Lecture 26: Multiprocessors

e Today’s topics: {/‘\/\l |10 oku& /”ML/FN
= VM wrap-up -

= Snooping-based coherence
= Synchronization

= Consistency /MAVW ‘ O\
tos! bt Final ot
1/\

/ o M [
| | 1| f:fjealhfgaf’y

/ .
mdlefm wips 10 50= [

s ek ‘7{; “

1

Jhrye MW\ = 4V 4ké Py

Address Translation

Pgteble [ps R
e The virtual and physical memoryare broken up into pgages mo/\ejeJ
bd Ne OS

I ¢
8KB page size o JA) LB
A6 Ve ST pPr oo
\'3
7, ‘j.ifl<i5

P—

irtual page, \ page offset >

number

Translated to physical T
page number

MRy
5 o 3
[mewmn 20 b P\,\éﬁ \oo.dQ, n/uwv\L@/

Physical address

Memory Hierarchy Properties

e A virtual memory page can be placed anywhere in physical
memory (fully-associative)

* Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

* A page table (indexed by virtual page number) is used for
translating virtual to physical page number

e The page table is itself in memory

TLB

e Since the number of pages is very high, the page table
capacity is too large to fit on chip

e A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

e A TLB miss requires us to access the page table, which
may not even be found in the cache —two expensive
memory look-ups to access one word of data!

e A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory waste

o
TLB and Cache Access Lo b T8 T Lli

TLB and Cache

e |s the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache = longer access time

» Multiple virtual addresses can map to the same
physical address — must ensure that these
different virtual addresses will map to the same
location in cache — else, there will be two different
copies of the same physical memory word

e Does the tag array store virtual or physical addresses?
» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present

Cache and TLB Pipeline

(8 num r,),?ﬂéof’

Virtual acl‘idress

Offset

1
Virtual page number Virtual
index

Physical page number

Physical tag

v
Physical tag comparion

Virtually Indexed; Physically Tagged Cache
f——" o ==

Bad Events

e Consider the longest latency possible for a load instruction:

= TLB miss: must look up page table to find translation for v.page P

= Calculate the virtual memory address for the page table entry
that has the translation for page P — let’s say, this is v.page Q

= TLB miss for v.page Q: will require navigation of a hierarchical
page table (let’s ignore this case for now and assume we have
succeeded in finding the physical memory location (R) for page Q)

= Access memory location R (find this either in L1, L2, or memory)

= We now have the translation for v.page P — put this into the TLB

= We now have a TLB hit and know the physical page number — this
allows us to do tag comparison and check the L1 cache for a hit

= |f there’s a miss in L1, check L2 — if that misses, check in memory

= At any point, if the page table entry claims that the page is on disk,
flag a page fault —the OS then copies the page from disk to memory
and the hardware resumes what it was doing before the page fault
... phew!

Multiprocessor Taxonomy

e SISD: single instruction and single data stream: uniprocessor

e MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

e SIMD: vector architectures: lower flexibility

e MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility

10

Memory Organization - |

e Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

e Multiple processors connected to a single centralized
memory —since all processors see the same memory
organization = uniform memory access (UMA)

e Shared-memory because all processors can access the
entire memory address space

e Can centralized memory emerge as a bandwidth
bottleneck? — not if you have large caches and employ
fewer than a dozen processors

11

Cotche_ CoL\{Q-/f/MC/C / ey
Snooping-Based Protocols , —

{_____

__ \}

invali if peos e cha,
e Three states for a block: invalid, shared, modified > P p
e A write is placed on the bus and sharers invalidate themselves)

e The protocols are referred to as MSI, MESI, etc.

