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Reminders

• Hit Record
• 2 sheets of notes (front + back), plus MIPS reference sheet
• 80% based on post-midterm material
• No phones – simple calculators allowed – ok to leave solution as an expression
• Studying strategy: focus on homeworks, then go through annotated slides, refer 

videos when things are unclear
• My office hours: Thurs 9-11, Fri 10:30-11:30

D+ or 
worse
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Disk Basics

• Disk access remains very slow – mechanical head that has to move to the correct 
“ring” of data – order of milli-seconds – high enough that a context-switch is best

• Focus on other metrics, especially reliability
• A sector on the disk is associated with a cyclic redundancy code (CRC) – a hash that 

tells us if the read data is correct or not – it is simply an error detector, not an error 
corrector

• To correct the error, RAID is commonly used
• Reliability measures continuous service accomplishment and is usually expressed as 

mean time to failure (MTTF)
• Availability is measured as MTTF/(MTTF+MTTRecovery)



RAID

• RAID 0: no redundancy
• RAID 1: mirroring
• RAID 2 and 6: memory-style ECC and rarely deployed
• RAID 3: bit-interleaved, lower cost, but no query-level parallelism
• RAID 4: block-interleaved, lower cost, query-level parallelism, but write bottleneck
• RAID 5: block-interleaved, lower cost, query-level parallelism, write parallelism
• Parity and XOR!



Unpipelined processor
CPI:
Clock speed:
Throughput:

Pipelined processor
CPI:
Clock speed:
Throughput:

Circuit Assumptions
Length of full circuit:
Length of each stage:
No hazards

Pipeline Performance



Data Hazards

No Bypassing
(for the 5-stage pipeline)
Point of production: always RW middle
Point of consumption: always D/R middle

Bypassing

Point of production: 
add, sub, etc.: end of ALU
lw: end of DM

Point of consumption:
add, sub, lw: start of ALU
sw $1, 8($2): start of ALU for $2,

start of DM for $1

* PoP
I1  add:    IF   DR    AL    DM    RW
I2  add:           IF     DR    DR DR AL  DM  RW

* PoC

* PoP
I1  add:    IF   DR    AL    DM    RW
I2  add:           IF     DR     AL     DM  RW

* PoC



Control Hazards

Assumptions

100 instructions
20 branches
14 Not-Taken, 6 Taken
Branch resolved in 6th cycle (penalty of 5)

Approach 1: Panic and wait

Approach 2: Fetch-next-instr

Approach 3: Branch Delay Slot
Option A: always useful
Option B: useful when the branch 

goes along common fork
Option C: useful when the branch

goes along uncommon fork
Option D: no-op, always non-useful

Approach 4: Branch predictor
Accuracy of 90%

Option A
Branch

Slot
NTaken Taken

Option B          Option C



Out of Order Processor

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ



Cache Latency

Assumptions

1000 instructions, 1000 cycles, no stalls with L1 hits
# loads/stores:
% of loads/stores that show up at L2:
% of loads/stores that show up at L3:
% of loads/stores that show up at mem:
L2 acc = 10 cyc,   L3 acc = 25 cyc,   mem acc = 200 cyc



Cache Size

Assumptions

512KB cache, 8-way set-associative, 64-byte blocks, 32-bit addresses

Data array size = #sets x #ways x blocksize
Tag array size = #sets x #ways x tagsize
Offset bits = log(blocksize)
Index bits = log(#sets)
Tag bits + index bits + offset bits = addresswidth



Cache Hits/Misses

Assumptions

16 sets, 1 way, 32-byte blocks

Access pattern:      4       40     400      480      512       520       1032       1540     

Offset = address % 32  (address modulo 32, extract last 5)
Index = address/32 % 16     (shift right by 5, extract last 4)
Tag = address/512          (shift address right by 9)

32-bit address
23 bits tag           4 bits index     5 bits offset    H/M   Evicted address 

4:             0                             0                        4                 M           Inv
40:           0                             1                        8                 M           Inv
400:         0                            12                      16               M           Inv
480:         0                            15                       0                M           Inv
512:         1                             0                        0                M            0
520:         1                             0                        8                 H            -
1032:       2                             0                        8                M           512
1540:       3                             0                        4                M           1024



12

Example 0b

Offset = address % 64  (address modulo 64, extract last 6)
Index = address/64 % 16     (shift right by 6, extract last 4)
Tag = address/1024          (shift address right by 10)

32-bit address
22 bits tag           4 bits index     6 bits offset

8:             0                             0                        8              M
96:           0                             1                       32             M
32:           0                             0                       32             H
480:         0                             7                       32             M
976:         0                             15                     16             M
1040:       1                             0                       16             M
1096:       1                             1                        8              M

Show how the following addresses map to the cache and yield hits or misses.
The cache is direct-mapped, has 16 sets, and a 64-byte block size.
Addresses:  8, 96, 32, 480, 976, 1040, 1096

.

