Lecture 26: Multiprocessors
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Memory Hierarchy Properties

e A virtual memory page can be placed anywhere in physical
memory (fully-associative)

* Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

* A page table (indexed by virtual page number) is used for
translating virtual to physical page number

e The page table is itself in memory



TLB

e Since the number of pages is very high, the page table
capacity is too large to fit on chip

e A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

e A TLB miss requires us to access the page table, which
may not even be found in the cache —two expensive
memory look-ups to access one word of data!

e A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory waste
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TLB and Cache

e |s the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache = longer access time

» Multiple virtual addresses can map to the same
physical address — must ensure that these
different virtual addresses will map to the same
location in cache — else, there will be two different
copies of the same physical memory word

e Does the tag array store virtual or physical addresses?
» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present



Cache and TLB Pipeline
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Bad Events

e Consider the longest latency possible for a load instruction:

= TLB miss: must look up page table to find translation for v.page P

= Calculate the virtual memory address for the page table entry
that has the translation for page P — let’s say, this is v.page Q

= TLB miss for v.page Q: will require navigation of a hierarchical
page table (let’s ignore this case for now and assume we have
succeeded in finding the physical memory location (R) for page Q)

= Access memory location R (find this either in L1, L2, or memory)

= We now have the translation for v.page P — put this into the TLB

= We now have a TLB hit and know the physical page number — this
allows us to do tag comparison and check the L1 cache for a hit

= |f there’s a miss in L1, check L2 — if that misses, check in memory

= At any point, if the page table entry claims that the page is on disk,
flag a page fault —the OS then copies the page from disk to memory
and the hardware resumes what it was doing before the page fault
... phew!



Multiprocessor Taxonomy

e SISD: single instruction and single data stream: uniprocessor

e MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

e SIMD: vector architectures: lower flexibility

e MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility
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Memory Organization - |

e Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

e Multiple processors connected to a single centralized
memory —since all processors see the same memory
organization = uniform memory access (UMA)

e Shared-memory because all processors can access the
entire memory address space

e Can centralized memory emerge as a bandwidth
bottleneck? — not if you have large caches and employ
fewer than a dozen processors
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Cache Coherence Protocols

e Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

e Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

» Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

» Write-update: when a processor writes, it updates other
shared copies of that block
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Constructing Locks

e Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel

processes modifying the data

e A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

e The hardware must provide some basic primitives that
allow us to construct locks with different properties

~

Rd $1000
Add $100
Wr $1100

Bank balance

$1000

Parallel (unlocked) banking transactions

\

Rd $1000
Add $200
Wr $1200
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Synchronization

e The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

e Atomic exchange: swap contents of register and memory
e Special case of atomic exchange: test & set: transfer

memory location into register and write 1 into memory
(if memory has 0, lock is free)

e lock: t&s register, location When multiple parallel threads
bnz resister lock execute this code, only one
cS 5 ’ will be able to enter CS

st location, #0
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Coherence Vs. Consistency

e Coherence guarantees (i) write propagation
(a write will eventually be seen by other processors), and
(ii) write serialization (all processors see writes to the
same location in the same order)

e The consistency model defines the ordering of writes and
reads to different memory locations — the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions
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Consistency Example

e Consider a multiprocessor with bus-based snooping cache
coherence

Initially A=B=0
P1 P2

A< B& 1

if (B==0) if (A ==0)
Crit.Section Crit.Section




Consistency Example

e Consider a multiprocessor with bus-based snooping cache
coherence

Initially A=B=0
P1 P2

A< B& 1

if (B==0) if (A ==0)
Crit.Section Crit.Section

The programmer expected the
above code to implement a
lock — because of 000, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities 20



Sequential Consistency

e A multiprocessor is sequentially consistent if the result
of the execution is achieveable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

e The multiprocessor in the previous example is not
sequentially consistent

e Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read — very intuitive for
the programmer, but extremely slow
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Relaxed Consistency

e Sequential consistency is very slow

e The programming complications/surprises are caused when the
program has race conditions (two threads dealing with same
data and at least one of the threads is modifying the data)

e |f programmers are disciplined and enforce mutual exclusion
when dealing with shared data, we can allow some re-orderings

and higher performance

e This is effective at balancing performance & programming effort
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