
1

Lecture 9: Addition, Multiplication & Division

• Today’s topics: 

 Addition
Multiplication
 Division



2

Addition and Subtraction

• Addition is similar to decimal arithmetic

• For subtraction, simply add the negative number – hence,
subtract A-B involves negating B’s bits, adding 1 and A

Source: H&P textbook



3

Overflows

• For an unsigned number, overflow happens when the last carry (1)
cannot be accommodated

• For a signed number, overflow happens when the most significant bit
is not the same as every bit to its left
 when the sum of two positive numbers is a negative result
 when the sum of two negative numbers is a positive result
 The sum of a positive and negative number will never overflow

• MIPS allows addu and subu instructions that work with unsigned
integers and never flag an overflow – to detect the overflow, other
instructions will have to be executed



4

Multiplication Example

Multiplicand 1000ten
Multiplier x    1001ten

---------------
1000

0000
0000

1000
----------------

Product 1001000ten

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product



5

HW Algorithm 1

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product

Source: H&P textbook



6

HW Algorithm 2

• 32-bit ALU and multiplicand is untouched
• the sum keeps shifting right
• at every step, number of bits in product + multiplier = 64,

hence, they share a single 64-bit register

Source: H&P textbook



7

Notes

• The previous algorithm also works for signed numbers
(negative numbers in 2’s complement form)

• We can also convert negative numbers to positive, multiply
the magnitudes, and convert to negative if signs disagree

• The product of two 32-bit numbers can be a 64-bit number
-- hence, in MIPS, the product is saved in two 32-bit
registers



8

MIPS Instructions

mult $s2, $s3            computes the product and stores
it in two “internal” registers that
can be referred to as  hi and  lo

mfhi $s0                   moves the value in  hi into $s0
mflo $s1                   moves the value in  lo into $s1

Similarly for multu



9

Fast Algorithm

• The previous algorithm
requires a clock to ensure that
the earlier addition has
completed before shifting

• This algorithm can quickly set
up most inputs – it then has to
wait for the result of each add
to propagate down – faster
because no clock is involved

-- Note: high transistor cost

Source: H&P textbook



10

Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

-1000
10
101
1010

-1000
10ten Remainder

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1

as the next bit of the quotient



11

Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

0001001010         0001001010       0000001010    0000001010
100000000000  0001000000 00001000000000001000
Quo:   0                   000001               0000010            000001001

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1

as the next bit of the quotient



12

Divide Example

• Divide 7ten (0000 0111two)  by  2ten (0010two)

RemainderDivisorQuotStepIter

Initial values0

1

2

3

4

5



13

Divide Example

• Divide 7ten (0000 0111two)  by  2ten (0010two)

RemainderDivisorQuotStepIter

0000 01110010 00000000Initial values0

1110 0111
0000 0111
0000 0111

0010 0000
0010 0000
0001 0000

0000
0000
0000

Rem = Rem – Div
Rem < 0  +Div, shift 0 into Q
Shift Div right

1

1111 0111
0000 0111
0000 0111

0001 0000
0001 0000
0000 1000

0000
0000
0000

Same steps as 12

0000 01110000 01000000Same steps as 13

0000 0011
0000 0011
0000 0011

0000 0100
0000 0100
0000 0010

0000
0001
0001

Rem = Rem – Div 
Rem >= 0  shift 1 into Q
Shift Div right

4

0000 00010000 00010011Same steps as 45



14

Hardware for Division

A comparison requires a subtract; the sign of the result is examined;
if the result is negative, the divisor must be added back

Similar to multiply, results are placed in Hi (remainder) and Lo (quotient)

Source: H&P textbook



15

Efficient Division

Source: H&P textbook



16

Divisions involving Negatives

• Simplest solution: convert to positive and adjust sign later

• Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor  +  Remainder

+7   div  +2          Quo =           Rem = 
-7   div  +2          Quo =           Rem = 

+7   div   -2          Quo =           Rem = 
-7   div   -2          Quo =           Rem = 



17

Divisions involving Negatives

• Simplest solution: convert to positive and adjust sign later

• Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor  +  Remainder

+7   div  +2          Quo = +3          Rem = +1
-7   div  +2          Quo = -3           Rem = -1

+7   div   -2          Quo = -3           Rem = +1
-7   div   -2          Quo = +3          Rem = -1

Convention: Dividend and remainder have the same sign  
Quotient is negative if signs disagree
These rules fulfil the equation above



18

Take Homes

• Grade school algorithms are commonly used – the algorithms are
even easier in binary (mult by 1 and 0)

• They can be implemented in hardware with shifts, add, sub, checks

• To improve efficiency, look for ineffectuals – are only some bits 
changing in every step – allows us to use narrow adders and  
registers – allows us to pack more operands in one register

• Can also improve speed by throwing more transistors and parallel 
computations at the problem


