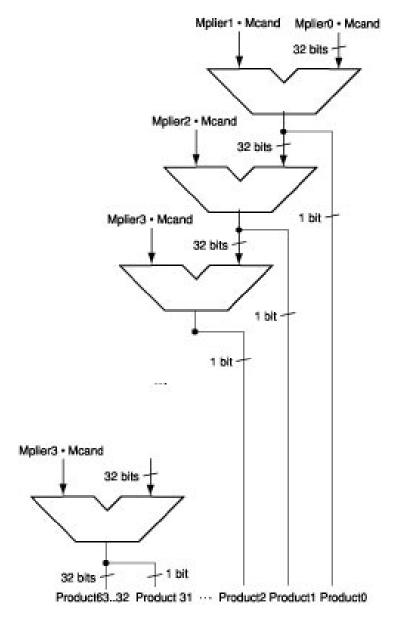
- The previous algorithm also works for signed numbers (negative numbers in 2's complement form)
 - We can also convert negative numbers to positive, multiply the magnitudes, and convert to negative if signs disagree
 - The product of two 32-bit numbers can be a 64-bit number
 -- hence, in MIPS, the product is saved in two 32-bit registers

MIPS Instructions



Similarly for multu

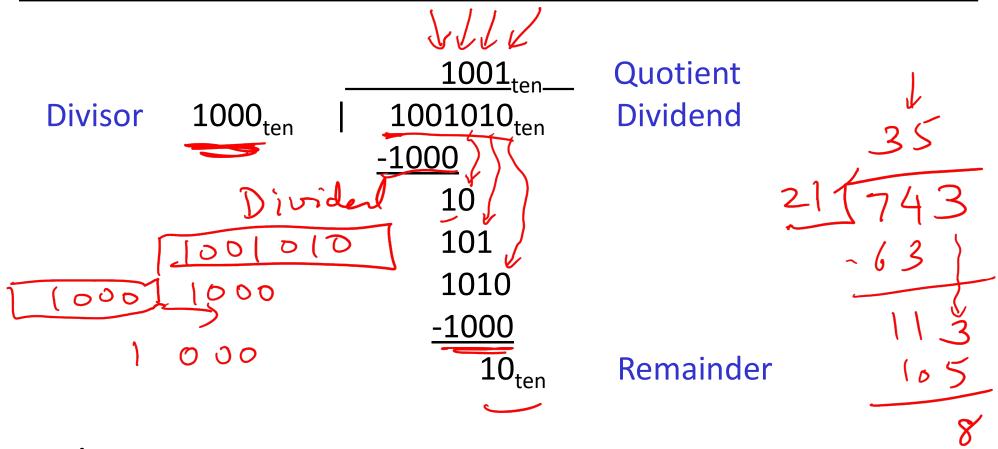
Fast Algorithm



- The previous algorithm requires a clock to ensure that the earlier addition has completed before shifting
- This algorithm can quickly set up most inputs – it then has to wait for the result of each add to propagate down – faster because no clock is involved
 - -- Note: high transistor cost

Source: H&P textbook

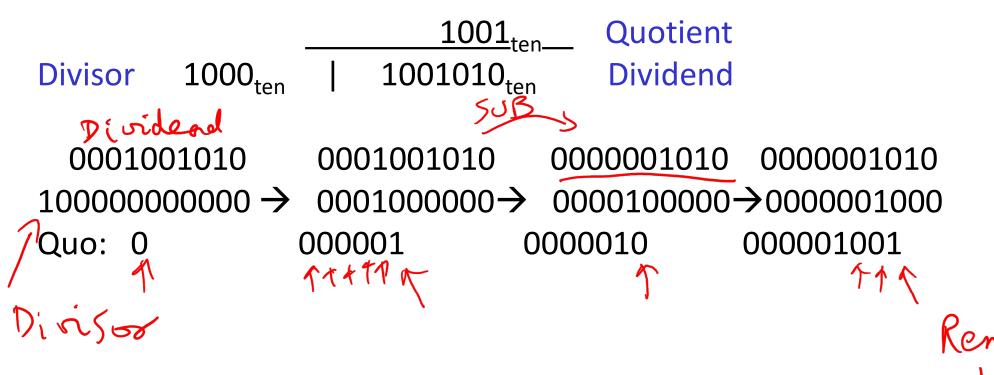
Division



At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1
 as the next bit of the quotient

Division



At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1
 as the next bit of the quotient

Divide Example

• Divide 7_{ten} (0000 0111 $_{two}$) by 2_{ten} (0010 $_{two}$)

