Lecture 9: Addition, Multiplication & Division

e Today’s topics: Hb\) Z %VmQQ,AcQ

= Addition H \ire ‘J\\CTQ
= Multiplication j Mﬁlx\k

= Division H\'\B 4 A»LLQ nﬁé@\/
Aesertly 150 gk ™Y

~ v
\

ELSMJ /LS o~

\

2
Addition and Subtraction 21 é

g1 g

e Addition is similar to decimal arithmetic

e For subtraction, simply add the negative number — hence,
subtract A-B involves negating B’s bits, adding 1 and A

P
(0) (0) (1) (1) (0) (Carries)
IAEITITATAY
0o | 0o | 0o | 1 .0
.. (0 0 (@ 0 (0 1 (1) 1

1
| 1
(1 0 (O 1

Source: H&P textbook

Overflows

e For an unsigned number, overflow happens when the last carry (1)
cannot be accommodated =~

e For a sig\ngd/number, overflow happens when the most significant bit
is not the same as every bit to its left
= when the sum of two positive numbers is a negative result
= when the sum of two negative numbers is a positive result
= The sum of a positive and negative number will never overflow

e MIPS allows addu and subu insé’;ns that work with unsigned
integers and never flag an overflow — to detect the overflow, other
instructions will have to be executed

Multiplication Example Ciomﬁ \ 1030

Multiplicand —= 1000,,,
Multiplier — X 17(201@/_7
o 080 000 1000 =— Axddy
Rory 1000 0000- - L.
To (00(00 106%5—-« - \f&“ 61[
Product 1001000, —~ -
In every step - of 0,

e multiplicand is shifted
e next bit of multiplier is examined (also a shifting step)
e if this bit is 1, shifted multiplicand is added to the product

Mwl/t e B 2o e 5@5

S

HW Algorithm1 — = ub ceswlt
b o e |
Multiplicand R% LS I'CK

Shift left |-4— L

s 32 ({1 ‘

'7&,]/ \Ff S\ ! MJ i

. v —_ P

i\x_\(\k}i\l%ﬁ (>\64—bit ALU/
I\ 1

Product Control test }

(\erte

_J64 bits} ,A(J\A) Al

In every step — ——
e multiplicand is shifted ‘o
e next bit of multiplier is examined (also a shifting step)
e if this bit is 1, shifted multiplicand is added to the product

Multiplier
Shift right

32 bits

—r—

Source: H&P textbook

AL 32-bit ALU

‘ —
PdeUCt Shift I'ig.ht - /CO”trol
X \ Write |-= te
\/ 64 bits \/ T
" : - |
&) 'r"" MA,‘/N\ f’l‘\,(_/ L Source: H&P textbook

e 32-bit ALU and multiplicand is untouched

e the sum keeps shifting right

e at every step, number of bits in product + multiplier = 64,
hence, they share a single 64-bit register

Notes

e The previous algorithm also works for signed numbers
(negative numbers in 2’s complement form)

e We can also convert negative numbers to positive, multiply
the magnitudes, and convert to negative if signs disagree

e The product of two 32-bit numbers can be a 64-bit number

-- hence, in MIPS, the product is saved in two 32-bit
registers =

MIPS Instructions

Test operod | PSS 5 LT MBU
mult Ss2, Ss3 computes the product and stores
N ‘ it in two “internal” registers that é((
K can be referred toas hi and lo o
\
(gu

Q) mfhi SsO moves the value in hi into SsO
mflo Ssi < moves the value in lo into Ssl

Similarly for multu

Fast Algorithm

Mpliert » Mcand MplarD « Mcand

|
N

ptar2 +Mcand | e The previous algorithm
J o requires a clock to ensure that
¥ the earlier addition has
Mpsers+ Woand s completed before shifting

32 s 1"

=

1wt -7"

e This algorithm can quickly set
o up most inputs — it then has to
wait for the result of each add

el + Mo to propagate down — faster

1 amsJ'r because no clock is involved
N/
-- Note: high transistor cost
32 bits -~ +”’“

