
1

Lecture 24: Cache Wrap-Up, Memory, Security

• Today’s topics:

 Cache examples, policies
Main memory system
 Hardware security intro

2

Example 2

Offset = address % 64 (address modulo 64, extract last 6)
Index = address/64 % 16 (shift right by 6, extract last 4)
Tag = address/1024 (shift address right by 10)

32-bit address
22 bits tag 4 bits index 6 bits offset

8: 0 0 8 M
96: 0 1 32 M
32: 0 0 32 H
480: 0 7 32 M
976: 0 15 16 M
1040: 1 0 16 M
1096: 1 1 8 M

Show how the following addresses map to the cache and yield hits or misses.
The cache is direct-mapped, has 16 sets, and a 64-byte block size.
Addresses: 8, 96, 32, 480, 976, 1040, 1096

.

.

.

3

Example 4

00010000

Byte address

Tag

Data arrayTag array

8-byte blocks

Way-1 Way-2

Assume that addresses are 8 bits long
How many of the following address requests
are hits/misses?
4, 7, 10, 13, 16, 24, 36, 4, 48, 64, 4, 36, 64, 4

4

Example 4

00010000

Byte address

Tag

Data arrayTag array

8-byte blocks

Way-1 Way-2

Assume that addresses are 8 bits long
How many of the following address requests
are hits/misses?
4, 7, 10, 13, 16, 24, 36, 4, 48, 64, 4, 36, 64, 4
M H M H M M M H M M H M M M

5

Cache Misses

• On a write miss, you may either choose to bring the block
into the cache (write-allocate) or not (write-no-allocate)

• On a read miss, you always bring the block in (spatial and
temporal locality) – but which block do you replace?
 no choice for a direct-mapped cache
 randomly pick one of the ways to replace
 replace the way that was least-recently used (LRU)
 FIFO replacement (round-robin)

6

Writes

• When you write into a block, do you also update the
copy in L2?
 write-through: every write to L1 write to L2
 write-back: mark the block as dirty, when the block

gets replaced from L1, write it to L2

• Writeback coalesces multiple writes to an L1 block into one
L2 write

• Writethrough simplifies coherency protocols in a
multiprocessor system as the L2 always has a current
copy of data

7

Types of Cache Misses

• Compulsory misses: happens the first time a memory
word is accessed – the misses for an infinite cache

• Capacity misses: happens because the program touched
many other words before re-touching the same word – the
misses for a fully-associative cache

• Conflict misses: happens because two words map to the
same location in the cache – the misses generated while
moving from a fully-associative to a direct-mapped cache

8

Off-Chip DRAM Main Memory

• Main memory is stored in DRAM cells that have much
higher storage density

• DRAM cells lose their state over time – must be refreshed
periodically, hence the name Dynamic

• A number of DRAM chips are aggregated on a DIMM to
provide high capacity – a DIMM is a module that plugs
into a bus on the motherboard

• DRAM access suffers from long access time and high
energy overhead

9

Memory Architecture

10

Memory Architecture

Processor

Memory
Controller

Address/Cmd

Data

DIMM

Bank
Row Buffer

• DIMM: a PCB with DRAM chips on the back and front
• The memory system is itself organized into ranks and banks; each

bank can process a transaction in parallel
• Each bank has a row buffer that retains the last row touched in a bank

(it’s like a cache in the memory system that exploits spatial locality)
(row buffer hits have a lower latency than a row buffer miss)

11

Hardware Security

• Software security: key management, buffer overflow, etc.

• Hardware security: hardware-enforced permission checks,
authentication/encryption, etc.

• Information leakage, side channels, timing channels

• Meltdown, Spectre, SGX

12

Meltdown

13

Spectre: Variant 1

if (x < array1_size)
y = array2[array1[x]];

Victim
Code

x is controlled by
attacker

array1[] is the secret

Access pattern of array2[] betrays
the secret

Thanks to bpred, x can be anything

14

Spectre: Variant 2

R1 (from attacker)
R2 some secret
Label0: if (…)

… …

Victim code

Victim code
Label1:

lw [R2]

Attacker code

Label0: if (1)

Label1: …

