
1

Lecture 5: More Instructions, Procedure Calls

• Today’s topics:

 Load/store instructions
 Numbers, control instructions
 Procedure calls

2

Recap

a = b + c;

int a, b, c, d[10]

Memory

…

Base address

3

Memory Organization

$gp points to area in memory that saves global variables

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)
$gp

4

Memory Instruction Format

• The format of a load instruction:

destination register
source address

lw $t0, 8($t3)

any register
a constant that is added to the register in parentheses

5

Memory Instruction Format

• The format of a store instruction:

source register
destination address

sw $t0, 8($t3)

any register
a constant that is added to the register in parentheses

6

Example

int a, b, c, d[10];

addi $gp, $zero, 1000 # assume that data is stored at
base address 1000; placed in $gp;
$zero is a register that always
equals zero

lw $s1, 0($gp) # brings value of a into register $s1
lw $s2, 4($gp) # brings value of b into register $s2
lw $s3, 8($gp) # brings value of c into register $s3
lw $s4, 12($gp) # brings value of d[0] into register $s4
lw $s5, 16($gp) # brings value of d[1] into register $s5

7

Example

Convert to assembly:

C code: d[3] = d[2] + a;

8

Example

Convert to assembly:

C code: d[3] = d[2] + a;

Assembly (same assumptions as previous example):
lw $s0, 0($gp) # a is brought into $s0
lw $s1, 20($gp) # d[2] is brought into $s1
add $s2, $s0, $s1 # the sum is in $s2
sw $s2, 24($gp) # $s2 is stored into d[3]

Assembly version of the code continues to expand!

9

Memory Organization

• The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the
end – variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

10

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
0x 23 or 23hex = 2 x 161 + 3 x 160

0-15 (decimal) 0-9, a-f (hex)

Dec Binary Hex
0 0000 00
1 0001 01
2 0010 02
3 0011 03

Dec Binary Hex
4 0100 04
5 0101 05
6 0110 06
7 0111 07

Dec Binary Hex
8 1000 08
9 1001 09

10 1010 0a
11 1011 0b

Dec Binary Hex
12 1100 0c
13 1101 0d
14 1110 0e
15 1111 0f

11

Examples of Conversion

12

Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

opcode source source dest shift amt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits

opcode rs rt constant
($s3) ($t0)

13

Logical Operations

Logical ops C operators Java operators MIPS instr

Shift Left << << sll
Shift Right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor (with $zero)

14

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0 (useful for big jumps and procedure returns)

Convert to assembly:
if (i == j)

f = g+h;
else

f = g-h;

15

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0 (useful for big jumps and procedure returns)

Convert to assembly:
if (i == j) bne $s3, $s4, Else

f = g+h; add $s0, $s1, $s2
else j End

f = g-h; Else: sub $s0, $s1, $s2
End:

16

Example

Convert to assembly:

while (save[i] == k)
i += 1;

Values of i and k are in $s3
and $s5 and base of array
save[] is in $s6

17

Example

Convert to assembly:

while (save[i] == k)
i += 1;

Values of i and k are in $s3
and $s5 and base of array
save[] is in $s6

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit:

sll $t1, $s3, 2
add $t1, $t1, $s6

Loop: lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
addi $t1, $t1, 4
j Loop

Exit:

18

Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 : $zero always stores the constant 0
 Regs 2-3 : $v0, $v1 return values of a procedure
 Regs 4-7 : $a0-$a3 input arguments to a procedure
 Regs 8-15 : $t0-$t7 temporaries
 Regs 16-23: $s0-$s7 variables
 Regs 24-25: $t8-$t9 more temporaries
 Reg 28 : $gp global pointer
 Reg 29 : $sp stack pointer
 Reg 30 : $fp frame pointer
 Reg 31 : $ra return address

19

Procedures

• Local variables, AR, $fp, $sp
• Scratchpad and saves/restores
• Arguments and returns
• jal and $ra

