Lecture 9: Addition, Multiplication & Division

e Today’s topics:

= Addition
= Multiplication
= Division

Addition and Subtraction

e Addition is similar to decimal arithmetic

e For subtraction, simply add the negative number — hence,
subtract A-B involves negating B’s bits, adding 1 and A

A\ P
@\ @\ @\ o)\ o (Carries)
0 0 0 1 1 1
0 0 0 | 1 \ 1 | 0

SO0 (o (01 (M1 (Mo 0 1

Source: H&P textbook

Overflows

e For an unsigned number, overflow happens when the last carry (1)
cannot be accommodated

e For a signed number, overflow happens when the most significant bit
is not the same as every bit to its left
= when the sum of two positive numbers is a negative result
= when the sum of two negative numbers is a positive result
= The sum of a positive and negative number will never overflow

e MIPS allows addu and subu instructions that work with unsigned
integers and never flag an overflow — to detect the overflow, other
instructions will have to be executed

Multiplication Example

Multiplicand 1000
Multiplier x 1001

ten

ten

Product 1001000

ten

In every step
e multiplicand is shifted
e next bit of multiplier is examined (also a shifting step)
e if this bit is 1, shifted multiplicand is added to the product

HW Algorithm 1

e

Multiplicand

Shift left

Y

lszi bits

N

N
64-bit ALU / °

i

Product
Write

64 bits

In every step

e multiplicand is shifted
e next bit of multiplier is examined (also a shifting step)
e if this bit is 1, shifted multiplicand is added to the product

...

Multiplier
Shift right |—

32 bits

.

Source: H&P textbook

HW Algorithm 2

Multiplicand

J, lsz bits

b4
3226t ALU

{ —
ift ri =
Prodluct Shift right Control
Write |-= test
64 bits T

Source: H&P textbook

e 32-bit ALU and multiplicand is untouched

e the sum keeps shifting right

e at every step, number of bits in product + multiplier = 64,
hence, they share a single 64-bit register

Notes

e The previous algorithm also works for signed numbers
(negative numbers in 2’s complement form)

e We can also convert negative numbers to positive, multiply
the magnitudes, and convert to negative if signs disagree

e The product of two 32-bit numbers can be a 64-bit number
-- hence, in MIPS, the product is saved in two 32-bit
registers

MIPS Instructions

mult Ss2, Ss3
mfhi SsO
mflo Ssl

Similarly for multu

computes the product and stores
it in two “internal” registers that
can be referred toas hi and lo

moves the value in hi into SsO
moves the value in lo into Ssl

Fast Algorithm

Mpliert » Mcand MplarD « Mcand

|

ptar2 +Mcand | e The previous algorithm
J o requires a clock to ensure that
¥ the earlier addition has
Mpsers+ Woand s completed before shifting

e This algorithm can quickly set
o up most inputs — it then has to
wait for the result of each add

el + Mo to propagate down — faster

1 amsJ'r because no clock is involved
N/
-- Note: high transistor cost
32 bits " +”’“

Froduciid. 32 Product 31 - - Product? Produsti ProductD

Source: H&P textbook

Division

Quotient
Dividend

1001,
1001010
-1000
10
101
1010
-1000
10

Divisor 1000

ten | ten

ten Remainder

At every step,
e shift divisor right and compare it with current dividend
e if divisor is larger, shift 0 as the next bit of the quotient
e if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient

10

Division

1001
1001010

Quotient
Dividend

ten

Divisor 1000

ten | ten

0001001010 0001001010 0000001010 0000001010
100000000000 - 0001000000—~> 0000100000->0000001000
Quo: O 000001 0000010 000001001

At every step,
e shift divisor right and compare it with current dividend
e if divisor is larger, shift 0 as the next bit of the quotient
e if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient 1

Divide Example

e Divide 7

ten

(00000111

two

) by 2

ten

(0010

tWO)

Ilter

Step

Quot

Divisor

Remainder

0

Initial values

1

12

Divide Example

e Divide 7., (0000 0111,,,) by 2., (0010,,,)

Iter Step Quot Divisor Remainder
0 Initial values 0000 0010 0000 00000111
1 Rem = Rem — Div 0000 0010 0000 11100111

Rem < 0 = +Diy, shift 0 into Q 0000 0010 0000 00000111

Shift Div right 0000 0001 0000 00000111

2 Same steps as 1 0000 0001 0000 11110111
0000 0001 0000 00000111

0000 0000 1000 00000111

Same stepsas 1 0000 0000 0100 00000111

4 Rem = Rem — Div 0000 0000 0100 0000 0011
Rem >=0 =» shift 1into Q 0001 0000 0100 0000 0011

Shift Div right 0001 0000 0010 0000 0011

5 Same steps as 4 0011 0000 0001 0000 0001

15

Hardware for Division

.

Quotient
Shift left

—
Divisor
Shift right [-e—
64 bits
\ 64-bit ALU
"
Remainder
Write
64 bits

T

32 bits

test

Source: H&P textbook

A comparison requires a subtract; the sign of the result is examined;
if the result is negative, the divisor must be added back

Similar to multiply, results are placed in Hi (remainder) and Lo (quotient)

14

Efficient Division

e
Divisor
Shift right
64 bits
Y]
et Quotient
64-bit ALU peniedl
! 32 bits
Remainder Control ™
Write test
64 bits A
Divisor
132 bits
32-bit ALU
g
Shift right |- /
Remainder Shift left | (Control
Write |- test
64 bits

Source: H&P textbook

15

Divisions involving Negatives

e Simplest solution: convert to positive and adjust sign later

e Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor + Remainder

+7 div +2 Quo = Rem =
-7 div +2 Quo = Rem =
+7 div -2 Quo = Rem =

-7 div -2 Quo = Rem =

16

Divisions involving Negatives

e Simplest solution: convert to positive and adjust sign later

e Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor + Remainder

+7 div +2 Quo = +3 Rem =+1
-7 div +2 Quo =-3 Rem =-1
+7 div -2 Quo =-3 Rem =+1
-7 div -2 Quo =+3 Rem =-1

Convention: Dividend and remainder have the same sign
Quotient is negative if signs disagree
These rules fulfil the equation above

17

Take Homes

e Grade school algorithms are commonly used — the algorithms are
even easier in binary (mult by 1 and 0)

e They can be implemented in hardware with shifts, add, sub, checks
e To improve efficiency, look for ineffectuals — are only some bits
changing in every step — allows us to use narrow adders and

registers — allows us to pack more operands in one register

e Can also improve speed by throwing more transistors and parallel
computations at the problem

18