AL Coe | T (e 2 éa«o} Cove § 71

|/O System

12

Stbe el | Gl s
Ex ol N U an oL ™M
Example sovhd |

* P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state Rd-MISS

e P2 reads X: not found in cache-2, request sent on bus, everyone snoops SUW/lL—
this request, cache-=1does nothing because this is just a read request, J,-a ZCGJ-E
memory responds, X is placed in cache-2 in shared state (e Ca
— " — Slror y)

e P1 writes X: cache-1 has data in shared
“state (shared (%ax'provides read perms),
\C request sLéﬁ%on bus, cache-2 snoops and
P\(S P\ltthen invalidates its copmhe-l M \55
Lt] [} moves its state to modified \,/IM/\
o E@x_:cacg_eﬁz&as data in invalid
@‘ state, requestﬁsent o% bus, cache-1 snoops M&m
| A

4(7 responds with data, X is placed in cache-2

in shared state, memory is also updated

and realizes it has the only valid copy, so it QL@J('%
\/\ X\ downgrades itself to shared state and ‘A‘;gi
S[/Z/ Main Memor (’Wj

S(MMIB «F A Lbd(L1510 e

Example
6 4\ B
Request | Cache Request | Who responds | State in | Statein | State in | Statein
Hit/Miss | on the bus Cache 1l | Cache 2 | Cache 3 | Cache 4
Inv Inv Inv Inv
P1:Rd X Rd Miss Rd X Memory S Inv Inv Inv
—— ~— —_— — _— —_
P2:RdX RdMiss RdX Memory S st1 nv Inv

P2: Wr X__ Perms UpgradeX Nores\pﬂs_e Inv 7 Inv Inv
C% |V|ISS Other caches = =

invalidate.

\Y
P3 Wr X Wr Miss Wr X P2 responds Inv Inv M S? Inv
— T = = P
P3:RdX RdHit - - Inv Inv M Inv
—
P4:Rd X Rd Miss Rd X P3 responds. Inv Inv S S

Mem wrtbk

14

Cache Coherence Protocols

e Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

e Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

» Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

» Write-update: when a processor writes, it updates other
shared copies of that block

15

Constructing Locks

e Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel

processes modifying the data

e A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

e The hardware must provide some basic primitives that
allow us to construct locks with different properties

~

Rd $1000
Add $100
Wr $1100

Bank balance

$1000

Parallel (unlocked) banking transactions

\

Rd $1000
Add $200
Wr $1200

16

Synchronization

e The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

e Atomic exchange: swap contents of register and memory
e Special case of atomic exchange: test & set: transfer

memory location into register and write 1 into memory
(if memory has 0, lock is free)

e lock: t&s register, location When multiple parallel threads
bnz resister lock execute this code, only one
cS 5 ’ will be able to enter CS

st location, #0

17

Coherence Vs. Consistency

e Coherence guarantees (i) write propagation
(a write will eventually be seen by other processors), and
(ii) write serialization (all processors see writes to the
same location in the same order)

e The consistency model defines the ordering of writes and
reads to different memory locations — the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions

18

Consistency Example

e Consider a multiprocessor with bus-based snooping cache
coherence

Initially A=B=0
P1 P2

A< B& 1

if (B==0) if (A ==0)
Crit.Section Crit.Section

Consistency Example

e Consider a multiprocessor with bus-based snooping cache
coherence

Initially A=B=0
P1 P2

A< B& 1

if (B==0) if (A ==0)
Crit.Section Crit.Section

The programmer expected the
above code to implement a
lock — because of 000, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities 20

Sequential Consistency

e A multiprocessor is sequentially consistent if the result
of the execution is achieveable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

e The multiprocessor in the previous example is not
sequentially consistent

e Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read — very intuitive for
the programmer, but extremely slow

21

Relaxed Consistency

e Sequential consistency is very slow

e The programming complications/surprises are caused when the
program has race conditions (two threads dealing with same
data and at least one of the threads is modifying the data)

e |f programmers are disciplined and enforce mutual exclusion
when dealing with shared data, we can allow some re-orderings

and higher performance

e This is effective at balancing performance & programming effort

22

