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Lecture 5: More Instructions, Procedure Calls

• Today’s topics: 

 Load/store instructions
 Numbers, control instructions
 Procedure calls
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Recap

a = b + c;

int  a, b, c, d[10]

Memory

…

Base address
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Memory Organization

$gp points to area in memory that saves global variables

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)
$gp
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Memory Instruction Format

• The format of a load instruction:

destination register
source address

lw $t0,   8($t3)

any register
a constant that is added to the register in parentheses
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Memory Instruction Format

• The format of a store instruction:

source register
destination address

sw $t0,   8($t3)

any register
a constant that is added to the register in parentheses
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Example

int a, b, c, d[10];

addi $gp, $zero, 1000   # assume that data is stored at
# base address 1000; placed in $gp;
# $zero is a register that always
# equals zero

lw $s1, 0($gp)          # brings value of a into register $s1
lw $s2, 4($gp)          # brings value of b into register $s2
lw $s3, 8($gp)          # brings value of c into register $s3
lw $s4, 12($gp)        # brings value of d[0] into register $s4
lw $s5, 16($gp)        # brings value of d[1] into register $s5
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Example

Convert to assembly:

C code:     d[3]  = d[2] + a;
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Example

Convert to assembly:

C code:     d[3]  = d[2] + a;

Assembly (same assumptions as previous example):  
lw $s0, 0($gp)     #  a is brought into $s0
lw $s1, 20($gp)   #  d[2] is brought into $s1
add   $s2, $s0, $s1  #  the sum is in $s2
sw $s2, 24($gp)    #  $s2 is stored into d[3]

Assembly version of the code continues to expand!
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Memory Organization

• The space allocated on stack by a procedure is termed the activation 
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the 
end – variable addresses are specified relative to $fp as $sp may 
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)
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Recap – Numeric Representations

• Decimal 3510  =  3 x 101 + 5 x 100

• Binary 001000112  =  1 x 25 +  1 x 21 +  1 x 20

• Hexadecimal (compact representation)
0x 23    or   23hex     =   2 x 161 +  3 x 160

0-15 (decimal)    0-9, a-f  (hex)

Dec  Binary  Hex
0    0000     00
1    0001     01
2    0010     02
3    0011     03

Dec  Binary  Hex
4    0100     04
5    0101     05
6    0110     06
7    0111     07

Dec  Binary  Hex
8    1000     08
9    1001     09

10    1010     0a
11    1011     0b

Dec  Binary  Hex
12    1100     0c
13    1101     0d
14    1110     0e
15    1111     0f
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Examples of Conversion
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Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add     $t0, $s1, $s2
000000     10001    10010    01000    00000    100000
6 bits         5 bits     5 bits     5 bits      5 bits      6 bits
op              rs rt           rd shamt funct

opcode     source    source dest shift amt   function

I-type instruction               lw $t0, 32($s3)
6 bits        5 bits    5 bits         16 bits

opcode         rs rt            constant
($s3)    ($t0)
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Logical Operations

Logical ops          C operators      Java operators         MIPS instr

Shift Left                    <<                        <<                         sll
Shift Right                  >>                       >>>                       srl
Bit-by-bit AND            &                         &                     and, andi
Bit-by-bit OR               |                          |                         or, ori
Bit-by-bit NOT            ~                          ~                           nor (with $zero)
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Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2:      beq register1,  register2,  L1
Similarly,  bne and  slt (set-on-less-than)

• Unconditional branch:
j     L1
jr $s0    (useful for big jumps and procedure returns)

Convert to assembly:
if  (i == j)

f = g+h;
else

f = g-h;
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Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2:      beq register1,  register2,  L1
Similarly,  bne and  slt (set-on-less-than)

• Unconditional branch:
j     L1
jr $s0    (useful for big jumps and procedure returns)

Convert to assembly:
if  (i == j)                                   bne $s3, $s4, Else

f = g+h;                                 add   $s0, $s1, $s2
else                                            j        End

f = g-h;                       Else:   sub   $s0, $s1, $s2
End:
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Example

Convert to assembly:

while   (save[i] == k)
i += 1;

Values of i and k are in $s3  
and $s5 and base of array  
save[] is in $s6
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Example

Convert to assembly:

while   (save[i] == k)
i += 1;

Values of i and k are in $s3
and $s5 and base of array
save[] is in $s6

Loop:  sll      $t1, $s3, 2
add    $t1, $t1, $s6
lw      $t0, 0($t1)
bne    $t0, $s5, Exit
addi   $s3, $s3, 1
j         Loop

Exit:

sll      $t1, $s3, 2
add    $t1, $t1, $s6

Loop:  lw      $t0, 0($t1)
bne    $t0, $s5, Exit
addi   $s3, $s3, 1
addi   $t1, $t1, 4
j         Loop

Exit:
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Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 :  $zero        always stores the constant 0
 Regs 2-3   :  $v0, $v1   return values of a procedure
 Regs 4-7   :  $a0-$a3   input arguments to a procedure
 Regs 8-15 :  $t0-$t7     temporaries
 Regs 16-23: $s0-$s7    variables
 Regs 24-25: $t8-$t9     more temporaries
 Reg   28     : $gp          global pointer
 Reg   29     : $sp           stack pointer
 Reg   30     : $fp            frame pointer
 Reg   31     : $ra           return address 



19

Procedures

• Local variables, AR, $fp, $sp
• Scratchpad and saves/restores
• Arguments and returns
• jal and $ra


