Lecture 24: Cache Wrap-Up, Memory, Security

e Today’s topics:

= Cache examples, policies
= Main memory system
= Hardware security intro

Fdoe -
"0 Exa

ddaess [llese ~ e
rg b /CL\E;!Z:;L Se{g | * [nde ”PE —
ample 32 badl, °

Show how the following addllfesses map to the cache and yield hits or misses.
The cache is direct-mapped, has 16 sets, and a 64-byte block size.

Addresses: 8, 96 m% — D#Sd
B —
i saminic ~ wddr blksize)
% 42 i € >Offset address % 64 (address modulo 64, ct [ast 6]
‘P ﬁ 1] & —>Index = address/64 % 16 (shift right by 6, extract last 4)

Tag = adlress/1024 (shift address right by 10)
ﬁ—q

)
[32-bit address
o (22 bits tag 4 bits index 6 bits offset
| JF) 8 1 QD 0 3
= 0 54/ 96: 0 1 32
, 32 (@ 0 32
| 0 @ 32 M
' 976: 15 16 M
) (é 1040:; @ P, 16 (D
<> Q| 10964.- ' | 'u\ak!&l(ek 8 M
\ o . qj ‘ 2

Y 0,/000D0 0|000

7

ERESER e e 20
Example 4 %} ~ ow 8P N

>
é

Assume that addresses are 8 bits [éng
How many of the following addréss requests
Byte address are hits/misses? H M
zfl, 7,10, 13, 16, 24, 36, 4, 48, 64, 4, 36, 64, 4
OOOlOIOOO ™M p/){\’\ - &__%’Lﬁ[oo /4
i a e
® Wayl _ Way2iy : «aa)/y,
O /ZZ <P | 0 — Z 32 — 39 >€U1‘%
0 |7 <. | §g— i5 4 sebs
O — 16— 25> |48 —S¢«¢ ~
O 2h— 3| 8-byte blocks
Tag array w ”\fh Data array
4 0 0 M LRV (_e;j
1 : N Q. A e,()\a
(0; © | M >
3. O | ¢ Zj

Example 4

Byte address

Assume that addresses are 8 bits long
How many of the following address requests
are hits/misses?

4,7,10, 13, 16, 24, 36, 4,48, 64, 4, 36,64, 4
00010000 MHMHMMMHMMHM MM
Tag Way-1 Way-2
e
8-byte blocks
Tag array

Data array

Cache Misses

e On a write miss, you may either choose to bring the block
into the cache (write-allocate) or not (write-no-allocate)
e On a read miss, you always bring the block in (spatial and
temporal locality) — but which block do you replace?
» no choice for a direct-mapped cache
» randomly pick one of the ways to replace
» replace the way that was least-recently used (LRU)
> FIFO replacement (round-robin) =

. 5 NS
Writes ox s

e When you write into a block, do you also update ije \ @L'
Vj

copy in L2? w2 ({

> er-through: every write to L1 > write to L2

> writ%-%gick: mark the block as dirty, when thetbﬁck\ =3 y)

gets aced from L1, write it to L2 ke l/"\/‘
\po\c\< Me~
e Writeback coalesces multiple writes to an L1 block into one

L2 write

e Writethrough simplifies coherency protocols in a
multiprocessor system as the L2 always has a current
copy of data

Ll — [6KkS
Types of Cache Misses C4IR

* Compulsory misses: happens the first time a memory E\/\\/\&

word is accessed — the misses for an infinite cache
29 Maj

isses: happens because the program touched
m

any other words before re-touching the same word — the
misses for a fully-associative cache

. (;gnflict misses: happens because two words map to the
same location in the cache — the misses generated while
moving from a fully-associative to a direct-mapped cache

P
|«

t?%jo (Pmccffv/ 5o
Off-Chip DRAM IVIam Memorxw_%/a_/‘

opmazed BT 3T Stode sraM | LAt]
e Main memory is stored in l RAM cells that have much i 'oQJ-p

higher storage density OP}QWZ/J 1‘0/

e DRAM cells lose their state over time — must be r freshed

periodically, hence the name Dynamic \é QE
6 e %
e A number of DRAM chips are aggregated on a DIMM to
provide high capacity —a DIMM is a module that plugs
; —_—
into a bus on the motherboard D

e DRAM access suffers from long access time and high (
energy overhead H)}

8

Memory Architecture

M
s S
/ SRy | \b\\ T/) lko")\k
board %
cLG®
/\ ZC/({\M}H(L) SD~DIM'JI
o 04 (aptors
/(\\ L DIMMLs Jr\u)),\ (MMM
GBI ey = igh TP
/0N Lo, ?

AN U‘f\"ﬂf

Memory Architecture

Processor ank

Row Buffer

Address/Cmd

DIMM

Data M(’/Y"\ (J\MV\QJL

e DIMM: a PCB with DRAM chips on the back and front

e The memory system is itself organized into ranks and banks; each
bank can process a transaction in parallel

e Each bank has a row buffer that retains the last row touched in a bank
(it’s like a cache in the memory system that exploits spatial locality)

(row buffer hits have a lower latency than a row buffer miss)

10

Hardware Security

e Software security: key management, buffer overflow, etc.

e Hardware security: hardware-enforced permission checks,
authentication/encryption, etc.

e Information leakage, side channels, timing channels

e Meltdown, Spectre, SGX

11

Meltdown

12

Spectre: Variant 1

x is controlled by Thanks to bpred, x can be anything

attacker
\ J arrayl|] is the secret

Victim if (x < arrayl_size)
Code =P y = array2[arrayl[x] |;

Access pattern of array2|[] betrays
the secret

13

Spectre: Variant 2

Attacker code

LabelO: if (1)

Labell: ...

Victim code

R1 < (from attacker)
R2 € some secret
LabelO: if (...)

R

Victim code

Labell:
lw [R2]

14

