
1

Lecture 4: MIPS Instruction Set

• Today’s topics:

 MIPS instructions
 Code examples

HW 1 due today/tomorrow!

2

Common Principles

• Amdahl’s Law

• Energy: performance improvements typically also result
 in energy improvements – less leakage

• 90-10 rule: 10% of the program accounts for 90% of
 execution time

• Principle of locality: the same data/code will be used
 again (temporal locality), nearby data/code will be
 touched next (spatial locality)

3

Recap

• Knowledge of hardware improves software quality:
 compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core
 and accelerators, slowing rate of performance improvement,
 power/thermal constraints, long memory/disk latencies

• Reasoning about performance: clock speeds, CPI,
 benchmark suites, performance and power equations

• Next: assembly instructions

4

Instruction Set

• Understanding the language of the hardware is key to understanding
 the hardware/software interface

• A program (in say, C) is compiled into an executable that is composed
 of machine instructions – this executable must also run on future
 machines – for example, each Intel processor reads in the same x86
 instructions, but each processor handles instructions differently

• Java programs are converted into portable bytecode that is converted
 into machine instructions during execution (just-in-time compilation)

• What are important design principles when defining the instruction
 set architecture (ISA)?

5

A Basic MIPS Instruction

C code: a = b + c ;

Assembly code: (human-friendly machine instructions)
 add a, b, c # a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
 00000010001100100100000000100000

Translate the following C code into assembly code:
 a = b + c + d + e;

6

Instruction Set

• Important design principles when defining the
 instruction set architecture (ISA):

 keep the hardware simple – the chip must only
 implement basic primitives and run fast
 keep the instructions regular – simplifies the
 decoding/scheduling of instructions

We will later discuss RISC vs CISC

7

Example

C code a = b + c + d + e;
translates into the following assembly code:

 add a, b, c add a, b, c
 add a, a, d or add f, d, e
 add a, a, e add a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of
 assembly code
• Some sequences are better than others… the second
 sequence needs one more (temporary) variable f

8

Subtract Example

C code f = (g + h) – (i + j);
translates into the following assembly code:

 add t0, g, h add f, g, h
 add t1, i, j or sub f, f, i
 sub f, t0, t1 sub f, f, j

• Each version may produce a different result because
 floating-point operations are not necessarily
 associative and commutative… more on this later

9

Operands

• In C, each “variable” is a location in memory

• In hardware, each memory access is expensive – if
 variable a is accessed repeatedly, it helps to bring the
 variable into an on-chip scratchpad and operate on the
 scratchpad (registers)

• To simplify the instructions, we require that each
 instruction (add, sub) only operate on registers

• Note: the number of operands (variables) in a C program is
 very large; the number of operands in assembly is fixed…
 there can be only so many scratchpad registers

10

Registers

• The MIPS ISA has 32 registers (x86 has 8 registers) –
 Why not more? Why not less?

• Each register is 32 bits wide (modern 64-bit architectures
 have 64-bit wide registers)

• A 32-bit entity (4 bytes) is referred to as a word

• To make the code more readable, registers are
 partitioned as $s0-$s7 (C/Java variables), $t0-$t9
 (temporary variables)…

 add $s0, $s1, $s2

11

Binary Stuff

• 8 bits = 1 Byte, also written as 8b = 1B

• 1 word = 32 bits = 4B

• 1KB = 1024 B = 210 B

• 1MB = 1024 x 1024 B = 220 B

• 1GB = 1024 x 1024 x 1024 B = 230 B

• A 32-bit memory address refers to a number between
 0 and 232 – 1, i.e., it identifies a byte in a 4GB memory

12

Memory Operands

• Values must be fetched from memory before (add and sub)
 instructions can operate on them

 Load word
 lw $t0, memory-address

 Store word
 sw $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory

13

Memory Address

• The compiler organizes data in memory… it knows the
 location of every variable (saved in a table)… it can fill
 in the appropriate mem-address for load-store instructions

 int a, b, c, d[10]

Memory

…

Base address

14

Memory Organization

$gp points to area in memory that saves global variables

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)
$gp

15

Memory Instruction Format

• The format of a load instruction:

 destination register
 source address

 lw $t0, 8($t3)

 any register
 a constant that is added to the register in parentheses

16

Memory Instruction Format

• The format of a store instruction:

 source register
 destination address

 sw $t0, 8($t3)

 any register
 a constant that is added to the register in parentheses

17

Example

int a, b, c, d[10];

 addi $gp, $zero, 1000 # assume that data is stored at
 # base address 1000; placed in $gp;
 # $zero is a register that always
 # equals zero
 lw $s1, 0($gp) # brings value of a into register $s1
 lw $s2, 4($gp) # brings value of b into register $s2
 lw $s3, 8($gp) # brings value of c into register $s3
 lw $s4, 12($gp) # brings value of d[0] into register $s4
 lw $s5, 16($gp) # brings value of d[1] into register $s5

18

Example

Convert to assembly:

C code: d[3] = d[2] + a;

19

Example

Convert to assembly:

C code: d[3] = d[2] + a;

Assembly (same assumptions as previous example):
 lw $s0, 0($gp) # a is brought into $s0
 lw $s1, 20($gp) # d[2] is brought into $s1
 add $s2, $s0, $s1 # the sum is in $s2
 sw $s2, 24($gp) # $s2 is stored into d[3]

Assembly version of the code continues to expand!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