.

.



Consider a 3-processor multiprocessor connected with a shared bus that has the following properties:
(i) centralized shared memory accessible with the bus, (ii) snooping-based MSI cache coherence protocol,

(iii) write-invalidate policy. Also assume that the caches have a writeback policy. Initially, the caches all
have invalid data. The processors issue the following three requests, one after the other. Similar to slide
17 of lecture 25, fill in the following table to indicate what happens for every request. Also indicate
if/when memory writeback is performed. (8 points)

P2: Read X
P1: Read X
P2: Write X
P3: Read X

State in 
Cache 4

State in 
Cache 3

State in 
Cache 2

State in 
Cache 1

Who respondsRequest
on the bus

Cache
Hit/Miss

Request

InvInvInvInv

P2: Rd X

P1: Rd X

P2: Wr X

P3: Rd X



Security

Questions to ask yourself:
How does Meltdown work?
How does Spectre work?
How can you force a footprint?  (the relevant code sequence)
How can you examine footprints?  (exploiting the side channel)
How can you defend against these attacks?

Recall that Meltdown and Spectre both rely on a sequence of priming the cache
by the attacker, a secret-dependent footprint in the cache, and the attacker finally 
doing a timing probe in the cache to detect a cache miss and the location of the 
footprint. In Meltdown, the attacker does a load to an illegal location which will 
eventually be squashed. But before the squashing, it uses the secret value as the 
address for a load and leaves a footprint in the cache. In Spectre, the attacker runs 
alongside a program that is naturally leaking secrets. The attacker can also force
the victim program to leak more secrets by training the branch predictor and 
forcing the victim to execute a leaky sequence (R1  secret; lw …, [R1]).



Virtual Memory

Questions to ask yourself:
What does the programmer/compiler deal with?
What does the OS deal with?
How is translation done efficiently?

The programmer/compiler have no idea who will run alongside a program. They 
have no option but to assume that all the memory belongs to them. So they 
assume the abstraction of virtual memory, i.e., each program has access to a 
contiguous 4GB memory. In reality, 100 programs might run together and the 
system may only support (say) 16 GB of physical memory. The OS maps each 
program’s virtual memory pages to physical memory pages. It keeps track of a 
page table per program to remember this mapping. Since the page table is itself
large, it needs to be cached. The TLB is a hardware structure that serves as a page
table cache and is accessed within a cycle while performing loads/stores. The 
cache is virtually indexed and physically tagged so that the TLB access can happen 
in parallel with cache access (while also not suffering from aliasing – multiple 
threads referring to the same physical memory location with different names).



Synchronization, Consistency

Questions to ask yourself:
Why do multiprocs need to deal with prog. models, coherence, synchronization, consistency?
What are race conditions?
What is an example synchronization primitive and how is it implemented?
What consistency model is assumed by a programmer?
Why is it slow?
How do I make life easier for the programmer and provide high performance?

Multi-threaded applications have many threads spreak across many cores that access shared data.
Like in the atm-deposit example, threads should coordinate or synchronize when accessing shared 
data. This is usually done with locks to ensure that only one thread is messing with data at a time. 
Locks are implemented with a special hardware instruction, the test-and-set. Coherence ensures 
that updates to cached values are also reflected in other caches and exposed to other threads. The 
consistency model specifies the programming model and hardware optimizations. For example, 
sequential consistency is a simple programming model, but it requires the hardware to not do any 
re-ordering. Relaxed consistency is a better consistency model since it imposes a small 
programming burden (programmers must avoid races by using locks around shared data access) 
while allowing the hardware to do re-orderings for the most part.



GPUs, Disks

Questions to ask yourself:
What are the central philosophies in a GPU?
In what ways does the GPU design differ from a CPU?
What are the different ways that disks provide high reliability?
Can you explain how parity is used to recover lost data?

A GPU is essentially parallel vector operations on steroids. So the GPU chip is 
packed with number-crunching units and very little cache. When there is a cache 
miss (which happens often), the GPU just switches the task (warp) and works on 
something else because it’s trying to be a number-crunching beast. So, context 
switches between warps are very common in a GPU. To make the context switch 
lightweight, the register file has to be large enough to accommodate the register 
operands of several warps (otherwise, the context switch would require copies 
between the register file and memory, which would take way too long).