Iter	Step	Quot	Divisor	Remainder
0	Initial values			
1				
2				
3				
4				
5				

Divide Example

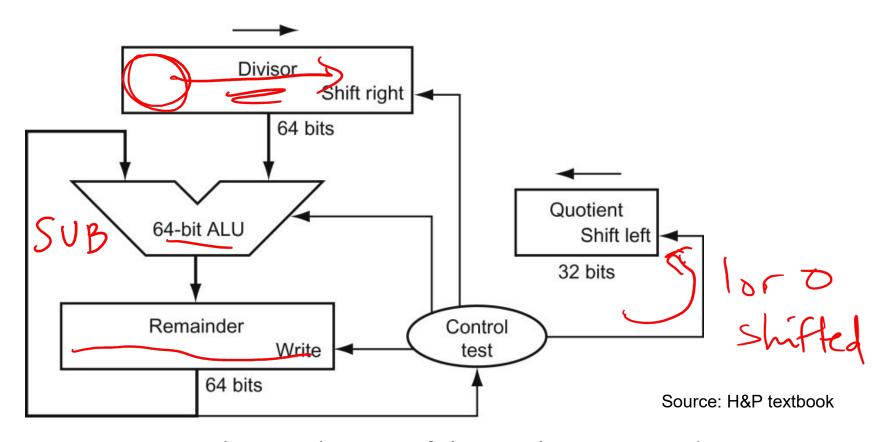
• Divide 7_{ten} (0000 0111 $_{two}$) by 2_{ten} (0010 $_{two}$)

Dividad

lter	Step	Quot	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	Rem = Rem – Div	0000	0010 0000	1110 0111
7	Rem < 0 → +Div, shift 0 into Q	0000	0010 0000	0000 0111
	Shift Div right	0000	0001 0000	0000 0111
2	Same steps as 1	0000	0001 0000	1111 0111
		0000	0001 0000	0000 0111
		0000	0000 1000	0000 0111
3	Same steps as 1	0000	0000 0100	0000 0111
4	Rem = Rem – Div	0000	0000 0100	0000 0011
	Rem >= 0 → shift 1 into Q	0001	0000 0100	0000 0011
	Shift Div right	0001	0000 0010	0000 0011
5	Same steps as 4	0011	0000 0001	0000 0001

13

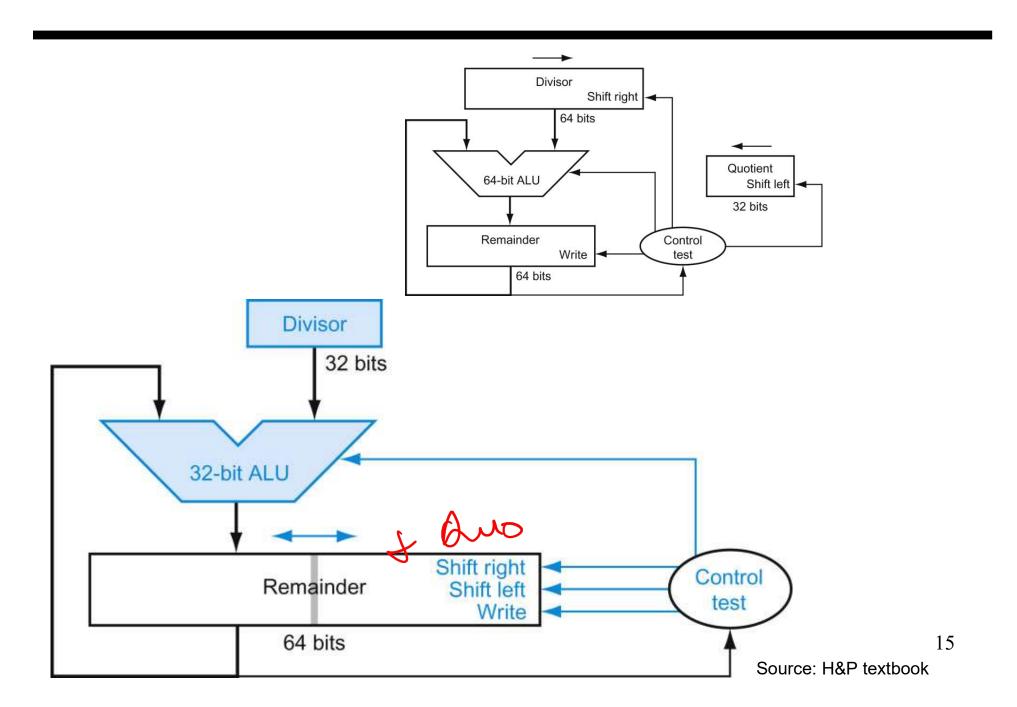
Hardware for Division



A comparison requires a subtract; the sign of the result is examined; if the result is negative, the divisor must be added back

Similar to multiply, results are placed in Hi (remainder) and Lo (quotient)

Efficient Division



Divisions involving Negatives

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation:
 - Dividend = Quotient x Divisor + Remainder

```
+7 div +2 Quo = \frac{3}{4} Rem = \frac{1}{4} Quo = \frac{3}{4} Rem = \frac{3}{4} Quo = \frac{3}{4} Rem
```

Divisions involving Negatives

- Simplest solution: convert to positive and adjust sign later
- Note that multiple solutions exist for the equation:
 Dividend = Quotient x Divisor + Remainder

Convention: Dividend and remainder have the same sign
Quotient is negative if signs disagree
These rules fulfil the equation above

Take Homes

- Grade school algorithms are commonly used the algorithms are even easier in binary (mult by 1 and 0)
- They can be implemented in hardware with shifts, add, sub, checks
- To improve efficiency, look for ineffectuals are only some bits changing in every step allows us to use narrow adders and registers allows us to pack more operands in one register
- Can also improve speed by throwing more transistors and parallel computations at the problem