Lecture 4: MIPS Instruction Set

e Today’s topics:
= MIPS instructions

= Code examples

HW 1 due today/tomorrow!

b) M@ R T\/\Q/
\[2‘5

Instruction Set

e Understanding the language of the hardware is key to understanding\\zj

the hardware/software interface W\

©
) v

e A program (in say, C) is compiled into an executable that is compos
of machine instructions — this executable must also run on future
machines — for example, each Intel processor reads in the same x86 |,
instructions, but each processor handles instructions differently lQ,A@

* Java programs are converted into portable bytecode that is converted 4.
into machine instructions during execution (just-in-time compilation)

e What are important design principles when defining the instruction
set architecture (ISA)? <

A Basic MIPS Instruction

C code: a=b+c;

— e

Assembly code: (human-friendly machine instructions) 153 ('\nng(s
,add a,b,c # aisthesumofbandc _:g/q

&M\W 1649 50‘*’(@’
Machine code: (hardware-friendly machine instructions)
00000010001100100100000000100000
) % ——
ol V\OL\J &%_éif/ ISt
Translate the following C code into assembly code:
a=b+c+d+e;

~— S S~— 3

Instruction Set

e Important design principles when defining the

instruction set architecture (ISA): add « 19) C
—_— — J

" keep the hardware simple —the chip must only
ircﬁEIEm/e_thTasic primitives and run fast

" keep the instructions regular — simplifies the
decoding/scheduling of instructions Jo

S5
nbwux

(
We will later discuss RISClvs CISC

1 oo ducel inst sel
Rebed S

A b ,C

Example

Ccode a=b+c+d+e; F‘OQk
translates into the following assembly code:

add $3 $6,%1 _ \
— add a, b, c add a,be |y [|$6

add a, a, d or add f, d,’e_ —\
N

add a, a, e addgé, a,f

e |nstructions are simple: fixed number of operands (unlike C)

e A single line of C code is converted into multiple lines of
assembly code \Z

e Some sequences are better than others... the second > Zjlo
sequence needs one more (temporary) variable f mc}\L

Subtract Example

Ccode f=(g+h)—{(i+]j);
translates into the following assembly code:

add tO,th,h add f, g, h
add t1,_i<j or sub ffi
sub f, tO, tl1 sub f, f, j

e Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative... more on this later

(RQ&J:E%O):XS()'E?’”H;&;&\ —
Operands 0=k < S Me~a>g-

spad - giske fle A

a2
* In C, each “variable™ tion in memory b 17§
[@1 \7— OT% (FS=S C \/

2
e |n hardware, each'memory access is expensive — if

variable a is accessed repeatedly, it helps to bﬁng the A\ GB
variable into an on-chip scratchpad and operate on the
tchpad ist
scratc gpia (registers) O\AO\ | a é) <
7 =32
e To simplify the instructions, we require that each NN

instruction (add, sub) only operate on regi .

e Note: the number of operands (variables) in ro is
very large; the number of operands in assembly is fixed...
there can be only so many scratchpad registers

Registers add B3 37 $ 24

e The MIPS ISA has 32 registers (x86 has 8 registers) — 35’0 jzem
Why not more? Why not less? :}t
0

e Each register is 32 bits wide (modern 64-bit architectures % |
have 64-bit wide registers) o
pso

e A 32-bit entity (4 bytes) is referred to as a word S%Sl
- —

e To make the code more readable, registers are
partitioned as $s0-Ss7 (C/Java variables), St0-St9
(temporary variables)... —

s?aé
4 qu

8

add Ss0, Ss1, Ss2

O & 1,00 chded Lt —load word
Binary Stuff »%~ ¢ B = Lol half <=

8h | B a9 b — bod byl

* 8 bits = 1 Byte, also written as 8b = 1B

* 1 word = 32 bits € 5T b?w‘eqﬁ 28

l/\a\F/wD‘/A\
e 1KB = 1024 B =210 B n
e 1MB = 1024 x 1024 B = 220 B I Sl
—_ - D0p 0]

e 1GB=1024 x 1024 x 1024 B=23B .

s L 8t
(| Y-y

e A 32-bit memory address refers to a number between }

0 and 232-1, i.e,, it identifies a byte in a 4GB memory
I need

1 G N\

Memory Operands 2ds 5? @

OLQMC' §3, 84,78 noll ?’u
and sub)

e Values must be fetched from memory before (add

instructions can operate on them Do oo .
/75 ’t'b OS0!
rond b RN - P .
Load word §40D «— Memory |
\ Iw($t0) memory-address } 06 adde M5
5%32,\ ¥s2 8,u0 0 |
,I

Store word AE lZ'j
R |
sw St0, memory-address o

— 3L
— Z

oM ¥3 37 212

/

e ——

A

How is memory-address determined?

10

1 - }L,DQ

Memory Address as el

e The compiler organizes data in memory... it knows the e
location of every variable (saved in a table)... it can fill -7
in the appropriate mem-address for load-store instructions éqﬁ

> a =
M e 4 W XD, 3‘\}8%

int 3, b, ¢, d[10] gGoo

b+ C
ot

Memory

oddi; $52, 3304 g0 = baseaddys

Base address <= O lu\ &J(,O) 3?52, W&AV ﬁ{;z} Liﬁ)ri"bl

0\&0\ 2 L 11
[éfb\’ ﬁggl S92, 0(43p)

Memory Organization

Sgp points to area in memory that saves global variables

Sgp

Static data (globals)

Text (instructions)

12

Memory Instruction Format

e The format of a load instruction:

destination register
] source address

lw St0, 8(St3)

any register
a constant that is added to the register in parentheses

13

Memory Instruction Format

e The format of a store instruction:

source register
] destination address

sw St0, 8(St3)

any register
a constant that is added to the register in parentheses

14

Example

inta, b, c, d[10];

addi Sgp, Szero, 1000 # assume that data is stored at

base address 1000; placed in Sgp;
Szero is a register that always

equals zero

£ £z 2

Ss1, 0(Sgp)
Ss2, 4(Sgp)
Ss3, 8(Sgp)
Ss4, 12(Sgp)
Ss5, 16(Sgp)

brings va
brings va
brings va
brings va
brings va

ue of a into register Ss1
ue of b into register $s2
ue of c into register Ss3
ue of d[0] into register Ss4
ue of d[1] into register Ss5

15

Example

Convert to assembly:

Ccode: d[3] =d[2] + a;

16

Example

Convert to assembly:

Ccode: d[3] =d[2] + a;

Assembly (same assumptions as previous example):
lw SsO, 0(Sgp) # ais broughtinto SsO
lw Ss1,20(Sgp) # d[2]is brought into Ss1
add Ss2,Ss0, Ss1 # the sumisin Ss2
sw Ss2,24(Sgp) # Ss2is stored into d[3]

Assembly version of the code continues to expand!

17