Froduciid. 32 Product 31 - - Product? Produsti ProductD

Source: H&P textbook

|ool oD

_ — |o>o
Division
Wi
1001, Quotient I
Divisor 1000ten 1001010, Dividend <
—IOQO >
) Sal 10 2»1] L\ 3
(Lelolo | 1810 ﬁ}/
' (o900 O 00 {,
Lleood S -1000 \\ 3
I 000 10,., Remainder (6 S
— —
4

At every step,

e shift divisor right and compare it with current dividend
e if divisor is larger, shift 0 as the next bit of the quotient
e if divisor is smaller, subtract to get new dividend and shift 1

as the next bit of the quotient

10

Division

1001, Quotient
Divisor ~ 1000,,, | 1001010, Dividend

0001001010 0001001010 0000001010 0000001010
100000000000 = 0001000000~ 0000100000—>0000001000
//buo: 0 000001 0000010 000001001
L1451 VY ﬁ* 44 Q
DS Rem
10

At every step,
e shift diviscfright and compare it with current dividend
e if divisor is largevr, shift 0 as the next bit of the quotient
e if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient 1

Divide Example

e Divide 7

ten

(00000111

two

) by 2

ten

(0010

tWO)

Ilter

Step

Quot

Divisor

Remainder

0

Initial values

1

12

Divide Example

e Divide 7., (0000 0111,,,) by 2., (0010,,,) BL@M
Iter Step Quot Divisor Remainder
0 Initial values 0000 0010 0000 00000111
1 Rem = Rem — Div 0000 0010 0000 11100111
Z Rem < 0 = +Diy, shift 0 into Q 0000 0010 0000 00000111
Shift Div right 0000 0001 0000 00000111
2 Same steps as 1 0000 0001 0000 11110111
0000 0001 0000 00000111
0000 0000 1000 00000111
Same stepsas 1 0000 0000 0100 00000111
4 Rem = Rem — Div 0000 0000 0100 0000 0011
Rem >=0 =» shift 1into Q 0001 0000 0100 0000 0011
Shift Div right 0001 0000 0010 0000 0011
5 Same steps as 4 0011 0000 0001 0000 0001

15

Hardware for Division

_....-

Divisar ?
— hift right |-e—
l64 bits
Y P
_/ » Quotient
SUPRB\ 64bitAL Shift left {<—
i 32 bits j \ e O
-—""'\

Remainder Control -
— ——~—___ Write test 5(,\«%%
64 bits

Source: H&P textbook

A comparison requires a subtract; the sign of the result is examined;
if the result is negative, the divisor must be added back

Similar to multiply, results are placed in Hi (remainder) and Lo (quotient)
14

Efficient Division

—_—
Divisor
Shift right
64 bits
Y -
NV Quotient
64-bit ALU Shift left |-
! 32 bits
Remainder Control 7\
Write test
64 bits 3
Divisor
32 bits
32-bit ALU
Shlft right |- o
Remainder Shift left |- (Lantal
Write |- test
64 bits

Source: H&P textbook

15

Divisions involving Negatives

e Simplest solution: convert to positive and adjust sign later

e Note that multiple solutions exist for the equation:

ividend = Quotient x Divisor + Remainder

e

+7 div +2 Quo= Rem= 1 € ¢
-7 div +2 Quo=~% Rem= -1
+7 div -2 Quo = Rem =

-7 div -2 Quo = Rem =

16

Divisions involving Negatives

e Simplest solution: convert to positive and adjust sign later

e Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor + Remainder

+7 div +2 Quo = +3 Rem =+1
-7 div +2 Quo =-3 Rem =-1
+7 div -2 Quo =-3 Rem =+1
-7 div -2 Quo =+3 Rem =-1

Convention: Dividend and remainder have the same sign
Quotient is negative if signs disagree
These rules fulfil the equation above

17

Take Homes

* Grade school algorlthms are commonly used — the algorithms are
even easier in bmary (mult by 1 and 0)

e They can be implemented in hardware with shifts, add, sub, checks
—

PN

FTO improve efficiency, lookferineffectuals — are only some bits
changing in every step — allows us to use narrow adders and

registers — allows us to pack more operands in one register

e Can also improve speed by throwing more transistors and parallel
computations at the problem

18

